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Abstract. H Clemens and C Schoen gave examples of three-folds where the group of
codimension two cycles modulo algebraic equivalence has infinite rank. This paper provides
yet another example of the same phenomenon.
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Let X be a smooth projective variety over C and denote by R?*(X) the group of
codimension two algebraic cycles homologically equivalent to zero modulo the
subgroup of those cycles algebraically equivalent to zero. The first example of a
variety X for which R¥(X)®Q #0 was given by Griffiths (see [5]). More recently,
Clemens showed that R*(X)® Q is infinite-dimensional where X is the generic quintic
hypersurface in P* (see [3]).

We shall show in this paper that R*(X)®Q is infinite dimensional where X is the
generic abelian variety of dimension three. This result follows easily from a
group-theoretic argument and the following basic result of Ceresa, which we now
explain.

Denote by ¢: C —J(C) the embedding of a curve C (well-defined up to translations)
in its Jacobian. Put y(x)= —¢(x), for xeC and consider the cycle S(C)=
[#(C)]1 — [¥(C)] which is obviously trivial homologically. The theorem of Ceresa (see
[2]) is that S(C) is non-zero in the group RY(J(C))® Q where C is the generic curve
of genus three. '

To construct cycles on a fixed three-dimensional abelian variety A we may proceed
as follows. First choose an isogeny h: B— 4 with B principally polarized. Then B = J(C)
for some curve C of genus three (possibly degenerate) and thus B has the Ceresa cycle
S(C). Its image h,S(C)eR*(A)®Q is non-zero if A is generic, thanks to the result of
Ceresa. Keeping 4 fixed, there are plenty of choices of h and each of these choices
gives a cycle on A. These cycles are linearly independent because they twist by different
characters of Gal(F/F) where F is a field of definition of 4.

The formal argument follows.

Good references for all the facts concerning the moduli spaces that we have used
in this paper are [4], [6] and [7].

Let N be a natural number >3.

Denote by M(N) (resp. X(N)) the moduli of curves (resp. principally polarized
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abelian varieties) of genus (resp. dimension) three with level N structure, defined over
C, the field of complex numbers. These are smooth irreducible varieties of dimension
six, and let €(N)— M(N) and «/(N)— X(N) be the universal family of curves and
abelian varieties respectively. We then have the Sp (6; Z/N)-equivariant commutative
diagram:

: J(#(N)) — #(N)

I l l
M(N) —— X(N)

where J(%(N)) is the family of Jacobians of ¥(N)-+ M(N). Note that —1eSp(6; Z/N)
acts trivially on X(N) and its action on &/(N) is simply x— — x on the fibres of
A (N)— X(N).

Now Sp (6; Z/N)/{ £ 1} acts faithfully on X(N), while the action of {41} on M(N)
is non-trivial. Applying the global Torelli theorem, we see that

{£I\M(N)~ X(N)

is a birational isomorphism (in fact it is an open immersion by Zariski’s Main
Theorem). '

Let C(N) and A(N) be the generic fibres of ¥(N)— M(N) and o/(N)— X(N). These
are varieties over the functon fields E(N) of M(N) and F(N) of X(N) respectively.
Furthermore [E(N).F(N)]=2. From I we get a Sp(6; Z/N)-equivariant commutative
diagram:

JIC(N)) —  A(N)

11 i !
Spec E(N) — Spec F(N)

If N, divides N,, there is a Sp(6; N,)-equivariant commutative diagram:

F(N,) — G(Ny)

! !
M(N;) — M(Ny)

so that if E is the union of all the E(N), we get a curve C— Spec E with the action
of Sp(6; Z). Similarly we get an abelian variety A — Spec F, where F is the union of
all the F(N). Finally 11 now gives a Spec (6; Z)-equivariant commutative diagram:

JCO — A
I | 1
Spec E — Spec F

Note also that [E:F] =2, and that III gives an isomorphism:

J(C)— Ag.

Factoring C— SpecE by the action of —1eSp(6; Z), we get a curve C’'— Spec F
such that Cy = C. Put A’ = J(C'). Thus we have (non-isomorphic) abelian varieties 4’
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and A defined over F and isomorphisms
A« J(C)— Ag.

Denote by f: A’E—>'A ¢ the induced isomorphism and by ¢ the non-trivial element
of Gal(E/F). The equivalence of IIT under —1eSp(6;Z) is now equivalent to

v fo(l 4 x 6)=(i X 0)°f.

In IV above and always, i,: Z— Z denotes the morphism x+— — x of an abelian
variety Z. Occasionally i, will be abbreviated to i simply.

We are now ready to tackle the Galois action on the generic Ceresa cycle. We need
first some notation and an elementary result.

The group of codimension k cycles modulo algebraic equivalence on a variety X
will be denoted by B X). If X is defined over K and L is a field extension of K, then
Aut(L/K) acts on BX ).

Lemma. Let D be a curve of genus g =1 over a field K. Denote by K an algebraic
closurf of K. The Ceresa cycle S(D)eB?~'(J(D)g) is invariant under the action of
Gal(K/K), and i*S(D) = — S(D).

Proof. A divisor R of degree = —1 on Dg defines an embedding
¢r: Dg—J(D)g

given by ¢g(x) = [x]+ R. If S is also a djvisor of degree = ~1, then ¢ isa translate
of ¢ and therefore the cycle & = ¢px(Dg) as an element of B*~ Y(J(D)g) does not depend
on the choice of R at all. For all geGal(K/K), g(¢r) = ¢,x and this shows that ¢ is
invariant under the Galois action. Since the Ceresa cycle S(D) is & — i*(&), it follows
that S(D) is invariant too. Also

i*$(D) = i*(¢) — £ = — S(D)

and this proves the lemma.

Now let Fo>E>F be an algebraic closure of F and let y be the composite
Gal(F/F)—Gal(E/F) = { +1}. Let fp:Ar— A be extended from f: Ap— Ag and put
0 =f#(S(C)eBAp)

PROPOSITION 1
For all geGal(F/F), g° = x(9)0-

Proof. Abbreviating i, i etc. to i, and because iefp =fyei, we deduce from IV that
for all geGal(F/F),

(a) ffo(l, x g)= (1, x g)ofr if x(g) =1, and o
(b) frolia x g)=(14 x g)of if x(g)=—1. For an element Z of BX(A}) this gives
(€) fr(9Z) =gfH2) if x(g) =1

) fr(9(i*2)) = gf(2) if x(g)=—1.
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Putting Z = §(C') and applying the above lemma, the proposition follows. .

We shall now embed Gal(F/F) in a larger group that acts on B¥(4;)® Q. Recall /
that X(N)is the quotient of the Siegel half-space H = {TeM(C): T ='T and Im T > 0}
by the action of I'(N), the principal congruence subgroup of level N in Sp(6; Z). Let
Sp(6; R) be the subgroup of GL(R) generated by Sp(6; R) and the scalar matrices. Put
§p(~6; Q) = Sp(6; R)nGL4(Q). There is an action of Sp(6;R)/R* on H. For every
geSp(6; Q) there is a natural number a and a commutative diagram:

H 5 H
| !
X(Na)—> X(N)

where the vertical arrows are the quotient maps. Passing to the direct limit over the
N and taking generic points we get, for each geSp(6; Q) an automorphism p,(g) of
SpecF. And p,(g) = 1 if geQ*.
Moreover, if geM(Z) N Sp(6; Q) we get commutative diagrams:
(Na) — o(N)
1 l
X(Na) — X(N)

where the horizontal arrows are isogenies on the fibres. These induce:

£2(9) .
Ap Ap

o
Spec F 212, Spec F

Denote by j: Spec F— Spec F the given morphism and define
G = {(x.g)eAut Spec F x Sp(6; Q)| p, (g)j =jea},
§={(x9)eGlgeM(2)}

‘ T = {(x,9)eS|g is a scalar matrix and o = 15}.
Then we have an exact sequence:

(A) 1-Gal(F/F)~ G —S8p(6; 0)— 1.
Also

(B) G=S"*Tand S~ 'isa semi-group, and
(C) T is contained in the centre of G.

From (B) and (C) it follows that any homomorphism of $~! to a group extends
umquely to a homomorphism of G. To define p:G — Aut BY4;) ® Q it suffices therefore
to give p on S™! such that p(wl)p(a)z):.p(wla)z) for all w,,w,eS1.
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Now let (o, g)eS. Taking the fibre-product of

Spec F — Spec F

il o i
Spec F 22, Spec F

with V, we get

4p — Ag
R
Spec F — Spec F

so that the induced morphism Az — o* A4z is an isogeny. From the easy iSogeny lemma
below it follows that :

s*:B A ® Q—B{A4p®Q

is an isomorphism. We define p(s™1) = s*, That p_is an action on S~ follows from
the fact: p,(g192) = P2(91)P2(92) for g1,9,M(Z)nSp(6; Q). Modulo the lemma below,
therefore, an action p of G on B*(45)® Q has been defined.

Isogeny lemma. If f: X — Y is anisogeny of abelian varieties, f*: B{(YY® Q- B{X)®0Q
is an isomorphism.

Proof. In fact (1/d)f, is the inverse of f*, where d is the degree of the isogeny. The
projection formula gives f, f*Z =dZ. And f*f,W, being the sum of the translates
of W by the elements of the kernel, is algebraically equivalent to dW, and this proves
the lemma. ‘

Theorem. B%(4;)® Q and R*(A5)® Q are infinite-dimensional.

R¥Ap)®Q, consisting of homologically trivial cycles, has finite codimension in
B*(A47) ® Q, and so both the assertions of the theorem are equivalent.

Choose a sequence 7y, 7,...€Sp(6; Q) which form a system of coset-representatives
for Sp(6,Z)\Sp(6,Q) and then lift the r; to s;€ G. The infinite-dimensionality of
B*(Ap)® Q follows from the linear independence of p;(s1)6, p(s),...,with 6 as n
Proposition 1. B

From Proposition 1 it follows that p(h)p(g)8 = x¥(R)p(g)6 for all heGal(F/F), g€G,
where ¥¥(h) = x(g~ *hg). We shall show that the ¢* are distinct characters of Gal (F/F),
from which the linear independence of the p(s;)d follows.

To this end we shall define a closed analytic subset R(n) of the Siegel half-s.pa.cc H
for any character n: Gal(F/F)— {£ 1} and then show that the R(x") are all distinct.

A character n = Gal(F/F)— { £1} determines a quadratic extension L of F, which
gives for some N >3 a quadratic extension L(N) of F(N) such that L(N)-F = L. Now
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the L(N) gives a double covering Y(N) — X(N) and let R(N) < X(N) be its branch-locus.
Finally let R be the inverse image of R(N) in the projection H — X(N). That R is
independent of the particular choice of N and L(N) is clear. Thus we put R = R(y).
It is also immediate that R(4%) = h ™ 'R(r) where ge G and h is the image of g in Sp(6; Q).

If we take =y, we have explicitly L(N)= E(N) and R(y) is the locus of the
hyperelliptic Jacobians (and also the degenerate Jacobians) in the Siegel half-space
H. Thus to finish the proof of the theorem, we only need the following.

Lemma. n={geSp(6; R)=gR(x) = R(x)} equals Sp(6; Z).

Proof. Clearly = is a closed subgroup of Sp(6; R), and its Lie algebra, being stable
under the adjoint action of 7 > Sp(6; Z), must be zero or all of Lie Sp(6; R). In the
latter case, 7 = Sp(6; R) and therefore R(y)= ¢ or R(y) = H, which is absurd. In the
former, = is discrete and since Sp(6; Z) is a maximal discrete subgroup of Sp(6; R), we
deduce that n = Sp(6; Z).

This completes the proof of the theorem.

What the above argument gives more generally is the following statement: if
veB(A)®Q is not invariant under Gal(F/F), then the G-orbit of v spans an
infinite-dimensional subspace. After all, the R(7) can be defined for any irreducible
representation n of Gal(F/F), and all that was used is the fact that R(y) is non-empty
if n is not the trivial representation. In other words, if L is a finite extension of F,
the branch locus (as a subset of H) is non-empty—this is a consequence of the
congruence subgroup theorem for Sp(2n; Z), see e.g. [1].

The following interesting question has been raised by Clemens: Is B*4p)®Q a
finitely generated G-module?
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