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Abstract. It i1s shown that discounted general-sum stochastic games
with two players, two states, and one player controlling the rewards
have the ordered field property. For the zero-sum case, this result implies
that, when starting with rational data, also the value 1s rational and that
the extreme optimal stationary strategies are composed of rational
components.
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1. Introduction

A long time ago, Weyl (Ref. 1) proved the ordered field property for
matrix games; i.e., if the payoffs of the matrix game are all elements of the
same ordered field k, then also the value of the game 1s in k and the extreme
optimal mixed actions have coordinates in the same field.

A similar property holds for LP-problems [cf. Dantzig (Ref. 2)], and
an extension to bimatrix games was given by Vorob’ev (Ref. 3) and Kuhn
(Ref. 4): a bimatrix game with all entries in k possesses a Nash equilibrium
point with coordinates in k.

For B-discounted stochastic games, the ordered field property in general
does not hold as was already shown by Shapley (Ref. 5). In recent years,
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several subclasses of stochastic games were studied, possessing the ordered
field property:

(i) the one player controls transitions stochastic game [cf. Vrieze
(Ref. 6) and Parthasarathy and Raghavan (Ref. 7)];

(ii) the switching control stochastic game [cf. Vrieze et al. (Ref. 8)1;

(iii) the separable rewards and state-independent transitions stochas-

tic games [cf. Sobel (Ref. 9) and Parthasarathy et al. (Ref. 10)];

(iv) the additive rewards and transitions stochastic games [ cf.
Raghavan et al. (Ref. 11)].

The main interest in subclasses of games with the ordered field property
lies in the fact that the solution can be more easily computed as a con-
sequence of the nice mathematical properties. Moreover, structured stochas-
tic games often appear to be more suitable for modelling some practical

problems.
In this paper, we introduce the following class of stochastic games:

(a) there are two players,
(b) the state space is S ={1, 2};
(c) the action sets are

£1. 2. imyland {1, 2,00, m,} for-playeril,
{12 oomdand {1,205 5,ns) forplayer1l:
(d) the reward functions are
a,:{1,2,...,m}->R for player I in state 1,
b,:{1,2,...,m}->R for player Il in state 1,
a: {.1, 2....,m,1>Rfor player I in state 2,

b.: {1,2,..., m>} >R for player Il in state 2;

(e) the transitions are: p; equals the probability that the system
remains in state 1, if in state 1 player I chooses i and player II chooses j
(1—-p, is the probability of moving to state 2); and g; equals the probability
that the system moves to state 1, if in state 2 player I chooses i and player
11 chooses j (1—g; is the probability of remaining in state 2).

Hence, the restrictions with regard to the gerieral stochastic games are
that there are only two states and that the rewards are governed by player
I. We would get similar results if the rewards were governed by player 11.
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We consider the infinite-horizon game, and the stream of immediate
payoffs will be evaluated by discounting with a factor B € (0, 1).

Example 1.1. As an example of a stochastic game of the above type,
consider the following situation. The managing board of a company has to
choose between a conservative policy management or a technically innova-
tive management for the current period. The employees of the company
may decide to follow the instructions of the managing board in a loyal way

or they may be disloyal.
There are two market positions of the company: good and bad. The

profit in a certain period depends only on the choice of the managing board
and the market position. The earnings of both the managing board and the
employees are certain portions of the profit. The disloyalty of the employees
has delayed influence, in the sense that it has no influence on the profits
in the current period, but it codetermines the market position of the company
in the next period, together of course with the present market position and

the decision of the managing board.
Then, this situation can be modelled as a stochastic game of the type

at hand. An example is given in Figs. 1 and 2.
Here, a cell such as the one shown in Fig. 3 means: payoft a to player

I (the managing board), payoff b to player II (the employees), and with
probability p, a jump to state 1 (good market position), and with probability
p»=1—p, a jump to state 2 (bad market position).

-—

2. Main Theorem
We will prove the following theorem.

Theorem 2.1. If all the data of a stochastic game of the above type
are rational, then there exists a rational equilibrium point in stationary

strategies.
Before proving this theorem we introduce first some notation and next

give three lemmas.
Stationary strategies will be denoted by

P = (xl ) xl)m Xyi= (xl 1y X125 vy xlm,)& AT (xll s X225+ 0y x?_m:): fOI' Player Ia

o

and by

= (1,92 M=V Vizse oo s Yin)s V2= (Y215 Y225 - -« 5 Y2n,), fOT player 1.
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Note that

X1is X2is Y1js Y2 =0

and that

ml mz l"l'1 ."‘I1
L Xu= )L Xu=) yy=L yy=1

=1 i=1 j=1 j=1
Here, x,; equals the probability with which player I, adopting p, will choose
action i whenever the system 1s i1n state 1. The other components have

analogous meaning.
MDP (x,, x,) or MDP (p) will denote the maximizing Markov decision

problem with payoffs derived from b,,, b,, (etc.) faced by player II when
player I adopts the stationary strategy p = (x,, x,) [cf. Hordijk et al. (Ref.
12)]. MDP (o) and MDP (y,, v,) have analogous meaning.

C(x,) will denote the carrier of x,, i.e., the set of actions on which x,
puts positive weight. Thus, C(x,) C{1,2,..., m}. C(x;), C(y,), and C(y,)
have analogous meaning.

Observe that an element of C(x,) X C(x,) can be interpreted as a pure
stationary strategy.

F,(C(x,), C(x,)):={o: all elements of C(x,)x C(x,) are optimal for
MDP (o)}. Fr,(C(y,), C(y,))isdefined analogously. Thus, f,(C(x,), C(x,))
contains those stationary strategies of player II, for which each pure strategy
out of C(x,)x C(x,) is a best answer for player I with regard to his own
payoffs.

Lemma 2.1. A pair of stationary strategies ((x,, x,), (y,, y,)) forms
an equilibrium point if and only if (y,, y,) € F,(C(x,), C(x;)) and (x,, x,) €
F>5(C(y)), C(y2)).

Proof. ((x,, x,), (y,, y,))is an equilibrium point if and only if (y,, y»)
is optimal in MDP (x,, x,) and (x,, x,) is optimal in MDP (y,, y,), which
is the case if and only if all elements of C(y,) X C(y,) are optimal in MDP
(x,, x,) and all elements of C(x,)x C(x,) are optimal in MDP (y,, y,).
These conditions correspond to (y,, y,) € F,(C(x,), C(x,)) and (x,, x,) €

F5(C(y,), C(y2)).

Let o,(a,) be a nonempty subset of pure actions of player I in state 1
(state 2). First, we prove that F,(a,, a,) is either empty or a polytope with
rational extreme points. Let y,(y,) be a nonempty subset of pure actions
of player II in state 1 (state 2). Next, we prove that Fy(y,, y,) is either
empty or consists of the union of a finite number of polytopes with rational

extreme points.
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Lemma 2.2. F,(a,, a,) is either empty or a polytope with rational
extreme points.

Proof. In the proof of this lemma (and in the proof of Lemma 2.3),
we will rely frequently on properties of the set of functional equations which
solve discounted stochastic games [cf. Shapley (Ref. 5)].

Let o= (y,, y,) € F,(a,, a,). Let (V,(o), V2(o)) be the optimal reward
to player I in MDP(o). Let i, € @, and i, € a,. Then, the following equalities
hold.

In state 1, we have

Vi(o) =§| yla (i) +Bpi;Vi(o)+ B(1—p; ;) Va(o)]. (1)
Rearranging terms yields

(1-B)Vi(o)=a\(i))+ B[ V(o) = Vi(o)] jgl yiiPii—1]. (2)
Similarly,

ﬁ
o

*21 Va2idi,j — 1] : (3)

J:

(1=B)Va(o)=a,(i,)+B[ V(o) - Vz(o')][
Subtracting Eq. (3) from Eq. (2) yields
a,(i,)—a,(i,)=[V,(o)— Vi(0o)] [B él VijPi.i — P *il Y2iqi,; — 1] ;

or
VI(U)—VT(U)=[az(fz)—ﬂl(fl)]/N()’nJ’:), : (4)

with
N{yisv2) =B 2L Yibij—P 2. Y291, —1<0.
2 i, j=1

For each i€ a,, but i#1i,, an equality similar to (1) holds, which after
rearranging the terms leads to

|

(1=-B)Vi(og)=a,(i)+B[ V(o) - Vz(o')]l:il VijPy—1 |- (9)

J=

-

An action i€ a, should not be better than an action i€ a,, which 1s the
case if and only if

"I

Vi(o)= Z }'l_;‘[al(f)+ﬁP:‘;‘V|(U’)+B(1 "Pfj) V,(o)l,

J:
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or

(1-B)Vi(o)=a,(i)+ B[V (c— Vy(0o)] [é VaiPi— 1 |- (6)

Now, subtracting each of Egs. (5) and (6) from (2) and inserting (4) results
in m, —1 linear inequalities,

A

N(J’nJ’:)[al(fl)_al(f)]f-:B[az(f:)“ﬂi(fi)]|:EI }”lj(Pr‘j_Pnj) - ({76)

If ie ay, i #i,, then in (7) the equality sign holds.
Likewise, in state 2, the counterparts to (5) and (6) lead to m, —1 linear
inequalities for i # i,,

2

Ny, y2)lax(iy) —ay(i)] = Bla,(iy) —a,(i)] [Zl Y2;(qij — szj) | - (8)

J:

If i€ a,, i #i,, then in (8) the equality sign holds. Thus, if o =(y,, y2)€
F,(a,, a,), then y, and y, satisfy (7) and (8).

Now conversely, let 7,, y, satisfy (7) and (8). Let (Z,(d), Z,(7)) be
the total discounted reward associated with player II playing &= (y,, y,)
and player 1 playing the pure strategy (i,,i,). We shall prove that ge
F,(a,, a,). Then, (2) and (3) hold for y,, ¥, Z,(d), and Z,(&). Now, via
(4) and (2), we derive from (7) that (5) and (6) hold for V1, V2, Zy)(€), and
Z,(&) for respectively i€ a,, i # i,, and for i # «,. Via (4) and (3), we can
derive from (8) that the state 2 versions of (5) and (6) hold for y,, y,
Z.(&), and Z,(a). But, then we may conclude that

(Z,(6), Z,(6)) = (Vi(d), Va(7)),

which means that not only (i,, i,) is a best answer for player I to &, but
also that every element of @, X a, is a best answerto 6. Hence, 7 € F(a,, a,).
Since (7) and (8) are linear relations with rational coefficients, this proves

the lemma.

Lemma 2.3. F-(7v,, v,) is either empty or the union of at most three
polytopes.

Proof. Letp=(x,,x,)€ F(v,, v.). Let (W (p), Wi(p)) be the optimal
reward to player I1 in MDP(p). Then, counterparts to (2),.(3), (5), and{6)
are valid if W,(p) replaces V;(o), i=1, 2. In particular,

(1_B)WI(P)= ;I x,:b,(i)+B[W,(p)— w’z(P)][Zl pixii—1]. (9)

1= -
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Hence, the following counterpart to (4) is valid:

Wi(p)— Wi(p) = [ 2. X2iby(1) Z X b, (1 )]/L(xnxz), (10)
with

L(x,,x,)=p é] X,iPii, — B gl X129, — 1 <0.

Subtracting (9) evaluated for j # j, from (9) evaluated for j = j, and inserting
(10) gives

0= Z‘, x:sz(f)_gl xnbl(f)][;‘ xu(PU._Prj)]- (11)
Similarly,
0= l:; X2ib; Z x,b, ('):ll:; xzi(qa‘j:_ql‘j:l- (12)

The equality sign holds in (12) if jey,, j£j,. Hence, if p=(x,, x,)€
F>(vy,, v>), then x, and x, satisfy (11) and (12).
The proof of the converse is omitted, because it 1s similar to the converse

part of the proof of Lemma 2.2.

Now, we have that p =(x,, x,) € F5(v,, ¥,) if and only if x,, x, satisfy
(11) and (12).

Let

m,

Lo(x,, x;) = Z X2ib2 (1) — 2 x,iby (i)
i=1

1=1

and

m
I

LI;(II):: Z xll’(pljl_pij): fﬂ'rjE{l,z, P nl}ij#jli
=1

L.i(x:)= ) x2(gi,— q;), forjiell, 2,.. .01, j 7 Ja:

i=1
From the above characterization of F5(vy,, y-,), we get
F>5(vi, v2) ={(x, x2); L(x,, x;) =
v {(x,, x3); L(x,, x;
FE Y5 % Jis Lyl X )anjf Y15
Llj(x}:) =0,7 € v2,] # J2, sz(xz)i: 0,j € 72}
v {(x,, x2); L(x,,x5)=0, L,;(x,)=0,
JE Y, J# ), Lij(x)=0,j & v,
L:;(xz) =0,j€ v:,J # Ja, L:j(xz) =0,j & 72}-
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Thus, F,(v,, v,) is empty or the union of at most three polytopes with
rational extreme points, since each of the linear functions Lo, L,, L, has

rational coefficients.

Proof of Theorem 2.1. It is well known that there exist equilibrium
points in stationary strategies [cf. Fink (Ref. 13)]. Let ((x,, x2), (¥:, »)) be
an equilibrium point. Then, by Lemma 2.1,

(»1,y2)€ Fi(C(x)), C(x;)) and (x,,x;) € F>o(C(y1), C(y2)).

Suppose that either x, and/or x, is irrational. By Lemma 2.3, we have that
(x,,x,) belongs to a polytope with rational extremes contained In
F,(C(y,), C(y,)). But then, there is some rational element (xT.x3) of
F>5(C(y,), C(y,)) such that

C(x¥)=C(x;) and C(x3)=C(x,).
So,

(x¥, x3) e Fo(C(yy), C(y2))
and

(31, y2) € Fi(C(x,), C(x)) = Fi(C(x7), C(x3)).

Hence, by Lemma 2.1, ((x¥, x¥), (»,, y2)) is an equilibrium point. If further-
more either y, or y, is irrational, then starting from (i, 230506V )0, we
can find a rational point (y{,y3) via Lemma 2.2 such that ((xT x5,
(y¥, y¥)) is an equilibrium point, which now is rational.

Notice from the proof of Theorem 2.1 that the order field property can

be proved whenever Lemmas 2.2 and 2.3 hold.

The converse in an interesting question. Observe that in our case these
lemmas hold because, in (2), (3), (5), and (6), the reward term does not
depend on the strategy (y,, y.) and because of the fact that, in using (9)
to obtain (11), the reward terms vanish.

When focusing on zero-sum stochastic games, we get an interesting

result.

Theorem 2.2. For a two-state, zero-sum stochastic game with one
player controlling the immediate rewards and all data rational, the following

results hold:

(i) the value is rational,
(ii) the set of optimal stationary strategies for each player can be
written as the Cartesian product of two polytopes with rational extreme

points.
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Fig. 4. Example.

Proof. (i) Equilibrium strategies are optimal strategies in the case
of zero-sum games. So, by Theorem 2.1, there exist optimal rational strategies
for both players. The discounted payoff for such a pair of strategies is
rational and equals the value of the game.

(ii) From Tijs and Vrieze (Ref. 14), the set of optimal stationary
strategies for a two-state, zero-sum stochastic game can be written as
X?_,0.(s) for player k, where O,(s) is the set of optimal actions for player
k in the matrix game

[G,(V)]= [rs(fsj)+5(“:jvl (= uij) VE)]EEAI,}E B, »

here, u; = p;, if s=1, and u; =g, if s=2; V=(V,, V,) is the value of the
game; and A,, B, are the action sets in state s. Since V is rational 1n our
case, [G.(V)], s =1, 2, is a matrix game with rational entries. Hence, O,(s)

is a polytope with rational extreme points [cf. Weyl (Ref. 1)]. [

We conclude with an example which shows that, even for the zero-sum
case, our result cannot be extended to stochastic games with three states
for which one player controls the rewards. See Fig. 4. Clearly,

V5(2)=2/(1—-B) and Vs(3)=4/(1-p).
For state 1, one can 'compute that
Ve(1)=(7-B—V178° =308 +17)/[2(2-B)(1-B)],
forall B=1/2.
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