Proc. Indian Acad. Sci. (Math. Sci.), Vol. 99, No. 3, December 1989, pp. 191-196. @ Printed in India.

Cycles on the generic abelian threefold

MADHAV V NORI

School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400 005

Present address: Department of Mathematics, University of Chicago, Chicago Il. 60637, USA

MS received 22 September 1988

Abstract. H Clemens and C Schoen gave examples of three-folds where the group of codimension two cycles modulo algebraic equivalence has infinite rank. This paper provides yet another example of the same phenomenon.

Keywords. Algebraic cycles; generic curves; generic Abelian varieties; symplectic group action.

Let X be a smooth projective variety over C and denote by $R^2(X)$ the group of codimension two algebraic cycles homologically equivalent to zero modulo the subgroup of those cycles algebraically equivalent to zero. The first example of a variety X for which $R^2(X) \otimes Q \neq 0$ was given by Griffiths (see [5]). More recently, Clemens showed that $R^2(X) \otimes Q$ is infinite-dimensional where X is the generic quintic hypersurface in P^4 (see [3]).

We shall show in this paper that $R^2(X) \otimes Q$ is infinite dimensional where X is the generic abelian variety of dimension three. This result follows easily from a group-theoretic argument and the following basic result of Ceresa, which we now explain.

Denote by $\phi: C \to J(C)$ the embedding of a curve C (well-defined up to translations) in its Jacobian. Put $\psi(x) = -\phi(x)$, for $x \in C$ and consider the cycle S(C) = $[\phi(C)] - [\psi(C)]$ which is obviously trivial homologically. The theorem of Ceresa (see [2]) is that S(C) is non-zero in the group $R^2(J(C)) \otimes Q$ where C is the generic curve of genus three.

To construct cycles on a fixed three-dimensional abelian variety A we may proceed as follows. First choose an isogeny $h: B \to A$ with B principally polarized. Then $B \cong J(C)$ for some curve C of genus three (possibly degenerate) and thus B has the Ceresa cycle S(C). Its image $h_*S(C) \in R^2(A) \otimes Q$ is non-zero if A is generic, thanks to the result of Ceresa. Keeping A fixed, there are plenty of choices of h and each of these choices gives a cycle on A. These cycles are linearly independent because they twist by different characters of $Gal(\overline{F}/F)$ where F is a field of definition of A.

The formal argument follows.

Good references for all the facts concerning the moduli spaces that we have used in this paper are [4], [6] and [7].

Let N be a natural number ≥ 3 .

Denote by M(N) (resp. X(N)) the moduli of curves (resp. principally polarized

abelian varieties) of genus (resp. dimension) three with level N structure, defined over C, the field of complex numbers. These are smooth irreducible varieties of dimension six, and let $\mathscr{C}(N) \to M(N)$ and $\mathscr{A}(N) \to X(N)$ be the universal family of curves and abelian varieties respectively. We then have the $Sp(6; \mathbb{Z}/N)$ -equivariant commutative diagram:

$$\begin{array}{ccc} & & J(\mathscr{C}(N)) \longrightarrow \mathscr{A}(N) \\ \mathrm{I} & & \downarrow & \downarrow \\ & & M(N) & \longrightarrow X(N) \end{array}$$

where $J(\mathscr{C}(N))$ is the family of Jacobians of $\mathscr{C}(N) \to M(N)$. Note that $-1 \in \operatorname{Sp}(6; \mathbb{Z}/N)$ acts trivially on X(N) and its action on $\mathcal{A}(N)$ is simply $x \to -x$ on the fibres of $\mathcal{A}(N) \to X(N)$.

Now Sp $(6; \mathbb{Z}/N)/\{\pm 1\}$ acts faithfully on X(N), while the action of $\{\pm 1\}$ on M(N)is non-trivial. Applying the global Torelli theorem, we see that

$$\{\pm 1\}\setminus M(N) \to X(N)$$

is a birational isomorphism (in fact it is an open immersion by Zariski's Main Theorem).

Let C(N) and A(N) be the generic fibres of $\mathscr{C}(N) \to M(N)$ and $\mathscr{A}(N) \to X(N)$. These are varieties over the function fields E(N) of M(N) and F(N) of X(N) respectively. Furthermore [E(N):F(N)] = 2. From I we get a Sp(6; \mathbb{Z}/N)-equivariant commutative diagram:

$$\begin{array}{cccc} J(C(N)) & \longrightarrow & A(N) \\ \downarrow & & \downarrow \\ \operatorname{Spec} E(N) & \longrightarrow \operatorname{Spec} F(N) \end{array}$$

If N_1 divides N_2 , there is a Sp(6; N_2)-equivariant commutative diagram:

$$\begin{array}{ccc} \mathscr{C}(N_2) & \longrightarrow & \mathscr{C}(N_1) \\ \downarrow & & \downarrow \\ M(N_2) & \longrightarrow & M(N_1) \end{array}$$

so that if E is the union of all the E(N), we get a curve $C \to \operatorname{Spec} E$ with the action of Sp(6; \hat{Z}). Similarly we get an abelian variety $A \to \operatorname{Spec} F$, where F is the union of all the F(N). Finally II now gives a Spec (6; \hat{Z})-equivariant commutative diagram:

$$\begin{array}{ccc} & J(C) & \longrightarrow & A \\ \downarrow & & \downarrow \\ \operatorname{Spec} E & \longrightarrow \operatorname{Spec} F \end{array}$$

Note also that [E:F] = 2, and that III gives an isomorphism:

$$J(C) \rightarrow A_{E}$$
.

Factoring $C \to \operatorname{Spec} E$ by the action of $-1 \in \operatorname{Sp}(6; \widehat{Z})$, we get a curve $C' \to \operatorname{Spec} F$ such that $C'_E \cong C$. Put A' = J(C'). Thus we have (non-isomorphic) abelian varieties A'

and A defined over F and isomorphisms

$$A'_E \leftarrow J(C) \rightarrow A_E$$
.

Denote by $f: A'_E \to A_E$ the induced isomorphism and by σ the non-trivial element of Gal(E/F). The equivalence of III under $-1 \in Sp(6; \hat{Z})$ is now equivalent to

IV
$$f \circ (1_A, \times \sigma) = (i_A \times \sigma) \circ f$$
.

In IV above and always, $i_z: Z \to Z$ denotes the morphism $x \mapsto -x$ of an abelian variety Z. Occasionally i_z will be abbreviated to i simply.

We are now ready to tackle the Galois action on the generic Ceresa cycle. We need first some notation and an elementary result.

The group of codimension k cycles modulo algebraic equivalence on a variety X will be denoted by $B^k(X)$. If X is defined over K and L is a field extension of K, then $\operatorname{Aut}(L/K)$ acts on $B^k(X_L)$.

Lemma. Let D be a curve of genus $g \ge 1$ over a field K. Denote by \overline{K} an algebraic closure of K. The Ceresa cycle $S(D) \in B^{g-1}(J(D)_{\overline{K}})$ is invariant under the action of $\operatorname{Gal}(\overline{K}/K)$, and i*S(D) = -S(D).

Proof. A divisor R of degree = -1 on $D_{\bar{K}}$ defines an embedding

$$\phi_R: D_{\bar{K}} \to J(D)_{\bar{K}}$$

given by $\phi_R(x) = [x] + R$. If S is also a divisor of degree = -1, then ϕ_S is a translate of ϕ_R and therefore the cycle $\xi = \phi_R(D_{\bar{K}})$ as an element of $B^{g-1}(J(D)_{\bar{K}})$ does not depend on the choice of R at all. For all $g \in \text{Gal}(\bar{K}/K)$, $g(\phi_R) = \phi_{gR}$ and this shows that ξ is invariant under the Galois action. Since the Ceresa cycle S(D) is $\xi - i^*(\xi)$, it follows that S(D) is invariant too. Also

$$i*S(D) = i*(\xi) - \xi = -S(D)$$

and this proves the lemma.

Now let $\overline{F} \supset E \supset F$ be an algebraic closure of F and let χ be the composite $\operatorname{Gal}(\overline{F}/F) \to \operatorname{Gal}(E/F) \cong \{\pm 1\}$. Let $f_F: A'_F \to A_F$ be extended from $f: A'_E \to A_E$ and put $\theta = f_F(S(C')) \in B^2(A_F)$.

PROPOSITION 1

For all $g \in Gal(\overline{F}/F)$, $g^{\theta} = \chi(g)\theta$.

Proof. Abbreviating i_A , $i_{A'}$, etc. to i, and because $i \circ f_{\bar{F}} = f_{\bar{F}} \circ i$, we deduce from IV that for all $g \in \text{Gal}(\bar{F}/F)$,

(a)
$$f_F \circ (1_{A'} \times g) = (1_A \times g) \circ f_F$$
 if $\chi(g) = 1$, and

(b)
$$f_F \circ (i_{A'} \times g) = (1_A \times g) \circ f_F$$
 if $\chi(g) = -1$. For an element Z of $B^k(A'_F)$ this gives

(c)
$$f_F(gZ) = gf_F(Z)$$
 if $\chi(g) = 1$

(d)
$$f_F(g(i^*Z)) = gf'_F(Z)$$
 if $\chi(g) = -1$.

Putting Z = S(C') and applying the above lemma, the proposition follows.

We shall now embed $\operatorname{Gal}(\bar{F}/F)$ in a larger group that acts on $B^k(A_{\bar{F}}) \otimes Q$. Recall that X(N) is the quotient of the Siegel half-space $H = \{T \in M_3(C): T = {}^tT \text{ and Im } T > 0\}$ by the action of $\Gamma(N)$, the principal congruence subgroup of level N in $\operatorname{Sp}(6; Z)$. Let $\operatorname{Sp}(6; R)$ be the subgroup of $\operatorname{GL}_6(R)$ generated by $\operatorname{Sp}(6; R)$ and the scalar matrices. Put $\operatorname{Sp}(6; Q) = \operatorname{Sp}(6; R) \cap \operatorname{GL}_6(Q)$. There is an action of $\operatorname{Sp}(6; R)/R^*$ on H. For every $g \in \operatorname{Sp}(6; Q)$ there is a natural number a and a commutative diagram:

$$\begin{array}{ccc}
H & \xrightarrow{g} & H \\
\downarrow & & \downarrow \\
X(N\mathbf{a}) & \longrightarrow & X(N)
\end{array}$$

where the vertical arrows are the quotient maps. Passing to the direct limit over the N and taking generic points we get, for each $g \in \widetilde{Sp}(6; Q)$ an automorphism $\rho_1(g)$ of $\operatorname{Spec} F$. And $\rho_1(g) = 1_F$ if $g \in Q^*$.

Moreover, if $g \in M_6(Z) \cap \tilde{S}p(6; Q)$ we get commutative diagrams:

$$\begin{array}{ccc}
\mathscr{A}(N\mathbf{a}) & \longrightarrow & \mathscr{A}(N) \\
\downarrow & & \downarrow \\
X(N\mathbf{a}) & \longrightarrow & X(N)
\end{array}$$

where the horizontal arrows are isogenies on the fibres. These induce:

$$\begin{array}{ccc} & A_F & \xrightarrow{\rho_2(g)} & A_F \\ \downarrow & & \downarrow \\ \operatorname{Spec} F \xrightarrow{\rho_1(g)} \operatorname{Spec} F \end{array}$$

Denote by j: Spec $\overline{F} \to \operatorname{Spec} F$ the given morphism and define

$$\begin{split} G &= \big\{ (\alpha,g) \in \text{Aut Spec } \overline{F} \times \widetilde{\text{Sp}}(6;Q) | \, \rho_1(g) \circ j = j \circ \alpha \big\}, \\ S &= \big\{ (\alpha,g) \in G | \, g \in M_6(Z) \big\} \\ T &= \big\{ (\alpha,g) \in S | \, g \text{ is a scalar matrix and } \alpha = 1_{\overline{F}} \big\}. \end{split}$$

Then we have an exact sequence:

(A)
$$1 \rightarrow \text{Gal}(\overline{F}/F) \rightarrow G \rightarrow \widetilde{Sp}(6; O) \rightarrow 1$$
.

Also

(B) $G = S^{-1} \cdot T$ and S^{-1} is a semi-group, and

(C) T is contained in the centre of G.

From (B) and (C) it follows that any homomorphism of S^{-1} to a group extends uniquely to a homomorphism of G. To define $\rho: G \to \operatorname{Aut} B^k(A_{\bar{F}}) \otimes Q$ it suffices therefore to give ρ on S^{-1} such that $\rho(\omega_1)\rho(\omega_2) = \rho(\omega_1\omega_2)$ for all $\omega_1, \omega_2 \in S^{-1}$.

Now let $(\alpha, g) \in S$. Taking the fibre-product of

$$\operatorname{Spec} \overline{F} \xrightarrow{\alpha} \operatorname{Spec} \overline{F}$$

$$\downarrow j \qquad \qquad \downarrow j$$

$$\operatorname{Spec} F \xrightarrow{\rho_1(g)} \operatorname{Spec} F$$

with V, we get

$$egin{array}{ccc} A_{ar{F}} & \stackrel{s}{\longrightarrow} & A_{ar{F}} \ \downarrow & & \downarrow \ \operatorname{Spec} ar{F} & \stackrel{lpha}{\longrightarrow} \operatorname{Spec} ar{F} \end{array}$$

so that the induced morphism $A_{\bar{F}} \to \alpha^* A_{\bar{F}}$ is an isogeny. From the easy isogeny lemma below it follows that

$$s^*: B^k(A_{\bar{F}}) \otimes Q \to B^k(A_{\bar{F}}) \otimes Q$$

is an isomorphism. We define $\rho(s^{-1}) = s^*$. That ρ is an action on S^{-1} follows from the fact: $\rho_2(g_1g_2) = \rho_2(g_1)\rho_2(g_2)$ for $g_1, g_2 \in M_6(Z) \cap \widetilde{Sp}(6; Q)$. Modulo the lemma below, therefore, an action ρ of G on $B^k(A_{\bar{F}}) \otimes Q$ has been defined.

Isogeny lemma. If $f: X \to Y$ is an isogeny of abelian varieties, $f^*: B^k(Y) \otimes Q \to B^k(X) \otimes Q$ is an isomorphism.

Proof. In fact $(1/d)f_*$ is the inverse of f^* , where d is the degree of the isogeny. The projection formula gives $f_*f^*Z = dZ$. And f^*f_*W , being the sum of the translates of W by the elements of the kernel, is algebraically equivalent to dW, and this proves the lemma.

Theorem. $B^2(A_{\bar{F}}) \otimes Q$ and $R^2(A_{\bar{F}}) \otimes Q$ are infinite-dimensional.

 $R^2(A_{\bar{F}})\otimes Q$, consisting of homologically trivial cycles, has finite codimension in $B^2(A_{\bar{F}})\otimes Q$, and so both the assertions of the theorem are equivalent.

Choose a sequence $r_1, r_2, \ldots \in \operatorname{Sp}(6; Q)$ which form a system of coset-representatives for $\operatorname{Sp}(6, Z) \backslash \operatorname{Sp}(6, Q)$ and then lift the r_i to $s_i \in G$. The infinite-dimensionality of $B^2(A_{\overline{F}}) \otimes Q$ follows from the linear independence of $\rho_1(s_1)\theta$, $\rho(s_2)\theta$,..., with θ as in Proposition 1.

From Proposition 1 it follows that $\rho(h)\rho(g)\theta = \chi^g(h)\rho(g)\theta$ for all $h \in \operatorname{Gal}(\overline{F}/F)$, $g \in G$, where $\chi^g(h) = \chi(g^{-1}hg)$. We shall show that the χ^{s_i} are distinct characters of $\operatorname{Gal}(\overline{F}/F)$, from which the linear independence of the $\rho(s_i)\theta$ follows.

To this end we shall define a closed analytic subset $R(\eta)$ of the Siegel half-space H for any character $\eta: \operatorname{Gal}(\overline{F}/F) \to \{\pm 1\}$ and then show that the $R(\chi^{r_i})$ are all distinct.

A character $\eta = \operatorname{Gal}(\overline{F}/F) \to \{\pm 1\}$ determines a quadratic extension L of F, which gives for some $N \ge 3$ a quadratic extension L(N) of F(N) such that $L(N) \cdot F = L$. Now

the L(N) gives a double covering $Y(N) \to X(N)$ and let $R(N) \subset X(N)$ be its branch-locus. Finally let R be the inverse image of R(N) in the projection $H \to X(N)$. That R is independent of the particular choice of N and L(N) is clear. Thus we put $R = R(\eta)$. It is also immediate that $R(\eta^g) = h^{-1}R(\eta)$ where $g \in G$ and h is the image of q in Sp(6; O).

If we take $\eta = \chi$, we have explicitly L(N) = E(N) and $R(\chi)$ is the locus of the hyperelliptic Jacobians (and also the degenerate Jacobians) in the Siegel half-space H. Thus to finish the proof of the theorem, we only need the following.

Lemma.
$$\pi = \{g \in \operatorname{Sp}(6; R) = gR(\chi) = R(\chi)\}\ equals \operatorname{Sp}(6; Z).$$

Proof. Clearly π is a *closed* subgroup of Sp(6; R), and its Lie algebra, being stable under the adjoint action of $\pi \supset \text{Sp}(6; Z)$, must be zero or all of Lie Sp(6; R). In the latter case, $\pi = \text{Sp}(6; R)$ and therefore $R(\chi) = \phi$ or $R(\chi) = H$, which is absurd. In the former, π is discrete and since Sp(6; R) is a maximal discrete subgroup of Sp(6; R), we deduce that $\pi = \text{Sp}(6; Z)$.

This completes the proof of the theorem.

What the above argument gives more generally is the following statement: if $v \in B^2(A_{\bar{F}}) \otimes Q$ is not invariant under $Gal(\bar{F}/F)$, then the G-orbit of v spans an infinite-dimensional subspace. After all, the $R(\eta)$ can be defined for any irreducible representation η of $Gal(\bar{F}/F)$, and all that was used is the fact that $R(\eta)$ is non-empty if η is not the trivial representation. In other words, if L is a finite extension of F, the branch locus (as a subset of H) is non-empty—this is a consequence of the congruence subgroup theorem for Sp(2n; Z), see e.g. [1].

The following interesting question has been raised by Clemens: Is $B^2(A_{\bar{F}}) \otimes Q$ a finitely generated G-module?

References

- Bass H, Milnor J and Serre J P, Solution of the Congruence Subgroup Problem Publ. I.H.E.S. 33 (1967) 59-137
- [2] Ceresa G, C is not algebraically equivalent to C in its Jacobian, Ann. Math., 117 (1983) 285-291
- [3] Clemens H, Homological equivalence modulo algebraic equivalence is not finitely generated Publ. I.H.E.S. 58 (1983) pp. 19-38
- [4] Deligne P and Mumford D, The Irreducibility of the space of curves of a given genus *Publ. I.H.E.S.* 36 75-110
- [5] Griffiths P A, On the periods of certain rational integrals, Ann. Math., 90 (1969) 460-541
- [6] Igusa J, Theta Functions, Springer-Verlag (1972)
- [7] Mumford D, Geometric Invariant Theory, Springer-Verlag (1965)