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Abstract. The mapping class group of a d-pointed Riemann surface has a
natural C∞ action on any moduli space of parabolic bundles with the marked
points as the parabolic points. We prove that under some numerical conditions
on the parabolic data, the induced action of the mapping class group on the
cohomology algebra of the moduli space of parabolic bundles factors through
the natural epimorphism of the mapping class group onto the symplectic group.

1. Introduction

Consider an oriented surface with a finite number of punctures. Let R be the
space of gauge equivalence classes of flat unitary connections on it such that the
holonomy around each puncture lies in a fixed conjugacy class of U(n). Assume
that R satisfies some numerical conditions (§2). Using pull-back of connections by
a diffeomorphism, the mapping class group M, for the marked surface, acts on R.
In particular, we have a representation of M in the cohomology ring of R. Let

ρ : M −→ H∗(R,Q)

denote the homomorphism ontained above.
Let X denote the compact surface. The group M acts on H1(X,Z). Let

0 −→ T −→ M −→ G −→ 0

be the exact sequence of groups obtained from this action. The group G is a sub-
group of the group of automorphisms of H1(X,Z). The group T is usually called
the Torelli group.

Using the main result of [BR] we construct a surjective algebra homomorphism
A −→ H∗(R,Q), where A is constructed from H1(X,Z). Our main result (Theo-
rem 3.4) is the following

Theorem A. The restriction of ρ to the Torelli group T is a trivial representation.
Moreover, the homomorphism A −→ H∗(R,Q) is a homomorphism of G-modules.

A similar result is proved for the space of flat SU(n) connections.
In [BR] we constructed some cohomology classes {ai} on X ×R such that the

Künneth components of {ai} generate the algebra H∗(R,Q). These classes are
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actually the characteristic classes of a certain PGL(n, ,C) bundle on X ×R. The
proof of Theorem 3.4 is ultimately based on the fact that for any diffeomorphism, g,
ofX , the diffeomorphism ofX×R induced by g leaves any ai invariant (Lemma 2.7).

Using cup product and a symmetric invariant form on the Lie algebra, there is a
natural symplectic form on R. It is easy to see that the diffeomorphisms of R which
are induced by M actually preserve this symplectic form. Under certain conditions,
for a symplectic diffeomorphism there are Floer homology groups [DS]. In [DS] the
Floer homology of a symplectic diffeomorphism of above type for SU(2) is identified
with the Floer homology of the the mapping cylinder for the corresponding element
of M. There is an obvious question of the possibility of a relationship between the
action of M on the usual cohomology of R and the Floer homology.

After the work was completed the author came to know that M.S. Narasimhan
anticipated the results obtained here.

2. The construction

Let X be a compact Riemann surface of genus g ≥ 2. Fix a finite sub-set
S = {p1, p2, . . . , pd} ⊂ X ; these points of S will be called parabolic points. To each
parabolic point pi, associate a conjugacy class of the unitary group U(n), which is

the same as an orbit of the adjoint action. The set of pairs
⋃d
i=1(pi, Ci) will be called

the set of parabolic data. A parabolic representation of π1(X−S) is a representation
in U(n) such that the image of the positively oriented loop (anti-clock-wise) around
pi lies in Ci. Define

RP := Homir
par(π1(X − S), U(n))/U(n) ,(2.1)

the space of equivalence classes of irreducible parabolic representations. Though
π1(X − S) depends on a choice of a base point, their different identifications differ
by conjugations; and hence the space RP is independent of the choice of base-point.
RP has a natural C∞-manifold structure.

From a theorem in [MS] (also [S]), the manifold RP can be identified with a
moduli of parabolic stable bundles on X . This moduli space is denoted by UP . The
eigen-space decomposition of any element in a conjugacy class of U(n) determines
a flag-type of Cn, along with weights determined by the eigenvalues. Let the flag-

type {mi1, . . . ,mili}, with
∑li
j=1 mij = n, and the real numbers 0 ≤ αi1 < αi2 <

. . . < αili < 1 correspond to the conjugacy class Ci. So UP is the moduli of stable
parabolic bundles E of parabolic degree zero with S as the set of parabolic points
and flags

Epi = Fpi,1 ⊃ Fpi,2 ⊃ Fpi,2 ⊃ . . . ⊃ Fpi,li ⊃ 0

at each pi with dimCFpi,j − dimCFpi,j+1 = mij , and the weight of Fpi,j being αij .

Assumption A. We impose the following two conditions on the parabolic data :
(i) Any parabolic semi-stable bundle E, of the above type, is actually parabolic

stable. This condition is equivalent to the condition that any parabolic homomor-
phism is irreducible.

(ii) A universal parabolic bundle exists on X ×UP . This condition is equivalent
to the following condition: on X × RP there is a C∞-bundle V with a partial
connection ∇ on the fibers of the projection (X − S) × RP → RP such that ∇
is unitary flat and logarithmic singular on X × r, for all r ∈ RP , and holonomy
around pi × r in X × r lies in Ci, and the eigenvalues of the residue matrix are of
the form exp(2πiθ) with 0 ≤ θ < 1.
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(A partial connection on a principal bundle on a manifold equipped with a fo-
liation is defined to be a connection on the restriction of the bundle to the leaves
such that it varies smoothly with the leaves. See [KT] for more details.)

Note that the assumptions imply that d ≥ 1.
Let Diff+(X,S) be the group of all orientation-preserving homomorphisms of X

which preserve the set S point-wise. Define the mapping class group

Md
g := π0

(
Diff+(X,S)

)
,(2.2)

the group of connected components of Diff+(X,S), which is known to coincide with
the quotient of Diff+(X,S) by diffeomorphisms which are homotopic to the identity
map.

The group Diff+(X,S) has a natural action on RP . One way to see the action
is the following. RP can be identified with gauge equivalence classes of flat U(n)
connection on X −S. Pulling-back of a connection using a diffeomorphism induces
an action of Diff+(X,S) on RP . Moreover, pull-backs of a connection using two
maps which are homotopic are gauge equivalent. In other words, for g ∈ Diff+(X,S)
the diffeomorphism of RP thus obtained depends only on the image of g in Md

g. For

g ∈Md
g let, ḡ ∈ Diff(RP ) be the induced diffeomorphism. Let Φ : Md

g → Diff(RP )

be the homomorphism defined by g 7→ ḡ−1.

φk : Md
g −→ Aut(Hk(RP ,Q))(2.3)

is the homomorphism defined by g 7−→ (Φ(g)−1)∗.
Let GZ ⊂ Aut(H1(X,Z)) be the subgroup consisting of all those automorphisms

of H1(X,Z) which preserve the symplectic structure on H1(X,Z) defined by cap-
product. Clearly GZ is isomorphic to Sp(g,Z), the group of 2g × 2g symplectic
matrices. The group Md

g acts naturally on the homology group H1(X,Z), and the

image of Md
g is contained in GZ. It is known that the homomorphism Md

g → GZ is

surjective. The Torelli group Tdg is defined by the exact sequence

1 −→ Tdg−→ Md
g

γ−→ GZ −→ 1.(2.4)

Let (T, t0) be a connected manifold with a base point t0 and

(XT , ST )yf
T

(2.5)

be a C∞ family of d-pointed surfaces, along with diffeomorphism, denoted by b, of
the pointed curve over t0 ∈ T with (X,S). (ST : T → XT × XT × . . . ×XT is a
C∞ map satisfying the condition that f ◦ ST = Id × Id × . . . × Id.) Choosing a
metric on XT , we can assume that f is a C∞ family of Riemann surfaces. Choose
the metric so that b is a holomorphic isomorphism.

It is easy to check that choosing trivializations of the family over contractible
sets in T , the homomorphism

ψ : π1(T, t0) −→ Md
g

obtained actually does not depend upon the choices of trivializations. Assume that
the homomorphism ψ lifts to a homomorphism ψ̄ : π1(T, t0) −→ Diff+(X,S).
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For each surface in the family, we can construct the space of parabolic represen-
tations as we did for (X,S). These spaces fit together to give a C∞-fiber bundle

f̄ : RP
T −→ T

with RP as fiber. Let p : T̃ −→ T be the universal cover. RP
T can be identified

with the quotient of RP × T̃ by the action of π1(T, t0) defined by the product of
Φ ◦ ψ and the deck transformations.

The action of π1(T, t0) on X ×RP × T̃ given by ψ̄ on the first factor, by Φ ◦ ψ
on the second factor and by deck-transformations on the third factor is denoted by
ρ. The quotient is the fiber product XT ×T RP

T . It is easy to see that the direct
image sheaf Rkf̄∗C, k ≥ 0, has a structure of local system, which is known as the
Gauss-Manin connection. Let µk : π1(T, t0) → Aut(Hk(RP ,Q)) be the holonomy
of the Gauss-Manin connection. From the definition of Gauss-Manin connection, it
is easy to check that

µk = φk ◦ ψ .(2.6)

Let (V,∇) be a universal bundle on X × RP as in Assumption A(ii). Let
(P (V ),∇) be the associated projective bundle equipped with the induced partial

connection. Let pi, i = 1, 2, 3, be the projection of X×RP × T̃ onto the i-th factor.
Then we have

Lemma 2.7. The action ρ of π1(T, t0) on X×RP×T̃ lifts canonically to an action
on the pulled-back pair

((p1, p2)∗P (V ), (p1, p2)∗∇) −→ X ×RP × T̃ .

Proof. Take any ν ∈ RP . It gives a bundle Vν on X , equipped with a logarithmic
connection ∇ν on X − S. Since ν is irreducible (Assumption A(i)), the only C∞-
automorphisms of Vν which preserve∇ν are multiplication by elements of C∗. From
this it implies that if (V,∇) and (V̄ , ∇̄) are two universal bundles on X×RP , then
there is a (complex) line-bundle L→ RP such that V ⊗p∗2(L) and V̄ are canonically
isomorphic. (For ν ∈ RP , the choice of scalar for an isomorphism between V |X×ν
and V̄ |X×ν fits together to give L.) In particular, the projective bundles P (V ) and
P (V̄ ) are canonically isomorphic. For any h ∈ Diff+(X,S), define h̄ ∈ Diff(X×RP )
by h̄(x, ν) = (h(x), (h−1)∗ν). Now (h̄∗V, h̄∗∇) is a universal bundle on X × RP .
This follows from the obvious fact that for any ν ∈ RP , the flat bundle on h̄(X×ν)
is obtained by pushing-forward, by the diffeomorphism h, the flat connection on
X × ν. This implies that (P (V ),∇) = (P (h̄∗V ), h̄∗∇). In particular this holds for
any h ∈ ψ̄(π1(T, t0)). Thus we have a lift of ρ to ((p1, p2)∗P (V ), (p1, p2)∗∇).

Taking quotient by π1(T, t0) of (p1, p2)∗P (V ) −→ X×RP×T̃ we get a projective
bundle

P −→ XT ×T RP
T .(2.8)

We know that the residue of a logarithmic connection gives the parabolic struc-
ture (the details are in [MS], [S]). Given a universal bundle (V,∇), for the i-th

parabolic point pi, we have vector bundles Fi,j → RP × T̃ , 1 ≤ j ≤ li. We saw
that any two universal bundles differ by tensoring with a pull-back of a line bundle
on RP . So, exactly as in 2.7, the action of π1(T, t0) lifts to any Hom(Fi,j , Fi,j−1).
The quotient by this action is a bundle on RP

T , which is denoted by HT
i,j .
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3. The theorem

For t ∈ T , mapping (x,E) ∈ Xt ×RP
t to (x,

n
∧ E) we get a submersion

D : XT ×T RP
T −→ XT ×T JT ,

where JT −→ T is a family of Jacobians. Let e be the degree of E - it is constant
over the family. For a pointed Riemann surface (Y, y) there is a unique Poincaré
bundle on Y × Je(Y ). Using this fact, and taking the first parabolic point as the
base point, we can construct a C∞ bundle on the fiber product

PT −→ XT ×T JT
such that for any t ∈ T , the restriction Pt is the Poincaré bundle on Xt × Je(Xt).
Any two such line bundles may not be C∞ isomorphic; but they differ by tensoring
with a pull-back of a C∞ bundle on T . In any case, we fix one such bundle PT .
Let ω := c1(PT ) ∈ H2(XT ×T JT ,Q) be the 1-st Chern class.

Given a PGL(n,C) bundle Q on a manifold M , the usual Chern-Weil charac-
teristic classes are given by symmetric PGL(n,C) invariant polynomials on the Lie
algebra. In this case the ring of invariant polynomials is generated by n−1 elements
{a2, . . . , an} with ai being a polynomial of degree i with rational coefficients.

Let Li := (Rif∗Q)∗ be the local system on T given by the i-thQ-valued homology
of fibers of the projection f . The projection of the fiber product XT ×T RP

T → T

is denoted by f̃ . For t ∈ T , βt is the inclusion of the fiber Xt × RP
t := f̃−1(t) in

XT ×T RP
T . Take any σ ∈ Hj(XT ×T RP

T ,Q). For θ ∈ Hi(Xt,Q), taking the slant
product of β∗t σ and θ we get 〈β∗t σ, θ〉 ∈ Hj−i(RP

t ,Q). Thus we get a set theoretic
map from fibers of Li to the fibers of Rj−if̄∗Q - this map is denoted by L(σ).

Lemma 3.1. The map L(σ) preserves the the local system structures of Li and
Rj−if̄∗Q respectively.

Proof. Take a local section s ∈ Γ(U,Li) on a contractible open set U ⊂ T . Let s̄ :=
L(σ)(s) be the smooth section, over U , of the vector bundle for Rj−if̄∗C (it is easy
to see that the set-theoretic section is smooth). We need to prove that s̄ is actually
a flat section. As U is contractible, the fiber bundle f |U : XU → U is a trivial
C∞-fiber bundle. In other words, there is a diffeomorphism δ : XU → X×U which
commutes with the projections to U . Similarly, there is diffeomorphism δ′ : RP

U →
RP×U . Since s is flat, there is ŝ ∈ Hi(X,Q) such that s = (δ∗)

−1(ŝ⊗1U), where 1U
is the element 1 in H0(U,Q) = Q. Using δ and δ′, σ gives σ̂ ∈ Hj(X×RP ,Q). Now
it easy to check that s̄ = f̄∗

(
(δ′)∗(〈σ̂, ŝ〉)

)
. This implies that s̄ is a flat section.

For (z1, . . . , zn) ∈ Qn, taking

σ = z1.D
∗ω +

n∑
i=2

zi.ai(P )

in 3.1, where ai(P ) are the characteristic classes of the projective bundle P obtained
in (2.8), we have a homomorphism of local systems

L :
( 2⊕
i=0

Li

)
⊗Q Qn −→ R∗f̄∗Q :=

⊕
j

Rj f̄∗Q

where Qn is the constant local system. We noted that the Poincaré bundle is not
unique, but any two of them differ by tensoring with a pull-back of a C∞ bundle on
T . This implies that, though D∗ω depends on the choice of the Poincaré bundle,
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the homomorphism L(ω) : Li → R2−if̄∗Q does not depend upon the choice of the
Poincaré bundle.

The k-th Chern class ck(HT
i,j) gives a section of R2kf̄∗Q. This way, we get a

homomorphism from the constant local system L : QN −→ R∗f̄∗Q, where N is the
number of possible (non-trivial) triplets (i, j, k).

Define

V := L1 ⊗Qn, W :=
(
L0 ⊕ L2

)
⊗Qn ⊕ QN .

Consider the homomorphism of local systems

L⊕ L′ : V ⊕W −→
⊕
j

Rj f̄∗Q .

Note that the image of V lies in Revf̄∗Q and the image of W lies in Roddf̄∗Q. So
L⊕ L′ induces a homomorphism

L̄ : S(W )⊗ ∧V −→ R∗f̄∗Q ,(3.2)

where S (resp. ∧) is the symmetric (resp. exterior) algebra.

Proposition 3.3. The homomorphism of local systems L̄ is surjective.

Proof. This is basically the main theorem (Theorem 1.4) of [BR]. This theorem
says that the cohomology ring H∗(RP ,Q) is generated, as an algebra, by the union
of the image of the slant product of the 1-st Chern class of a universal bundle and
the characteristic classes of the associated projective bundle and the Chern classes
of the homomorphisms, of the form Hom(Fi,j , Fi,j−1), of the flags. This implies
that L̄ gives surjective homomorphism of stalks.

Since (2.5) is a family of oriented surfaces, the monodromy of L0 ⊕L2 is trivial.
The monodromy of L1 is as follows. Recall (2.5), and consider γ ◦ψ : π1(T, t0) −→
GZ. The group GZ has a tautological action on H1(X,Q). It is easy to see that the
monodromy of L1, π1(T, t0) → Aut(H1(X,Q)), is given by γ ◦ ψ. Obviously, any
element of Md

g can be realized as an element in the image of ψ, for some suitable
family. So from the previous discussion and (2.6) we obtain

Theorem 3.4. (i) The restriction of any φk (defined in (2.3)) to the Torelli group
Tdg is a trivial representation. Equivalently, φk factors through γ (defined in (2.4)).

(ii) The action of GZ on
⊕

j H
j(RP ,Q) satisfies the condition that the canonical

surjective homomorphism

S(QN+2n)⊗
∧(

H1(X,Q)
⊗

Qn
)
−→ H∗(RP ,Q) ,

as in (3.2), commutes with the action of GZ, where QN+2n and Qn are trivial GZ
modules.

Replacing U(n) by SU(n), let SR
P be the obvious analogue of RP . Define

J := Hompar(π1(X − S), U(1)). Using the homomorphism SU(n)× U(1)→ U(n),
we have a unramified Galois covering

F : SR
P × J −→ RP .

It is easy to check that F commutes with the actions of Md
g on SU(n), U(1) and

U(n). It is well-known that F induces an isomorphism between the cohomology

ring H∗(SR
P × J,Q) and H∗(RP ,Q). So Theorem 3.4(i) implies that the Torelli
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group Tdg acts trivially on H∗(SR
P ,Q). The restriction of ω, the first Chern class

of a Poincaré bundle, to SR
P vanishes. So Theorem 3.4(ii) implies

Theorem 3.5. The canonical surjective homomorphism

S(QN+2n)⊗
∧(

H1(X,Q)⊗Qn−1
)
−→ H∗(SR

P ,Q) ,

where Qn−1 corresponds to the characteristic classes of the projective universal
bundle, commutes with the action of GZ.
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