
CONFORMAL GEOMETRY AND DYNAMICS
An Electronic Journal of the American Mathematical Society
Volume 6, Pages 61–73 (August 7, 2002)
S 1088-4173(02)00085-1

TRANSVERSELY PROJECTIVE STRUCTURES
ON A TRANSVERSELY HOLOMORPHIC FOLIATION, II

INDRANIL BISWAS

Abstract. Given a transversely projective foliation F on a C∞ manifold M
and a nonnegative integer k, a transversal differential operator DF (2k + 1)

of order 2k + 1 from N⊗k to N⊗(−k−1) is constructed, where N denotes the
normal bundle for the foliation. There is a natural homomorphism from the
space of all infinitesimal deformations of the transversely projective foliation
F to the first cohomology of the locally constant sheaf over M defined by the
kernel of the operator DF (3). On the other hand, from this first cohomology
there is a homomorphism to the first cohomology of the sheaf of holomorphic
sections of N . The composition of these two homomorphisms coincide with the
infinitesimal version of the forgetful map that sends a transversely projective
foliation to the underlying transversely holomorphic foliation.

1. Introduction

Let M be a C∞ manifold equipped with a C∞ foliation F of codimension two.
So we can cover M by a collection of open subsets Uj , j ∈ J , such that for each
j there is a C∞ submersion φj : Uj −→ C with the property that the leaves
of the foliation F|Uj on Uj coincide with the fibers of the map φj . Let V be a
C∞ vector bundle over M equipped with a flat partial connection along F . This
means that for each j ∈ J there is a C∞ vector bundle Vj over φj(Uj) and an
isomorphism ψj : V |Uj −→ φ∗jVj such that ψj′ ◦ψ−1

j over Uj ∩Uj′ is the pullback
of an isomorphism τj,j′ of Vj |φj(Uj∩Uj′ ) with Vj′ |φj′ (Uj∩Uj′ ) over the (unique) map
σj,j′ from φj(Uj ∩ Uj′) to φj′(Uj ∩ Uj′) that satisfies the identity σj,j′ ◦ φj = φj′ .

The foliation F is said to have a transversely holomorphic structure (respectively,
transversely projective structure) if the covering can so chosen that φj′ ◦ φ−1

j is a
holomorphic (respectively, fractional linear) map for every pair j, j′ ∈ J . (See [8]
for projective structures on a Riemann surface.)

Let the foliation F be equipped with a transversely holomorphic structure. The
above vector bundle V is called transversely holomorphic if each Vj has a holomor-
phic structure and each isomorphism τj,j′ is a holomorphic structure preserving
(which makes sense since each φj′ ◦ φ−1

j is a holomorphic map). For example, the
normal bundle N = TM/F is a transversely holomorphic line bundle.

In [1], we described the space of all transversely projective structures on a given
transversely holomorphic foliation. In this continuation of [1], we consider the in-
finitesimal deformations of a transversely projective structure without fixing the
underlying transversely holomorphic structure and the homomorphism from this
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infinitesimal deformation space to the infinitesimal deformations of the underlying
transversely holomorphic structure defined by the forgetful map that sends a trans-
versely projective foliation to the underlying transversely holomorphic foliation.

In Section 3, we construct transversal jet bundles JkF (V ) of V and transversal
differential operators DiffkF (V,W ), where W is another transversely holomorphic
vector bundle. If F is equipped with a transversely projective structure, then for
each k ≥ 0 we construct a transversal differential operator

DF(2k + 1) ∈ Γ(M ; Diff2k+1
F (N⊗k, N⊗(−k−1)))

over M of order 2k + 1. This operator depends on the transversely projective
structure.

Let W(F) denote the sheaf on M defined by the kernel of the operator DF(3).
It turns out that W(F) is the local system on M associated to a flat connection
on the vector bundle J2

F (N) (Lemma 5.1). We construct a homomorphism from
the space of all infinitesimal deformations of the transversely projective structure
to H1(M, W(F)) (Theorem 5.3). We will denote this homomorphism by ζ.

Since the domain of the operator DF(3) is N , we have a natural inclusion of
W(F) in the sheaf, denoted by C(1), of (locally defined) holomorphic sections of
N . Therefore, we have a homomorphism

δ : H1(M, W(F)) −→ H1(M, C(1))

(see Proposition 5.2). The space of all infinitesimal deformations of the trans-
versely holomorphic foliation has a natural homomorphism to H1(M, C(1)). This
homomorphism will be denoted by ζ′.

The forgetful map that sends a transversely projective foliation to the underlying
transversely holomorphic foliation defines a homomorphism from the infinitesimal
deformations of a transversely projective foliation to the infinitesimal deformations
of the underlying transversely holomorphic foliation. The composition of this ho-
momorphism with ζ′ coincides with δ ◦ ζ (Theorem 5.3).

2. Preliminaries

Let M be a C∞ manifold of dimension d+ 2, with d ≥ 0. Let

F ⊂ TM

be a C∞ vector subbundle of rank d defining a foliation. In other words, F is closed
under the Lie bracket operation on the locally defined smooth vector fields. Let

N :=
TM

F
be the normal bundle. The inclusion map of F in TM will be denoted by i and the
projection of TM to N will be denoted by q.

The Lie bracket operation on the (local) sections of TM induces a partial connec-
tion on N known as the Bott partial connection. We will first recall the definition
of a general partial connection.

Let V be a C∞ vector bundle over M . A partial connection on V is a first order
differential operator

D : V −→ F∗ ⊗ V(2.1)
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satisfying the Leibniz identity which says that for every (locally defined) smooth
section s of V and every (locally defined) C∞ function f on M , the equality

D(fs) = fD(s) + i∗df ⊗ s
holds, where i∗ is the dual of the inclusion map i of F .

If D′ is a partial connection on V ′, then D⊗IdV ′+IdV ⊗D′ is a partial connection
on V ⊗V ′. Similarly, D induces a partial connection on the dual vector bundle V ∗.
A section s of V is called flat if D(s) = 0.

The curvature D ◦ D of the partial connection D is a C∞ section of
∧2 F∗ ⊗

End(V ). If the curvature is identically zero, then D will be called flat.
To describe the Bott partial connection, consider

DB : N −→ F∗ ⊗N
defined by 〈DB(s), t〉 = q([t, s]), where 〈−,−〉 is the contraction of F∗ and F (so
both sides are sections of N). It is easy to see that DB is a partial connection on
N . The Jacobi identity for Lie bracket implies that the Bott connection DB is flat.
The partial connection on any tensor power of N induced by DB will also be called
the Bott partial connection.

A transversely holomorphic structure on the foliation F is a C∞ section J of the
vector bundle End(N) satisfying the following conditions:

(1) J2 = −IdN ;
(2) J is flat with respect to the partial connection on End(N) induced by the

Bott partial connection.
Since an almost complex structure on a two dimensional manifold is automatically
integrable, the above definition of a transversely holomorphic structure coincides
with its usual definition (see [9], [4], [5], [6], [7]). We recall that a transversely
holomorphic structure is alternatively defined by a data {Uj , φj}j∈J , where {Uj}j∈J
is an open covering of M and φj : Uj −→ C are submersions such that:

(1) for each j ∈ J , the kernel of the differential dφj coincides with F|Uj and
(2) for each pair j, j′, there are holomorphic maps

gj,j′ : φj(Uj ∩ Uj′) −→ φj′ (Uj ∩ Uj′ )
satisfying the equality gj,j′ ◦ φj = φj′ of maps on Uj ∩ Uj′ .

Since the kernel of dφj coincides with F|Uj , the normal bundle N |Uj gets identified
with φ∗jTC, the tangent bundle of the complex plane. Since each gj,j′ is a holomor-
phic map, the almost complex structure Jj on N |Uj induced by the holomorphic
structure of TC using this identification is independent of j. In other words, Jj and
Jj′ coincide over Uj ∩ Uj′ . Therefore, we get a transversely holomorphic structure
in the previous sense. Conversely, if we take a local slice f : U −→ M transversal
to F , where U is an open subset of R2, then using the obvious identification of TU
with f∗N , an almost complex structure J on N induces a complex structure on U .

A transversely projective structure is a transversely holomorphic structure satis-
fying the further condition that the above maps gj,j′ are all Möbius transformations
[1]. We recall that Möbius transformations are automorphisms of CP1; that is, func-
tions of the form z 7−→ (az+b)/(cz+d), with ad−bc = 1. Therefore, a transversely
projective structure has an underlying transversely holomorphic structure. If the
condition that gj,j′ are all Möbius transformations is satisfied, then such a locally
defined map φj will be called compatible with the transversely projective structure
defined by them.



64 I. BISWAS

Examples of transversely projective structures can be found in [3] and [10]. Par-
ticularly in [10, p. 190, Example 1.1] and [3, p. 630, Theorem C] interesting classes
of transversely projective structures are constructed.

Take a transversely holomorphic structure J on F . The automorphism J makes
N a C∞ complex line bundle.

For k < 0, by N⊗k we will mean the line bundle (N∗)⊗−k over M . We recall
that the Bott partial connection on N induces a flat partial connection on N⊗k for
each k ∈ Z. Consider the sheaf of sections of the complex line bundle N⊗k, k ∈ Z,
flat with respect to the Bott partial connection. Denote this sheaf by S(k).

Let N∗ denote the complex line bundle with complex structure defined by the
conjugation of the complex structure ofN∗. The transversely holomorphic structure
induces a natural analog of the Dolbeault operator

∂k : S(k) −→ N∗ ⊗ S(k)

that satisfies the Leibniz identity which says that

∂k(fs) = f∂k(s) + ∂f ⊗ s,
where f is a locally defined smooth function constant along the leaves (i.e., 〈df,F〉 =
0) and s is a section S(k). Note that the condition 〈df,F〉 = 0 ensures that fs
is also a section of S(k) and ∂f gives a section of N∗. The Dolbeault operator
∂ coincides with ∂0 for the obvious identification of S(0) with the sheaf of locally
defined smooth functions on M that are constant along the leaves.

Let C(k) ⊂ S(k) be the subsheaf defined by the kernel of ∂k. We will denote by
V(k) the complex vector space defined by the space of all global sections of C(k).
In other words, s ∈ V(k) if s is a section of S(k) over M with ∂ks = 0.

Let J be a transversely holomorphic structure on F admitting a transversely
projective structure (the underlying transversely holomorphic structure coincides
with J). It may be noted that a general transversely holomorphic structure need not
admit a transversely projective structure. The space of all transversely projective
structures on F that has the fixed underlying transversely holomorphic structure
J is an affine space for V(−2) [1, Theorem 2.6]. It is known that V(−2) is finite
dimensional if M is compact [6], [4].

Let V be a C∞ complex vector bundle of rank n over M equipped with flat
partial connection D(V ) with respect to F . Let S(V ) denote the sheaf of sections
of V flat with respect to D(V ). A transversely holomorphic structure on V (with
respect to J) is a differential operator

∂V : S(V ) −→ N∗ ⊗ S(V )

satisfying the Leibniz identity ∂V (fs) = f∂V (s) + ∂f ⊗ s, where f is a locally
defined smooth function constant along the leaves and s is a section S(V ). Since
we are in complex dimension one, no extra integrability condition on ∂V is required
since it is automatically integrable.

A (locally defined) section s of V is called holomorphic if it is a section of S(V )
(that is, constant along the leaves) and ∂V (s) = 0. In particular, if we set V to
be N⊗k, then a holomorphic section is a (local) section of the sheaf C(k) defined
earlier.

It is easy to see that a transversely holomorphic structure on V can alternatively
be defined as follows. There is an open covering {Ui}i∈I of M satisfying the condi-
tions given the definition of a transversely holomorphic structure, and on each Ui
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there is a C∞ isomorphism

ψi : V |Ui −→ Cn × Ui
with the trivial vector bundle such that:

(1) ψi takes the partial connection D(V ) to the partial connection on the trivial
vector bundle induced by the natural flat connection on it, and

(2) for any pair i, j ∈ L, the map

ψj ◦ ψ−1
i : Ui ∩ Uj −→ GL(n,C)

is holomorphic.
A map to GL(n,C) is called holomorphic if each entry of n × n-matrices defines
a holomorphic function. We recall that a locally defined complex valued function
f on M is called holomorphic if and only if it is constant along the leaves and
the differential df intertwines the transversely holomorphic structure J and the
natural complex structure of C. If f is constant along the leaves, then df defines a
homomorphism from the normal bundle N to C. The condition that df intertwines
the complex structures means that the homomorphism df is C-linear for the complex
structure on N defined by J .

The sheaf on M defined by holomorphic functions coincides with the sheaf C(0)
defined earlier. However, we will use the more suggestive notation OM for the sheaf
of holomorphic functions.

3. Transversal jet bundles

Given a projective structure on a Riemann surface there are some naturally
associated differential operators. We will extend the construction of differential
operators to the context of transversely projective structures. For that we need to
construct, using the foliation, certain subbundles of the jet bundles which we will
call transversal jet bundles.

We will begin by recalling the standard properties of a jet bundle. Let W be a
C∞ vector bundle over a C∞ manifold X . For any integer k ≥ 0, the kth order
jet bundle Jkr (W ) is a C∞ vector bundle over X whose fiber over any point x ∈ X
is the space of all sections of W over the kth order infinitesimal neighborhood of x.
Restriction of such sections to the (k − 1)th order infinitesimal neighborhood of x
defines an exact sequence

0 −→ Sk(T ∗X)⊗W −→ Jkr (W ) −→ Jk−1
r (W ) −→ 0

of vector bundles, where Sk(T ∗X) is the kth symmetric power, using the fact that
the fiber (Sk(T ∗X)⊗W )x can be identified with the space of (local) sections of W
vanishing at x of order k quotiented by sections whose order of vanishing is at least
k + 1.

The subscript r in Jkr stands for C∞ (real) jet bundle. Since our main emphasis
is on holomorphic jet bundles, the notation Jk will be reserved for holomorphic jet
bundles.

If X is a complex manifold and W a holomorphic vector bundle, then the sub-
bundle

Jk(W ) ⊂ Jkr (W )

defined by the holomorphic (local) sections of W has a natural holomorphic struc-
ture.



66 I. BISWAS

Let J be a transversely holomorphic structure on the foliation F on M and V a
C∞ complex vector bundle over M equipped with a flat partial connection D(V ).
Assume that V is equipped with the transversely holomorphic structure. For any
point x ∈M , consider the space of holomorphic sections of V defined around x. Its
image in the fiber Jkr (V )x defines a subspace.

Definition 3.1. For any integer k ≥ 0, the transversal jet bundle JkF(V ) is the
subbundle of the vector bundle Jkr (V ) whose fiber over any x ∈M is the subspace
of Jkr (V )x defined by the locally defined holomorphic sections of V .

Hence, when F = 0 (that is, dimM = 2) the transversal jet bundle JkF (V )
coincides with the holomorphic jet bundle Jk(V ) defined earlier.

Note that the vector bundle J0
F(V ) is identified with V . Using this identification,

J0
F(V ) has a transversely holomorphic structure. In the following lemma we will

see that any transversal jet bundle has a transversely holomorphic structure.

Lemma 3.2. For any k ≥ 0, the transversal jet bundle JkF(V ) has a natural trans-
versely holomorphic structure.

Proof. From the definition of a transversely holomorphic structure we know that
there is covering {Uj, φj}j∈J such that F is given by the kernel of the differentials of
the maps φj : Uj −→ C and there are holomorphic maps gj,j′ with gj,j′ ◦φj = φj′ .

If W is a C∞ vector bundle on the open set φj(Uj) ⊂ C, then φ∗jW has an
obvious natural flat partial connection for the foliation F|Uj on Uj . If W has a
holomorphic structure, then φ∗jW gets a transversely holomorphic structure on Uj
in an obvious way.

Using the flat partial connection D(V ) on V it follows that for each j ∈ J , there
is a complex vector bundle Vj on φj(Uj) such that φ∗jVj is identified with V |Uj
and the identification takes the partial connections D(V )|Uj to the natural partial
connection on the pullback φ∗jVj .

The transversely holomorphic structure on V |Uj induces a holomorphic structure
on Vj . This holomorphic structure on Vj is determined by the condition that the
identification of φ∗jVj with V |Uj takes the given transversely holomorphic struc-
ture on V |Uj to the transversely holomorphic structure on φ∗jVj defined by the
holomorphic structure on Vj .

Now it is easy to see that the restriction of the vector bundle JkF(V ) to the open
subset Uj is identified with φ∗jJ

k(Vj). The above defined holomorphic structure on
Vj induces a holomorphic structure on Jk(Vj). This in turn induces a transversely
holomorphic structure on φ∗jJ

k(Vj) ∼= JkF (V )|Uj over Uj .
In order to complete the proof, we need to show that the restriction of the

transversely holomorphic structure on JkF (V )|Uj to Uj ∩ Uj′ coincides with the
restriction of the transversely holomorphic structure on JkF(V )|U ′j . To prove this,
first observe that since the holomorphic structure on Vj in induced by a transversely
holomorphic structure on V , for every j′ ∈ J there is a holomorphic isomorphism

τj,j′ : Vj |φj(Uj∩Uj′ ) −→ Vj′ |φj′ (Uj∩Uj′ )
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over the obvious map σj,j′ : φj(Uj ∩Uj′) −→ φj′ (Uj ∩Uj′ ) such that the diagram

V |Uj∩Uj′
Id−→ V |Uj∩Uj′y y

φ∗j (Vj |φj(Uj∩Uj′ ))
τ̃j,j′−→ φ∗j′ (Vj′ |φj(Uj∩Uj′ ))

commutes, where τ̃j,j′ is induced by τj,j′ and the vertical isomorphisms are the
natural identifications for φj and φj′ respectively. The map σj,j′ , by definition,
satisfies the condition σj,j′ ◦ φj = φj′ over Ui ∩ Uj . Therefore, τj,j′ induces an
isomorphism τ̃j,j′ as above.

The isomorphism τj,j′ induces a holomorphic isomorphism betweenJk(Vj)|φj(Uj∩Uj′)
and Jk(Vj′ )|φj′ (Uj∩Uj′ ) over the map σj,j′ . The commutativity of the above dia-
gram implies that this holomorphic isomorphism transports to an identification be-
tween the restrictions of the transversely holomorphic structures on JkF (V )|Uj and
JkF(V )|U ′j to the intersection Uj ∩ Uj′ . This completes the proof of the lemma.

Let W1 and W2 be two holomorphic vector bundles on a complex manifold X .
The sheaf of differential operators of order k from W1 to W2 is defined to be
the sheaf of sections of the vector bundle Hom(Jk(W1),W2). In other words, the
sheaf of differential operators DiffkX(W1,W2) coincides with the sheaf of OX -linear
homomorphisms from the sheaf defined by Jk(W1) to the sheaf defined by W2. (See
[2] for the details.)

Let V1 and V2 be transversely holomorphic vector bundles over the transversely
holomorphically foliated manifold M . The sheaf of transversal differential operators
of order k from V1 to V2 is defined to be the sheaf ofOM -linear homomorphisms from
the sheaf of holomorphic section of JkF(V1) to the sheaf of holomorphic sections of
V2. We recall that OM is the sheaf defined by holomorphic functions; holomorphic
sections of a holomorphic vector bundle were defined in the previous section.

The sheaf of transversal differential operators of order k from V1 to V2 will be
denoted by DiffkF (V1, V2).

In the next section we will see that for each transversely projective foliation there
are some associated transversal differential operators.

4. Differential operators and transversely projective foliation

Consider the jet bundle J2k(T⊗k) over CP1 := C ∪ {∞}, where T denotes the
holomorphic tangent bundle. We will show that J2k(T⊗k) has a canonical trivial-
ization. The restriction of any global section of T⊗k to the 2kth order infinitesimal
neighborhoods of points in CP1 define a homomorphism

fk : H0(CP1, T⊗k)⊗C OCP1 −→ J2k(T⊗k)(4.1)

from the trivial vector bundle with fiber H0(CP1, T⊗k). This homomorphism fk
is an isomorphism. Indeed, both the vector bundles are of rank 2k + 1 and the
homomorphism fk is fiberwise injective.

Since fk in (4.1) is an isomorphism, we have a splitting of the natural exact
sequence

0 −→ T⊗(−k−1) −→ J2k+1(T⊗k) −→ J2k(T⊗k) −→ 0(4.2)
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for jet bundles given by the homomorphism

J2k(T⊗k) ∼= H0(CP1, T⊗k)⊗C OCP1 −→ J2k+1(T⊗k)

defined by restricting global sections of T⊗k to the (2k + 1)th order infinitesimal
neighborhoods of points. Now the homomorphism

J2k+1(T⊗k) −→ T⊗(−k−1)(4.3)

defined by the splitting of (4.2) gives a differential operator

D(2k + 1) ∈ H0(CP1, Diff2k+1
CP1 (T⊗k, T⊗(−k−1)))(4.4)

on CP1 of order 2k + 1. (See [2, (3.6)] for the details of the construction of the
operator D(2k + 1).) The operator D(0) coincides with the Dolbeault operator
∂ : OCP1 −→ T ∗.

The group of automorphisms of CP1 coincides with the Möbius group PSL(2,C).
Any automorphism of CP1 lifts in an obvious way to an automorphism of any tensor
power of T . The operator D(2k + 1) is left invariant by the action of the Möbius
group. This follows from the construction of D(2k + 1) (see [2, Theorem 3.7]).

Let F be a foliation on M equipped with a transversely projective structure.
Therefore, we have a covering {Uj, φj}j∈J of M such that the kernel of dφj de-
fines the foliation on Uj and the submersions φj : Uj −→ C differ by Möbius
transformations (see Section 2). As we noted in Section 2, the normal bundle N
is identified with φ∗jTC and the identification takes the almost complex structure
on the holomorphic tangent bundle TC to the underlying transversely holomorphic
structure for the given transversely projective structure.

Using the identification of N with φ∗jTC, the homomorphism (4.3) over φj(Uj) ⊂
CP1 defines a homomorphism

βj : J2k+1
F (N) −→ N⊗(−k−1) .

Now recall the construction, given in Lemma 3.2, of the transversely holomorphic
structure on the transversal jet bundle J2k+1

F (N) of the transversely holomorphic
line bundle N . From this construction it is immediate that the homomorphism βj
takes (locally defined) holomorphic sections of J2k+1

F (N) to holomorphic sections
of N⊗(−k−1).

For any j′ ∈ J , the two homomorphisms βj and βj′ coincides over Uj ∩ Uj′ .
Indeed, this is an immediate consequence of the combination of the facts that φj and
φj′ differ by a Möbius transformation and the homomorphism in (4.3) commutes
with the action of the Möbius group on CP1.

Consequently, the collection of homomorphisms {βj}j∈J patch together compat-
ibly to give a transversal differential operator

DF(2k + 1) ∈ Γ(M ; Diff2k+1
F (N⊗k, N⊗(−k−1)))(4.5)

of order 2k + 1 over M for each k ≥ 0.
The operator DF (0) coincides with the Dolbeault operator OM −→ N∗ defined

by the transversely holomorphic structure. In particular, it is independent of the
transversely projective structure (depends only on the underlying transversely holo-
morphic structure). However, for k ≥ 1, the operator DF (2k + 1) depends on the
transversely projective structure.

In the next section we will describe deformations of a transversely projective
structure using the operator DF(3).



TRANSVERSELY PROJECTIVE FOLIATION, II 69

5. Deformations of a transversely projective structure

In this section, F will denote a C∞ foliation on M equipped with a transversely
projective structure.

As in Section 2, let C(1) denote the sheaf of holomorphic sections of N . Consider
the transversal differential operator

DF (3) ∈ Γ(M ; Diff2k+1
F (N,N⊗(−2)))

that was constructed in (4.5). Let

W(F) ⊂ C(1)(5.1)

be the subsheaf defined by the kernel of the operatorDF (3). Note that C(1) depends
only on the underlying transversely holomorphic structure of F , but the subsheaf
W(F) depends on the transversely projective structure.

From Lemma 3.2 we know that the transversal jet bundle J2
F(N) has a natural

flat partial connection. By a flat connection on J2
F(N) extending the partial con-

nection we mean a flat connection whose restriction to any leaf coincides with the
partial connection.

Lemma 5.1. The vector bundle J2
F (N) has a natural flat connection that extends

the partial connection. The sheaf W(F) defined in (5.1) is canonically identified
with the sheaf of (locally defined) flat sections of J2

F(N).

Proof. The isomorphism defined by f1 in (4.1) of J2(T ) over CP1 with a trivial
vector bundle induces a flat connection on J2(T ). This flat connection on J2(T )
will be denoted by ∇T . From its construction it is clear that the connection ∇T is
preserved by the action of the Möbius group on CP1.

The sheaf of solutions of a linear differential operator gives a flat vector bundle.
Consider the differential operator D(3) constructed in (4.4). From its construction
it is immediate that the flat vector bundle given by its sheaf of solutions coincides
with J2(T ) equipped with the connection ∇T . Indeed, since the operator D(3) is
constructed using the splitting of (4.2) defined by the identification of J2(T ) with
the trivial vector bundle with fiber H0(CP1, T ), the flat vector bundle (J2(T ),∇T )
coincides with the one defined by the sheaf of solutions of D(3).

The flat connection ∇T on J2(T ) induces a flat connection on the transversal jet
bundle J2

F (N). To see this, take a covering {Uj, φj}j∈J of M as in the definition of
a transversely projective structure. So each φj′ ◦ φ−1

j is a Möbius transformation.
The restriction of J2

F(N) to Uj is identified with the pullback φ∗jJ
2(T ) (recall the

proof of Lemma 3.2). Using this identification, the flat connection ∇T on J2(T )
induces a flat connection on J2

F(N)|Uj over Uj . Let gj′,j denote the element of the
Möbius group PSL(2,C) that coincides with φj′ ◦ φ−1

j . The action of gj′,j on CP1

preserves the flat connection ∇T . In other words, the above defined connections on
J2
F(N)|Uj and J2

F(N)|Uj′ coincide over Uj∩Uj′ . Therefore, we have a flat connection
on J2

F (N) over M .
This flat connection on J2

F(N) will be denoted by ∇F . Since the canonical
identification of J2

F (N)|Uj with φ∗jJ
2(T ) takes the restriction ∇F |Uj to the pullback

of a connection on J2(T ) over φj(Uj), it follows immediately that∇F is an extension
of the natural partial connection on J2

F (N).
We already observed that the flat vector bundle given by the solutions of D(3)

coincides with the flat bundle (J2(T ),∇T ). From the constructions of the operator
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DF(3) and the connection ∇F it is immediate that over any Uj , the restriction of
the solution sheafW(F) (defined in (5.1)) is identified with the sheaf of flat sections
of the connection ∇F |Uj . These identifications patch compatibly (as any φj′ ◦ φ−1

j

is a Möbius transformation and D(3) is left invariant by the action of the Möbius
group on CP1), and hence we get an isomorphism of W(F) with the sheaf of flat
sections for the flat connection ∇F . This completes the proof of the lemma.

The following proposition describes the homomorphism δ mentioned in the in-
troduction.

Proposition 5.2. There is a natural homomorphism

δ : Hi(M, W(F)) −→ H1(M, C(1))

for every i ≥ 0, where C(1) is the sheaf of holomorphic sections of N .

Proof. In (5.1) we saw that W(F) is a subsheaf of C(1). This inclusion map of
sheaves induces a homomorphism δ as in the statement of the proposition. We will
give an alternative description of this homomorphism δ to show that it is actually
a part of a long exact sequence.

The operator DF (3) is surjective in the sense that given a holomorphic section s
of N⊗(−2) around a point x ∈M , there is a sufficiently small neighborhood U of x
and a holomorphic section w of N over U such that DF (3)(w) = s over U . Indeed,
this surjectivity property of DF(3) follows from the same property of the operator
D(3) over CP1 constructed in (4.4).

Therefore, the sheaf W(F) is quasi-isomorphic to the two term complex

C0 := C(1)
DF (3)−→ C1 := C(−2)(5.2)

which will be denoted by C. for short. In other words, Hi(M, W(F)) is identified
with the hypercohomology Hi(C.).

Now, the complex C. fits in the following short exact sequence of complexes

0 −→ C(−2)y ‖

C(1)
DF (3)−→ C(−2)

‖
y

C(1) −→ 0

(5.3)

over M . Note that both the top and the bottom complexes have only one nonzero
term. The ith hypercohomology of the top (respectively, bottom) complex coincides
with H i−1(M, C(−2)) (respectively, Hi(M, C(1))).

Consider the long exact sequence of hypercohomologies

· · ·Hi−1(M, C(−2)) −→ Hi(C.) −→ Hi(M, C(1))

−→ Hi(M, C(−2)) −→ Hi+1(C.) · · ·
for the exact sequence (5.3). The above homomorphism Hi(C.) −→ Hi(M, C(1))
coincides with the earlier defined homomorphism δ using the identification ofHi(C.)
with H i(M, W(F)).

Let F ′ denote the transversely holomorphic foliation underlying the transversely
projective foliation F . There is a natural homomorphism from the space of all infin-
itesimal deformations of the transversely holomorphic foliation F ′ to H1(M, C(1))
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(see [6, Section 4]). Under the assumption that M is compact, in [6, Section 4, p.
178] it is shown that this homomorphism is injective and its image is identified. The
infinitesimal deformations of the almost complex structure on the normal bundle
N are parametrized by flat sections of Hom(N,N) for the Bott partial connection.
The Dolbeault resolution of C(1) gives a homomorphism from the space of such
sections to H1(M, C(1)).

Let I ′ denote the space of all infinitesimal deformations of the transversely holo-
morphic foliation F ′, and let

ζ′ : I ′ −→ H1(M, C(1))(5.4)

be the above mentioned homomorphism.
The space of all infinitesimal deformations of the transversely projective folia-

tion F will be denoted by I. If we associate to any transversely projective foliation
the underlying transversely holomorphic foliation, then this induces a homomor-
phism of the corresponding infinitesimal deformations. In other words, we have a
homomorphism

f : I −→ I′(5.5)

induced by the forgetful map that sends any transversely projective foliation to its
underlying transversely holomorphic foliation.

Theorem 5.3. There is a natural homomorphism ζ : I −→ H1(M, W(F)). Fur-
thermore, the composition δ◦ζ coincides with ζ′◦f , where δ, ζ′ and f are constructed
in Proposition 5.2, (5.4) and (5.5) respectively.

Proof. We will first show that the fibers of the flat vector bundle J2
F(N) have a Lie

algebra structure compatible with the flat connection.
In Lemma 5.1, the flat connection on J2

F (N) was constructed using the flat
connection on J2(T ) over CP1. The flat connection on J2(T ) is induced, using the
isomorphism f1 defined in (4.1), by the flat connection on the trivial vector bundle
H0(CP1, T ) ⊗C OCP1 . The Lie bracket operation on the vector fields makes the
space H0(CP1, T ) of global vector fields into a Lie algebra. It is easy to see that
this Lie algebra is isomorphic to sl(2,C). Indeed, the action of the Möbius group
PSL(2,C) on CP1 gives a Lie algebra homomorphism from its Lie algebra sl(2,C) to
H0(CP1, T ). This homomorphism is easily seen to be an isomorphism. Therefore,
the fibers of J2(T ) are equipped with a Lie algebra structure compatible with the
flat connection (a multiplication of flat sections remains flat).

The lift of the action of the Möbius group PSL(2,C) on CP1 to J2(T ) preserves
the Lie algebra structure of the fibers. Therefore, the fibers of the transversal jet
bundle J2

F (N) have a Lie algebra structure compatible with the flat connection.
Indeed, this is an immediate consequence of the fact that for any map φ of an open
subset U of M to C compatible with the given transversely projective structure,
the restriction of J2

F (N) to U is identified with φ∗J2(T ) (see the proof of Lemma
5.1). Note that any fiber of J2

F (N) is isomorphic, as a Lie algebra, to sl(2,C).
Let I ′′ denote the space of all infinitesimal deformations of the flat Lie algebra

bundle J2
F (N). The map that associates to any transversely projective structure

F1 the corresponding flat Lie algebra bundle J2
F1

(N) defines a homomorphism

γ : I −→ I′′ .(5.6)

In other words, γ is the differential (infinitesimal version) of the above map that
sends F1 to the flat Lie algebra bundle J2

F1
(N).
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It is a general fact that there is a natural homomorphism from the space of
infinitesimal deformations of a flat Lie algebra bundle, with fibers isomorphic to a
semisimple Lie algebra, to the first cohomology of the corresponding local system.
In other words, we have a homomorphism

ζ′′ : I ′′ −→ H1(M, W(F)) .(5.7)

The homomorphism ζ in the statement of theorem is the composition ζ′′ ◦ γ, where
γ and ζ′′ are constructed in (5.6) and (5.7) respectively.

We will recall the construction of the key map ζ′′. Fix a complex semisimple Lie
algebra g. A flat Lie algebra bundle on a manifold X with fibers isomorphic to g

is obtained from a 1-cocycle on X with values in the group Aut(g), the Lie algebra
preserving linear automorphisms of g. Let {Uj}j∈J be a covering of X by open
subsets such that all Uj and the intersections Uj ∩ Uj′ are contractible. Suppose
that for each ordered pair j, j′ ∈ J we have an automorphism Gj,j′ ∈ Aut(g)
satisfying the following conditions:

(1) Gj,j = Idg,
(2) Gj,j′ = G−1

j′,j ,
(3) Gj,j′Gj′,j′′Gj′′,j = Idg

(equivalently, the collection {Gj,j′}j,j′∈J form a 1-cocycle). Then we obtain a flat
Lie algebra bundle as follows. Consider the collection {Uj × g}j∈J of trivial g

bundles. On each Uj ∩Uj′ , attach Uj ×g and Uj′ ×g using the automorphism Gj,j′

of g. This gives a flat Lie algebra bundle over X . Each flat Lie algebra bundle,
with fibers isomorphic to g, arises this way.

This way, the space of flat Lie algebra bundles over X , with fibers isomorphic to
g, gets identified with the first cohomology H1(X, Aut(g)).

Now note that the Lie algebra of the Lie group Aut(g) is canonically identified
with g with the identification defined by the adjoint action of g on itself. Since g is
a complex semisimple Lie algebra, if G is a connected Lie group with Lie algebra
g, then the group of outer automorphisms of g is a finite group. The group of
outer automorphisms is the quotient Aut(g)/G, where G acts on g by conjugation.
Therefore, the Lie algebra of Aut(g) is identified with the Lie algebra of G.

It is easy to see that the tangent space TρH
1(X, Aut(g)) at any ρ ∈

H1(X, Aut(g)) has a natural homomorphism to H1(X, Vρ), where Vρ is the lo-
cal system defined by the flat Lie algebra bundle corresponding to ρ.

This describes the homomorphism ζ′′. Now set ζ := ζ′′ ◦ γ. We want to show
that ζ satisfies the identity δ ◦ ζ = ζ′ ◦ f .

In the proof of Proposition 5.2, it was observed that H1(M, W(F)) is identified
with the hypercohomology H(C.). We recall that the homomorphism δ is obtained
from the long exact sequence of hypercohomologies for the exact sequence (5.3).
From this it follows that δ ◦ ζ coincides with the cohomology class representing the
deformation of the underlying transversely holomorphic foliation. This completes
the proof of the theorem.
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