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1. Introduction

Lot X be o compact Riemann surface, X a finite Galois unramified covering, with
Galois group G. Let ¥V be a vector space with G-action. The d.agonal action of
Gon X x Vis free and the quotient is a vector bundle W on X. It was shown
by A Weil that therc are two polynomials f and g with non-negative integer coeffi-
cients with f # g and f (V) isomorphic to g (V). Isomorphism classes of vector
bundles on X form a semi-ring with respect to direct sums and tensor products,
o0 the expressions  f(V) and  g(V) make sense as Vector bundles on X.

A veetor bundle W on X satisfying this property is called firite. We prove the
converse : a finite vector bundle W arises froma representation of the ‘Galois

~group for a suitable unramified covering X — X.

It is casy to sce that a line bundle L is finite if and only if L is a2 point of
finite order in the Jacobian of X.. For such a line bundle, the function field of

- Xis justa simpale Kummer extension of the function field of X.  Thus our theorem

for line buadl:s simoly asserts that the characters of the etale fundamental group
of X (waich is the profinite completion of the topological fundamental group of
X are in one-to-one correspondence with line bundles of finite order on X.
This is, of course, a well-known fact, and a very useful one because the structure
of the abelian group of all such line bundles is determined very easily by the
topology of the Jacobian. Whaereas itis not clear how to go about determining the

finite bundles from the variety of stable bundles on X ; consequently our theorem

has m:t with no utility.

If ¥is a complete connected reduced scheme over a field k, finite Vector bundles
still make sense. An essentially finite bundle is just a sub-quotient of W, remain-
ingin the semi-stable category. If G isa finite group~scheme and P is a principal
G-bundle on X, the representations of G give rise to essentially finite bundles on
X and in fact all essentially finite bundles are obtained in this manneT. In
characteristic  z:ro, finite = essentially finite.

This is the content of Chapter I.

* pi.D. thesis submitted to University of Bombay.
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While proving this, we show that there is an affine group-scheme z (X, x,) which
is an inverse limit of finite group-schemes, a principal 7 (X, xo)-bundle P on X,
a base-point # of P sitting above y, which is a k-rational point of X with the
following universal property : given a principal G-bundle Q on X with G being
a finite group-schems and V a base-point of Q above yx,, there is a unique
pair (f, p) such that

@) p : (X, x) » Gis a homomorphism. (i) f: P — Q interwines the actions
of 7 (X, xo) and G, and (iii) f (*) =

Naturally we call 7 (X, x,) the fundam:ntal group-scheme of X at y,.

Tais leads us to the questions : when does such a (P,7m (X, xo), *) exist with

the above universal property ? In characteristic zero, there is no problem at
all : this is just the etale fundam:ntal group.

In Chaapter II, we show that z (X, j,) exists if X is connected and reduced
(the completeness is not necessary). That some conditions on X are mecessary
was sugg:sted by Milne who showed (in our language) that @ (X, o) eXists
if and only if all members of I' (X, Oy) integral over k belongto k (in particular,
I' (X, Ox) has no nilpotents). ' Itseems unlikely that this z (X, x,) has the decent
proparties enJoyed by the usual fundamental group, e.g.,

Af. If ¥ — S is a smooth proper morphism and §is not equi-characteristic
" then the fundam:ntal group-schemes of the fibres certainly do not vary in a flat
“manner and this destroys soms of the interest in this concept.

B. If P - Xis a principal G-bundle on X with G a finite group-scheme, then
P may not have a fundamental group-scheme at all !

On the positive side, we have :
A. A proper smooth morphism with connected fibres 1nduces a surjectlon of
fundam:ntal group-schemes
B. 7 (X, x,) is a birational invariant for smooth complete varieties.
~C. Itremains unaffected by the removal of a closed subset of codimension =2
if the ambient space is regular.
D. =z (X, x,)is trivial for normal rational varieties.

E. It remains invariant undsr base-change by separable extensions.

The existence of z (X, x,) and the proofs of the above statements are deal
with in Chapter IL

In Chapter III we show that all the results of Cbapter I are Vahd for parabolic
bundles (which are a slight modification of the parabolic bundles defined and
used by C S Seshadri). Thus we show that for a smooth projective connected
curve X and a finite set S — X, the representations of # (X¥—S, x,) are in ore-to~
one correspondence with essentially finite parabolic bundles on X—§S.

In the final chapter we consider principal bundles on X with nilpotent struc
ture-groups. In this context there is again a nilpotent affine group-scheme

T This was shown by M. Artin.
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U (X, xo) and a principal bundle P with this structure group ard a base-point
having the obvious universal property. In characteristic zero, U (X, x,) is deter-
mined completely by its Lie algebra. In positive characteristic, however, U (X, xo)
is an inverse limit of finite group-schemes and therefore a quotient of z (X, x,).
We show that

A, UX, 2o = lim G where the G run through all local group-schemes
; - | v

; G- PicX
embeddsd in Pic X (assuming that Pic X exists).

B. If- Xis an abelian variety, U (X, 0) is abelian.

C. If Xis an elliptic curve, z (X, G) — lim G is an isomorphism, where the G
(_.‘
G- X
run through all firite sub-group-schemss of X.
Equivalently, if P is a principal G-bundle on X with a base-point » above the

z:ro of X'and Gis a finite group-schemsz, then there is a homomorphism p : X, - G
for some 7 and a commutative diagram :

£

such that f intertwines the X,-action on X and the action of G on P.
We fail to prove howsver that this holds for abelian varieties.

D. Invariance undsr arbitrary field extensions.

The remaining part of the chapter is devoted to a preliminary study of
U (X, xo) for curves X in positive characteristic. We find that the U (X, xo) are
d:termined by “non-commutative formal groups * which are defined there. 'A
-classification of such objects presents an interesting problem. We then compute
U (X, x,) for rational curves with rather simple singularities, and also prove an
old result of Safarevich. :

The appendix gives an easy proof for the results about Tannaka Categories
stated in Chapter I, §1.

Literature referred to is mentioned at the end of each chapter.

Chapter I is a reproduction of “ Representations of the Fundamental Group
which appeared in Compositio Math., 1976, Vol. 33." It has been included here

for the sake of completeness. Several conventions introduced in Chapter I have
been adhered to throughout.

* A new proof of the thebrem on Tannaka categories has also appeared in Springer Verlag
Lecture Notes 900. ' ' R

B




76 Madhav V Nori

PART I
CHAPTER 1

2. On the Representatians of the Fundamenfal Group

2.1. Tamnaka categories

Let G be an affine group-scheme defined over a field &, ‘R its coordinate Ting,
and G-mod the category of finite-dimensional left representations of G. Let
k-mod be the category of finite-dim-nsioral k-vector spaces, and T, : G-mod =

k-mod the forgetful furctor. Let ® (® resp.) denote the usual tensor product
functor on G-mod (k-mod resp.). Let L, be the trivial representation of G.

Putting (G-mod, R, Ty Lo) = (C, ®, T, L), we note that the following state-
ments are true :

Cl : € is an abelian k—'*ategory (existence of direct sums of finite ob_]ect
of € included).

C2: Obj Cis a set. ‘

C3: T:C =+ k-mod is a k-additive faithful exact furctor.

G4 : @ :C@ X @ - Cis a functor which is k-linear in each variable, and
”Toé-———@o(TxT). |
®5: @ is associative, preserving 7, in the following sense : Let
H:® o (o x @) -®o0 (@ X lg) be the equivalence of functors that givé the
associativity of ®. For objects Vi, V,, Vs of €, T (H(Vi, Va, V3)) gives an
isomorphism of TV; ® (TV, @ TVy) with (TVy, & TV,) @ TV, We ask that this

isomorphism coincides with the usual one that gives the assocxatmty of the tensor
product for vector spaces.

6 : ® is commutative, preserving 7, in the above sense.
€7 : Thereis an object Ly of €@, and an isomorphism ¢ : k = TL,, such that

L, is an identity object of ®, preserving T.
€8 : For every object L of € such that TL has d1mcns10n cquaI to ore,

there is an object L™ such that L @ L1 is 1somorph1c to L,.
Any (@, ®, T, L) shall be called 2 Tannaka category.

Deﬁmtwn Let @ be any category where €1 and €2 hold. Let S be a subset
of Obj €. Then o

_‘=={WEObJC° gP‘eSl i<t and Vi, V2€0bJC° such that

Vi Vas €|~)P¢, and W is isomorphic to V,/V;}.-

=1
By € (S), we m>an the full subcategory of @ with Obj € (§) = §. Note that
€ (S) is also an abelian category. Finally, S will be said to generate € if obj @
"= §. The following theorems are due to Saavedra (s¢e Theorem 1 of Saavedra

[41).
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Theorem (1.1) : Any Tannaka category is the category of finite-dimensional
left representations of an affine group-scheme G, and this sets up a bijective
correspondence between affine group-schemes and Tannaka categories.

Theorem (1.2) : A gmup-écheme G is finite if and only if ‘there exists a finite
collection S of G-representations which generates G-mod (in the sense of the
above definition).

Theorem (1.3) : ‘Any homomorphism of Tannaka categories from (G-mod ®

T,, Ly) to (H-mod, ®, T}, L,) is induced by a unique homomorphism (of affine
algebraic group schemes) from H to G.

2.2. Principal bundles

Let X be a nonempty k-prescheme, S (X) the category of quasi-coherent sheaves
on X,® :5(X) x S(X) - S(X) the tensor product functor on sheaves.

Let G be an affine group scheme defined over X.

Recall that j : P — X is said to be a principal G-bundle on X if

(@) j is a surjective flat affine morphism.

(b) ® : P G - P defines an action of G on P such that] «ﬁ =j.p.

)Y :PXG—>P xzPby¥ = (p, ®) is an isomorphism.

In this case, & — j* (&) gives anisomorphism of §'(X) with the category of
G-sheaves on P, by the method of flat descent (see Grothendieck [2]). Every left
representation ¥V of G gives rise to a G-sheaf on P in a natural way, and by
taking G-invariants, one gets a sheaf on X, denoted by F(P) V. This gives
rise to a functor F(P) : G-mod — S (X), and putting F = F(P), we rote that
the following are true :

F,: Fis a k-additive exact functor ; F, : FO® = ® o0 (F x F) ; F, : The
obvious statements parallel to €5, €6, €7 ; in particular, FL, = Oy, where L,
is the trivial representation, and finally ; F, : If rank ¥ = n, then FV is locally
free of rank » ; in particular, F is fajthful.

From now on, F will denote a functor where F1 to F4 held.

Let G-mod be the category of all (posmbly 1nﬁmte-d1mens1onal) left represen-
tations of G.

Lemma (2.1) : There is a unique functor F : G-mod — S (X), such that :
(i) The statements F1, F2, F3hold good for F, (ii) F| G-mod = F, (iii) FV
is flat for all ¥, and faithfully flatif ¥'# 0, and (iv) F preserves direct limits.

Proof : Define FV to be the direct limit of FW, where W runs through the collec~
tion of finite-dimensional G-invariant sub-spaces of V, and the lemma is then

easily checked. We will put F = F from now on.

Lemma (2.2) : Finduces a functor from affine G-schemes to affine X-preschemes.
Proof : Let ¥ =spec A be a scheme on which G operates, ardlet m: A®
A — A be the multiplication map on 4. Sirce A4 isa commutative, associative
k-algebra. with identity, by F2 ard F3, we deduce that F4 is a commutative,
associative sheaf of Oy-algebras with idertity. Thisisenough tocorclude that
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there is an affine morphism j : Z — X such that j* (O,) is isomorphic to F4 as a
sheaf of Ox-algebras. We shall denote Z by FY from now on.

Definition : Let G operate on itself by the left. Put P (F) = FG, and let j:
P (F) - X be the canonical morphism. Since no confusion is likely to arise, we
shall denote P (F) simply by P.

Lemma (2.3) : P is a principal G-bundle on X.

Proof : By definition, j is an affine morphism. That j is flat and surjective
follows from the fact that j (Op) is faithfully flat. ((iii) of Lemma 2.1). Properties
(B) and (c) will be checked later.

Lemma (2.4) : If ¥ and Z are schem:s on which G operates, F(¥ x Z)
FY %Xy FZ. Furthermore, if G acts trivially on Y, then FY = X X Y.

Proof : Obvious.

Proof of Lemma (2.3) : We denote by G' the same scheme as G, equipped with
the trivial action of G. Let ¢ :G X G’ - G be the multiplication map of G,
~andy :G X G' =G X G be given by w (%,) = (%, ¢ (x,)). Note that ¢ and
w are both G-morphisms ; consequently there are X'-morphlsms *

& =F P><G~>P and
VY=Fy:PxG->PxxP.

Since ¢ defines an action of G’ on G, ® defines an action of G on P, and

jop, =jo® simply because ® is an X-morphism. .
Also, y is an isomorphism, from which it follows that ¥ is an 1somorph1sm
too, thus concludng the proof of the lemma.
Now that we have constructed a principal bundle P, given a functor F, the
next step is to show that Fis the functor naturally associated with P, that is:

Proposition (2.5) : F = F(P).

We introduce some notation first. Let Z be a scheme on. w}uch G operates
on tie right, and let ¥ be any left representation of G. We denote by ¥, the
sheaf V'Q O, nquipped with the following action of G : gv@f)=gv@fop
(8), where v € ¥, g€ G, and fe I'(U, Op), for soms open U in Z. This is the
natural construction of a G-sheaf on Z, given a representation ¥, mentiored
in the beginning of the section.

To show that two sheaves are isomorphic on X, it suffices to prove that the

inverse images are isomorphic as G-sheaves on P, and hence the above proposition
is reduced to the following : : ; ,

Lemma (2.6) : Theré is a functorial 1somorph1sm (of G—sheaVes) of j* (FV)
with Vp. .

We require the aid of

Lemma (2.7) : Let Y be an affine scheme on which G operates on the left
H operates on the right. Assuming the actions of G and H on ¥ commute with,
each other, let Z = FY. Then Zisa H-:icheme, and j:Z — Xis a H-morphism;
where ' X has the trivial action of H. Furthermore, F induces a furctor F.
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from the category of sheaves on Y with commuting G and H action to the
category of H sheaves on Z,
The proof of Lemma 2.7 is trivial, and we omitit. To apply the Lemma, put

G = H = Y, with the actions of G ard H on Y being given by left and right”

translations respectively.

Let V be a representation of G and V' its underlymg vector space equlpped
with the trivial action of G. Therefore, there are G-sheaves, ¥z and V¢ (corres-
ponding to the right action of G) on G. We shall define left actions of G on
Ve and V¢ as follows :

@) g@®f)=v@fo L7, forveV,gel, andfof’(U Oé)
b) g®f) =gv®fo L forveV, geG and fo I'(U, Op).

With Fas in Lemma 2.7, it is trivial to check that F (Vg) = ¥ and F(Vé) =
Jj*(FV). To prove Lemma 2.6, it therefore suffices to prove

Lemma (2.8) : There is a functorial isomorphism of V'~ with V¢ as sheaves on
G, with G acting both on the left and the right.
Proof : Let W be any vector space. We denote the scheme spec (S (W*))
again by W. Then the sheaf W @ O can beidentified canonically with the
sheaf of morphisms from G to the scheme W.

Using this id:ntification, define A : V} — Veby A(F) (g) = g™ f (g), where
g€G,f:G —» V. The map furnishes the required 1som0rphlsm, thus corncluding
the proof of Prop. 2.5.

Proposition (2.9) : There is a bijective correspondence between principal
G-bundles on X and functors F :G-mod — S(X) such that FI1 to F4 hold.
Furthermore,

(@) Letf:Y—> Xbea morph1sm, and assume that F = G—mod — 8 (X) satisfies

Flto F4, Then Flto FAhold good forf * o F also, and P(f* o0 F) = f* (P (F)) ;
(b) Let X =speck, and F: G-mod — k-mod the forgetful functor. Then
P(F)=G; (¢c) Let p : H— G be a morphism of affine group schemes. Let
P be a principal H-bundle on X, and P’ the quotient of P X G by H. Let R :
G-mod -» H-mod be the restriction functor. Then F(P)o R = F(P ).

Proof : (b)is trivial, and (a) and (c) are prOVed by chasmg the constructxon of

P (F).

Remark i The condition F4, which is crucial in proving that j : P'— X is flat
and surjective, is actually a consequence of F1, F2 and F3. HoweVver, we do not
need this fact.

2.3. Essentially finite vector bundles |

Let X be a complete connected reduced k-scheme, where k i isa perfect field. Let
vect (X) denote the set of isomorphism classes, [V], of vector bundles ¥, on X,
Then vect(X) has the operations :

@ [V1+[V]I=[V®V], and
G [V]-[V]1=[V x V]
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In particular, for any vector bundle ¥ on X, given a polynomial f W1th non-
negative integer coeffisients, f (¥) is naturally d-fined.

Lzt K (X) be the Grothendieck group associated to the additive monoid vect
(X) ; this is not the usual Grothendieck ring of vector bundles on X, sirce
0>V =V =V =0 exact dozs not imply that [V'] + [V'] = [V].

- The Krull-Schmidt-Remak theorem holds, since H° (X, end V) is finitc-dimen-
sional. In particular, [W], where W runs through all indecomposable vector
bundles on X, form a free basis for K (X). :

Definition : For a vector bundle ¥, 8 (V) is tke collection of all the 1rd£compo-
sable comporents of V@™, for all non-negative integers n
Lemma (3.1) : Let V be a Vector bundle on X. The following are equivalent :
(a) [V] is integral over Z in K (X); (b) [V]1@® lis irtegral over Q in K (X)
® @ ; (c) There are polynomals f and g with nor-regative integer cocfﬁcmnts
such that f (¥) is isomorphic to g (V) and f # g.
(d) S(V)is finite.

Proof : :

(a) < (b) holds merely because K (X¥) is addltwcly a free abelian group

(c) = (b) is obvious.

(b) = (c) : Lzt heZ[t] such. that 2 ([V]) =0, and = 0.
Choose f, ge Z[t] such that fand g have non-negative coefficients, and 1 = =f—g.
Then [f (V)] = [g (V)] in K(X), but Vect (X), as a monoid, has the carcellatlon
property, so it follows that f(¥) is actually isomorphic to g ( V).
(d) = () : The abelian subgroup of K (X) w1th basis as S(V) is certainly
stable under multiplication by [V].

(a) = (d) : Simply note thatif mis the d=gree of a monic polynom a] h such
that £ ([V]) =0, then any member of §(V)is actually an indccomposable
component of V& for some 7 lying between 0 and m — 1. 3

Definition : A vector bundle ¥ on Xis said to be finite if itsatisfles any of thc '.
equivalent hypothesis of Lemma 3-1. :

Lemma (3.2) :
(i) Vi, V, finite = V; @ Vs, V1® Vi Vi ﬁmte
(i) V; @ V, finite = ¥, finite.
(iif) A line bundle L is finite < L®™ is isomorphic to Oy for some positive
integer m. RN L

Proof :
(1) is obvious.
(2) follows from the fact that §(¥;) is contaired in S (¥, @ 7).
(3) follows from the fact that § (L) = {L®m m >0}

Lemma (3-3) : Let X be a smooth projective curve. For a Vector bundie .
-V, let C(V) =sup{u(W) =deg B[rkW, 0 £ W < V). R
Then, (@) C (V) is finite, and

(b) if 0 » V' > ¥V —» V" - 0 is an exact sequence of Vector-bundles on X,
c (V) < max (C(V), ¢ (V). - : '

\\\\\\
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Proof : That D(V) =sup{deg L:L CV, L a lire bundle} is finite is we]l-
known. Sirce C(V) <max{D (A" (M)/r:1 <r <rkV}, (2) follows.

Given an injection j: W — ¥ and an exact sequence 0 — V' — V o -0,
there is a canonical factormg

O —=W —eW—> Ws0
I R

O~ V o\ e V'—>0

such that the horizontal rows are exact, and J'sj" are generic injections. Let
U’, U” be the sub-bundles of ¥, ¥" respectively, such that j’ (B g Uandj (W9
c U’ and rkW’ =rkU' and rkW’" = rk U”. Then deg W' <deg U’ and
deg W’ < deg U”. :
“Now, :
U(W)=deg P’ + deg B"[rk W + vk B"
<deg U’ + deg U’/rk U’ + rk U”

<max (deg U'/rk U, deg U'lrk U )

< max (C V), C(V” ,
which proves (b).

Proposition (3-4) : Any finite vector bundle ¥ on a smooth projective curve
X is semistable of degree zero.

Proof : By Lemma 3.3, C(V®m) <sup {C(W) 73 eS(V)} = T(V), which is

finite, since § (V) isa finite collection. Consequently, for any sub-bundle W of

V, W # 0, since #®™ is a sub-bundle of VO™, u(wO™)yg T(V), for all non-

negative integers m. But a simple calculation shows that g (WO™) = m,u (W)
which obviously implies that u (W) <0.

-In particular, since both ¥ and V* are finite, (V) <O0and (V*) == (V)<0.
Therefore we have shown that

(@) p(¥V) =0, and

(b) for all sub-bundles ¥ of ¥V, W # 0, u(W)

For the rest of this section, X will be 2 complete, conrected Teduced schems

and the phrase “a curve Yin X" is to be interpreted as a morphism f: Y — X,
where Y is'a smooth, connccted, pI‘O_]C‘CtIVe curVe, and f is a birational morphlsm
onto its image. '

Definition : A vector bundle on X is semistable if and only if it is semistable
of degree zero restricted to cach curve in X.

Since the restriction of a finite Vector bur dle 1s also finite, we have the follow-
ing obvious corollary :

Cvrollary (3.5) : A finite vector bundle on ¥ is semistable.

Lemma: (3.6) :

(a) If V'is a semistable Vector burdle on _XT and W is either a sub-bun dle ora
quotient. bundle of V, such that W / Y has degIee zero for each- curve Y in X,
then W .is semistable, .. . .
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(b) The full subcategory of &(X) with objects as semistable vector bundles on
X is an abelian category.

Proof :

(2) Under the given hypothesis, it follows that W |Y is semistable of degree ZETO0s
and therefore W is semistable.
(b) Let ¥ and W be semistable vector bundles on X, and let f: V—» W be a

morphism. For a geometric pomt % : spec k = X, let  (x) be the rank of the
morphism x* (f) : x* (V) - x* (W). Then, by elem:ntary degree considerations
r(x) is a constant restricted to each curve, and since X' is connected, r (¥) is
constant globally. Now, since X' is reduced, it follows that ker f and coker
are locally free, and moreover, (ker f)|Y = ker (f|Y) and (coker f)| ¥ = coker
(f/Y), and both these bundles are semistable of degree zero on Y ; the lemma
follows.

Definition : We shall dsnote by SS(X) the full subcategory of §(X) with
semistable vecor bundles as objects. Let F be the collection of finite Vector
bundles, regarded as a subset of obj S (X), and let EF (X) be the full subcategory

of SS (X) with obj EF (X) = F, where the meaning of Fis to be taken in the sense
of § 1. The objects of EF(X) will be essentially called finite vector bundles,

Proposition (3.7) :

(@) If ¥ is an essentially finite vector bundle on X, and W is either a sub-
bundle or a quotient bundle of ¥ such that W¥|Y has degree zero for each curve
Yin X, then W is essentially finite. (b) EF (X)is an abelian category. (c) If ¥4
and V; are essentially finite, so are V; ® V3 and V*.
Proof : (2) and (b) are obvious consequences of Lemma 3:6. To prove (c),
choose W, and P, such that

(1) Wiis finite, (ii) Py is a sub-bundle of W;andP is semistable, and (iii) ¥
a quotient of P, for i= 1,2.
Then

(i) W, @ W, is finite by Lemma 3.2, (i) P, @ Pyis a sub-bundle of Hq ® W,
and. (iii) 7, ® V3 is a quotient of P; @ P,.
Both P, ® P, and V; @ V; are of degree zero restricted to each curve in X
consequently, by (a), both P, @ Pg and V; ® V; are essentially finite.

In a similar fashion, one proves that the dual of an essentially finite vector
bundle is essentially finite. -

Proposzrzon (3-8) : Let G be a finite group scheme, and j : X - X a principal |
G-bundle. Then, for the functor F(X’) : Gmod — S(X), F(X') V is always
an essentially finite vector bundle.

Proof : We shall show that F(X').V is of degree zero restricted to each curve,
For this, we assume that X itself is a smooth projective curve. Let R be the
coordinate ring of G, and n the Vector space dimension of R. Then, n deg
(F(X) V) = deg (j* (F(X) V) ; but j* (F(X') V) is, by definition, a trivial vector
biindle on X, and therefore deg (F(X’) V)is equal to zzro. Note that * degree
makes sense even if X" is ot reduced, by looking at Hilbert polynomials.
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Now, any representation ¥ of G can be embedded (injectively)in R@ R -+
@ R, and therefore F(X') V'is contained in a direct sum of several copies of
F(X)R. To prove that F(X') V is essentially finite, it would surffice to show
that F(X') R is finite, by (a) of Prop.3-7. ButR @ Risisomorphic to R@® R @

. @ R ntim:s, from which, if W = F(X') R, [W]? = n[W], concluding the proof
of the proposition.

For the rest of this section, we shall fix 2 k-ratioral point x of X and denote
by x* :S(X) - | k| the functor which associates to a sheaf on X its fibre at
the point x. Notz that x*is faithful and exact wlien restricted to the category of
semistable bundles. It is now obvious that (EF (X), ®,x*, Ox) is a Tannaka
category. By Theorem 1-1, this determines an affine groups scheme G such that
| G| can be identified with EF (X) in such a way that x* becomss the forgetful
functor. We shall call the group-scheme G above the fundamemal group-scheme
of X at x, and denote it by 7 (X, x). :

For a subset S of obj EF(X), let S* ={V* : Ve S}. Let S; = S U S* and
S =V,®V,® -+ @V, : V;e S} Letobj EF (X, §) = S,. As before, this deter-
mines an affive group schems which we call = (X, S, x), such that

Gs : EF(X,8) = [n(X, S, x)|*
is an equivalence of categories. Let Fg be tbe inverse of Gg ; then Fg can be
regarded as a functor from |z (X, S, x)| to S(X) such that the composite

x*. Fg is the forgetful furctor. In particular, by Prop. 2.9, there is a principal -

n(X, S, ¥)-bundle X such that Fy = F (Xs). By Prop. 2-9 (a), the functors
. Fs and F (X | x)coincide, and by Prop. 2.9 (b), there is arnaturalisomorphism
of X’s ]x with G (as G-spaces), which is eqmvalent to specifying a k~rat1ora1 base

point xs of Xs | x.

Now, if S'is a subset of Q, there is a natural homomorphism of Tannaka
categories from EF(X,S) to EF(X, @), which by Theorem 1.3, determines a
natural homomorphism p8 from z (X, Q, x) toz (X, S, x), and by Prop. 2.9(c), it
follows that Xjg is induced from Xy by the homomorphism p8.

Lemma (3-9) : Let S be a finite collection of finite vector bundles. Then
n (X, S, x) is a finite group schems.

Proof : Let W be the direct sum of all the members of S and their duals.
Then Wis a finite vector bundle, and by Lemma 3.1, S (W) is finite. Note that
S (W) generates the abelian category EF (X, S) in the sense of § 1, and therefore,
by Theorem 1.2, n (X, S, x) is a finite group-scheme.

Propositicn (3.10) : Let S be any finite collectior of essentlally finite vector
bundles. Then, there is a principal G-bundle X' on X, with G a firite groud
scheme, such that the image of F(X"): G and — S(X) contains the given collectior. S,
Proof : For each We S, choose V'such that W is a quotient of a semistable
sub-bundle of ¥ and ¥V a finite vector bundle. Let Q be the collection of ¥V as
constructed, and note that S is a subset of obj EF (X, Q). '

Put G=7 (X, Q,%), and X' =X, By Lemma 3.9, G is a finite group-
scheme. Let Gq, as above, be the equivalence of categories, from EF (X, 0)
to |7 (X, @,x) |, and then, we know that F(X"). Gg (V) =V, for all Objects
v of EF (X, Q), thus proving the proposition.

* | = (X, S, x) | denote the cotegory of = (X, S, x)-modules.
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For S = obj EF (X)), we shall denote Xs, Gs, Fs, xs by X, G, F, X respectively.
Definition : The principal n (X, x)-bundle Xis the universalcoveringscheme of X.

The universal property possessed by 7 (X, x) and X is given by the following :
Proposition (3.11) : Let (¥, G,u) be a triple, such that X’ is a principal
G-bundle on X, u a k-rational point in the fibre of X" over X, and G is a firite

group scheme. v :
Then there is a unique homomorphism p : 7 (X, x) — G, such that

(2) X is induced from X by the homomorphism p, and

(b) the image of x ir X' is u. |
Consequently, there is a bijective correspondence of the above triples with homo-
morphisms p :7 (X, x) - G.

Proof : By Prop. 3.8, F(X’) is a functor from wod-G to EF(X). Now EF (X)
is identified with | @ (X, %) | in such a way that the forgetful furctor T; on
|7 (X, ) is equivalent to the functor x* from EF (X) to |k|. Thus, the
composite Ty - F(X') is simply x* - F(X') = F (X' | x), by Prop. 2.9 (a). Now,
the k-rational point u of X’ |x gives a unique isomorphism ¢ : G —» X' | x of
principal homogeneous spaces such that ¢ (1) = u.- By Prop. 2.9 (t), ¢ deter.
mines a ratural equivalence of the functor F (X" | x) with the forgetful functor
from mod-G — mod-k. This information yields a morphism (of Tannaka
categories) from mod-G to 7 (X, ¥) |, which, by Theorem 1.3, is induced by a
homomorphism p :7 (X, ») = G. We now appeal to Prop. 2.. (c) to settle the

fact that X' isindeed induced from X by p, and that the image of xir X'is u.
The uniqueness of p is easily checked.

3. Conclusion

(1) With Sasin Lemma 3.9, assume that |z (X, S, x) | is 2 semi-simple category.
Then, for any representation W of = (S, X, x), there exist polynomials f and g,
with f # g, the coefficients of f and g being non-negative integers, such that £ (W)
and g (W) are isomorphic. This follows from the fact that there are only finitely
indecomposable representations of = (X, S, x) up to isomorphism. Putting
V = F(Xs) W, it follows that VP=~is a finite Vector bundle. : o

In characteristic zero, any finite group scheme is reduced, and its represen-
tations certainly form a semi-simple category. By Prop. 3.10, itfollows there-
fore that in characteristic zzro, any essentially finite vector bundle is finite. -

(2) The structure of the fundamental group-scheme :

(a) For S < @ < obj EF (%),

P8 in (X, Q,x) - n (XS, x) is surjective.

(b) 7 (X, %) is the inverse limit of = (X, S, x), where S runs through all finite
collections of finite bundles on X ; consequently z (X, x) is the inVerse limit of
finite group schemes. ; ,

Both (2) and I(b) follow from  standard facts about Tannaka categories
(Saavedra Rivano 1972). M
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CHAPTER II

The fundamental group-scheme

We shall always assume that the base-field k has characteristic p > 0.

Propositions 1 and 2 examine the existence of the fundamental group-scheme
of a k-scheme X with a k-rational base-point x,. The results of Chapter I are
re-interpreted in Proposition 3. Proposition 4 studies the dependerce of z (X, %o)
on the base-point x,. Proposition 5 shows that 7 (X, x,) is well behaved under
base-change by separable algebraic extensions of the gl.'ound field.

This is the content of § 1.

In §2 we show that the fundam:ntal group-scheme is a birational invariant
for smooth complete varieties. This involves a “purity of branch-locus *’ theorem
(sze Proposition 7). Finally we show that @ (X, ¥o) is trivial for normal complete
rational varieties.

§ 1. Xis a k-scheme and y, :spec k — Xis a morphism.

Consider the following category € : the objects are triples (Q, G, V)wbere
Qis a principal G-bundle on X, G is a finite group-scheme and V is a k-rational
point of Q sitting above g,

A. morphism (f, g) : (@, G, V) = (@', G', V') is a homomorphism g : G —» G’
and a morphism f : @ — Q' that intertwines the G and G’ actions on @ and Q"
and in addition, f (V) = V.

By €' we shall d:note the category ofall triples (Q, G, V) as above, except
that G is now an inverse limit of finite group-schemes.

Deﬁnition 1: X has a fundamental group-scheme T (X, xo) if there is a triple
(P, m (X, o), *) in the category €’ such that for each object (Q, G, V) of €/,
there is a unique morphism from (P, 7 (X, x,), *) to (Q, G, V).

Remark : Clearly it suffices to check the above for all (@, G, V) in € to ensure
that it holds for all (@, G, V) in €,

Definition 2 : X has Pif whenever (f;, p,) : (Qs, Gy, Vi) - (0, G, V)fori=12
ar€ morphisms in €, then

(@1 %@ @2 Gy xg Gy, ’U1 X Vo) = (Z, H, w) is an object of C"
We bave

Proposition 1 : X has a fundamental group-scheme ifand only if X has &.

" Proposition 2 : If X is reduced, and connected, then X has a fundamental
group-scheme.

First we need |
Lemma 1: With Q,, Gi, Vi, pis Z, H, w as in Definition 2, Z is a principal
H-bundle on a closed sub-scheme R of X containing x,.

" Proof of Lemma 1
Z = @, xg Qzis aclosed sub-scheme of T=0Q; x¢ @, which is a principal (G, x Go)-

4 fi .
bundle on X. Let ¢; be the composite T — Q; — @ for ;i = 1,2. Because Q
is a principal G-bundle on X, there is a unique z : T — G such that ¢, =qa 2
If e = G represents the 1der\t1ty of G, clearly Z = z-! (e)




86 Madhav V Nori
Also thete is 2 commutative diagram :

T xG x» Gy — T x, T

X
2’16,‘162 2x2
G * 6,6, ——=G:6

where the first horizontal atrow induces (p, g) — (p, pg) for p & Mor (S, T),
ge Mor (8, G, x Gs), and k induces (g, g1, 82) > (&, 22 (87 gp, (g)) forall g €
Mo (S, G.), g2€ Mor (S, Gz) and ge Mor (S, G).

Now k&t (e x e) = ex H, and taking inverse images in the Vertical arrows,
we see that the first horizontal arrow restricts toanisomorphismZ x H —» Z'x, Z.
~ In particular Z is stable under the H-actior on T7; this action, being free,

makes Z a principal H-bundle on R = Z/H which is a closed sub-scheme of T/H.
only remains to show that R —» X is a closed immersion. -

Considsr the commutative diagram : ’

~

2 s H zZ xy2Z!
\
JoP1 L
fAY
R —————— R xxﬂ
. - e vy

where j : Z — R is the given morphismand p, :Z x H— Z is the projection.
The morphism j X j makes zx, Z a principal bundle on Rxy R withthe obvious
action of H x H on the right. The right action of H x H on Z X H given by
(P, ) - (hys By) = (phy; Bt R hy) for all p e Mor (S, Z), k, by, and ks € Mor (S, H)
clearly makes Z x H a prircipal bundle on R. Moreover Z X H->ZXxx Z
preserves the H x H action. It follows that A is an isomorphism. :

Tt is a trivial matter to check thata finite morphism 4 — B is a closed immer-

sion if and only if the diagoral A _A) A xg A in an isomorphism. So this proves
that R —» X is a closed immersion, finishing the proof of the lemma.
~ With z as above W = Z-1(Gy) is an open and closed sub-scheme of T.
But 7 : T — X is flat implying that = (W) = X if ¥ is connected. We have
seen that z-1(¢) = Z, from which it follows that 7 (2Z)wa = Xrea» and therefore
7 (Z) = X if X is assumed to be reduced. Corsequently R =X and this shows
that Zis a prircipal H-bundle on X. Thus any cornected and reduced X has P.
Next we show that if X has a fundamsntal group-scheme, then X has .
By definition there eXist (r, ) @ (P, 7 (X, Xo), «) = (@i G, V) for i =1,2,
and by uniquencss (f 11, p1 08y) = (f o2 P20 53). Therefore r; X ry 1P — T has
(ry X ro) P = Z. This shows that R = n (Z) = X and therefore Z is a principal
H-bundle or X, as was to be shown. : , : ‘
Finally we show that if X has &, then X has a furdamental group-schcme.
First soms generalities : ‘ :
A small category D is an inverse system if given f;: 4, » Bfor i = 1,2, thefe is
an object C of D and morphisms g : C — 4, for i = 1,2 that 108, = f20 ga.
Given such a category and a functor F : 2 — C, there is a canonically asso-
ciated object of C’. | - -
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For any object 4 of D, if FA = (Q,G, V), put QFA =Q, GF4A = G and
" VFA = V. The triple (Q, G, V) is an object of €’ :

0 =lim QF4, G =lim GF4, V =lim VFA.

e s G -+ e —

Ae?D AecD AeD

Let us check that these constructions make sense :
If R(G) denotes the coordinate ring of an affine group-scheme G, then
R =lim R (GFA) is a Hopf algebra which is the union of its finite dimensional
—_—
A€eD .
Hopf sub-algebras. Therefore G = spec R is an inverse limit of finite group-
schemes,
Slmllarly, if R(Q) = jx (Op) for a morphlsm j:@-X, put R =1lim R (QFA4)

——

AeD
- is a locally frce sheaf of Oy -algebras on X ; thus there is a flat affine morphism

j:Q - X such that R (J) = R'.

The isomorphisms QFA @, GFA - QFA Q4 QFA give isomorphisms R (QFA4)
®x R (QFA) - R(QFA4) @, R(GFA), and in the direct limit ar isomorphism
R®xR - R @R Thus @ xXxG->Qxx Q is an isomorphism. Vis
constructed smn]arly '

If we assume that X has &, then € itselfis an inverse system and the (Q, G V)
associated to the identity functor of € is easﬂy seen to satisfy all the required
properties of (P, 7 (X, Xo), %)-

This completes the proofs of Propositions 1 and 2..

In GChapter I, we constructed = (X, x,) directly using the Tannaka category of
all essentially finite vector bundles. The essential content of Proposition 3-11
is contained in Proposition 3 given below.

Definition 3 : A triple (Q, G, V) in € is reduced if for any morphism (Q’, G/, V")
- (Q,G, V)in €, G’ - G is a surjection (i.e., it is a surjection in the flat topo-
- logy : more directly R (G) - R (G’) is an injection).

If X has a fundam:ntal group-scheme, a triple (@, G, ¥) is reduced if ard only
if the homomorphlsm 7 (X, xo) = G is surjective. This is trivial.

Proposition 3 : Let X be a complete, connected and reduced k-scheme with
Xoas usual. Let (Q, G, V) be a triple in €. Then the following are equivalent :
(@) (@, G, V) is reduced. :
~(b) The functor F(Q): mod-G — S(M) is fully faithful (see § 2, Chaptet I for
the definition of F (Q)) -
(c) I'(Q,0p) = ~ |
Thisis the onlycase where we have acriterion for determining whether (Q, G, V)

is reduced or not. In characteristic zero, (Q, G, V) is reduced if and only if Q
is copnected, as is well-known.
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Proof : B= C. Let j:Q — X be the given morphism. Then I'(Q,0p) =
I'X,jx Og) = I'X, F(Q) R(G)) = the fixed subspace of R (G) under the G-action
(because F(Q) is fully faithful) =
C = A. There is a morphism (f,p) = (P,n (X, X0, x) = (@, G, V). If pis not
surjestive, its image is a proper closed subgroup-scheme H of G and the fixed
subspace of R (G) under the 7 (X, xo)-action is clearly the coordinate ring of G/H
which contains %k properly. Therefore I'(Q,00) = I'(X, F(P) R (G)) contairs k
properly.
A= B. We are given that p : 7 (X, xo) = G is a surj.ctive. Therefore G-mod -
7 (X, xo)-mod is fully faithful. But from the construction of 7 (X, xoi in chapter I,
7 (X, xo)-mod — S (X) is fully faithful. Thus mod-G — S (X) is fully faithful.
Next we d:al with 'the relation between 7 (X, xo) and 7 (X, y;} wheTe y; : spec
k — Xis another k-rational point of X, assuming that # (X, X,) does irdeed cxist

Let R be a principal homogeneous G-space with G acting on the left. Then
there is a group-scheme G’ acting on R on the right such that

(a) the actions of G and G’ on R commute, and

(b) R is a principal homogeneous G’'-space.

Tais d:term’nes G’ uniquely. In the literature, G’ is often called an inner
- twist of G, especially when Gis an aﬂine algebrauc group. If G is commutative,
then G = G'.

L=t @, be the same category as @ except that the base—pomt V of 194 si its above
y 4T

Take an object (Q, G, V) of C. Let Rand G’ be as above. Then [0} xR has
an action of G x G’ : G’ acts trivially on Q and on R in the given manrer, and
Q % R gets the diagonal action of G. The quot1ept QO =0 % R/G is thus a
principal G'-bundle on X. ‘

In particular, j* () in j: Q —» Xis a pnrmpal homogereous G—space, SO we
may put R =j1(y;). In this case the fibre over yx, in Q' is R x R/G which
contains AR/G. This AR/G gives a base pomt V' of Q' sitting above y;. . Thus

- (@', G, V') is an object of &,.
It is clear that this induces an 1somorphxsm of the categones € and 01 This
gives in the inverse limit :

Propositzori 4: Assume that X has a fundamental group-*cbeme at x,. Let
R=j"() in j:P - X. Then n (X, ;) also exists, and ‘

(a). R is a principal ho;glogeneous space for both 7t (X, x0) and n(X’ xl) and
the actions of both on R commute, i.e., ; D

(b) 7 (X, X1) is an inner twist of 7 (X, %o) ; consequently,

(c) % (X, xo) and n(x xi) are 1somorph1c after 3 base-change to k, and
(d) 7 (X, xo)w and 7 (X, x1)u are isomorphic.

Now we exam'ne the effect: of base-change. on fun damental group-schemes.
It will be freely asums=d that all schemes encountered have &,
Let L be an arbitrary field extension of k. The base-chan ge of a k—scheme Y

to L will be denoted by Y.
If Xis a k-scheme and y, a k-rational pomt we can base-charge the universal

triple (P 7 (X, xo), ‘) to L. If (R, n (X, o), ) is the univesal tnple for (X,xo)
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by definition there is a unique morphism (R, z (X, X0 %) = (P, 7 (X, Xo)s J‘), and

in particular, a natural homomorphism 7 (X, 7o) - 7 (X, xo). _
If zis an automorphism of Z fixing k, again invoking the universal property,
we see that thete is a unique 4, with a commutative diagram as below :

fm . A - -
(R, m(X, x4), *)*--F—»(R,rr(x,xo) *)

Spec L > Spec L

It follows that As4, = Ay, andif Lis a finite galois extension of k, this gives
d:scent data for the above triple showing that there is a triple (Q, G, ¥) for the

pair (X, o) such that (Q, G, V) = (R, 7 (X, xo), ¥). Using the unique morphism
(Pa T (X’ XO): *) - (Q9 G; V)’ we get a homomorphism T (Xa XO) - G and there—
fore (after base-change) a homomorphism 7 (X, xg) — 7 (&, Xo). It is easy to
see that these homomorphisms are inverses of each other : therefore 7 X, x6) -

7 (X, xo) is an isomorphisms.
If Lis a finite separable extension of %k, then therc is a finite galois exXtension
Eif kcontaining L. Applying the above to E/k and E/L we see once again that

7 (X, xo) = n (X, xo) is an isomorphism. This imm-diately gives

Proposition 5 : If L is an arbitrary separable algebraic extension of k, then
n (X, x0) and 7 (X, ) are isomorphic.

Remark : If X = A* and L = k (), then 7 (X, X0 andz (X, Zo) 2T certainly not
isomorphic (even if k is algebraically closed) as is easily seen by considering
the Artin-coveringsk Z — ZF = f (). '

Hete L = K =an algebraic closure of k. If X = 4' and k are not perfect, then
-~ — M - » - . ' I -
7 (X, xo) and 7 (X, y,) are not isomorphic ; this is seen by comparing the
ap-quotients on either side. : :
However we believe that the following is true :

Conjecture : If X is complete, geometrically connccted and reduced, ard L is

an arbitrary field extension of k, then 7 (X, x,) — 7 (X, %q) is an isomorphism.
§ 2. All schemss consid:=red are conrected, reduced and of finite type over k,
‘unless explicitly mentiored. » :

Proposition 6 : U is an open dense subset of X' such that Oy,, is an integrally
closed local domain for all x€ X — U, and f: ¥ - X is a morphism such that
Oy — fx (Oy) When Testricted to U is an isomorphism. : )
A. Let @be a prircipal G-bundle or X (with G a finite group-schexrie) such that
the structure group of £ * Qcan be reduced to a closed subgroup-scheme H. Then
the structure group of Q itself can be reduced to H. I -
B. If yois a k-ratlonal point of f=* (U) and f (y,) = x,, then 7 (¥, Vo) = 7 (X, %)
is a surjection. N | r

P.(A)—2
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Proof : Factor j:Q—» X by j':Q—>Z=Q[H and j' : Z - X. By assunmp-
tion, thereis a s : Y — Zsuch thatj*. s = f with the principal H-bundle Q' on
Ybelng Y %z Q ‘

Now s induces jx (Oz)= fx (Oy) and by restricting to U, jv (0| U~

Ox | U - f, (Oy) | U. Because j”is an affine morphism, thereisa ¢: U — Z such
that to (f|frU)=s|f1U.

Let T be the closure of the image of . Then, for all x € X~ U, Txgspec Og,, —
spec Oy,, is a finite birational morphism, and therefore an isomorphism. Therefore
T — Xisitself anisomorphism, thus givinga section ¢ : X —» Z such that? | U = ¢.
Then Q" = j'- (¢ (X)) is the required H-bundle on X. This finishes the proof of 4.

To show that @ (Y, yo) = 7 (X, x,) is a surjection, it suffices to show that the
composite @ (¥, yo) = 7 (X, xo) = G is a surjection for all finite quotients G' of
T (X, xo)‘ _

Let G be one such, and let H be the image of 7 (¥, yo) in G. Then, there is a
triple (Q, G, V) for the pair (X, x,) and a triple (@', H, V') for (¥, y,) and a
morphism (@', H, V') = (f*, @, G, V xp,).

By A there is a principal H-bundle 9" on X ard a diagram :

ol 'v——s <

| 1

dJu — 0

thus showing that V' is a k-rational point of Q" |y. The inclusion (Q", H, V),
—(Q, G, v) shows taat there is a factoring : 7 (X, x)) » H - G. Consequently
H = G and B has also been proved.

Corollary: If f:Y — X is an dpen immersion and & is normal, then 7 (¥, yo)=
7 (X, %) is a surjection.

Corollary : If f:Y — X is smooth and proper with comected fibres, then
7 (Y, y0) - 7 (X, %) is a surjection.

Proposition 7 : Let U be open dense in X such that Oy,, is a regular local ring
of dimension =2, for all x € X— U. Then any principal G-bundle on U(wbere
G is a finite group-acheme) extends to one such on X.

If x, is a k-rational point of U, then 7 (U, xo) -z (X, %,) is an 1somorpb1sm

Proof © The second assertion follows trivially from Proposition 6 and the first
assertion. .
Let j:Q->Ube a prmcupal G-bundle on U and i: U~- X the inclusion
“morphism. Then i,js (Og)is acoherent sheaf of Ox-algebras and therefore there
is a finite morphism j’ : P - X such that j. (Op) = ixjs (Og). It is clear that
there is a G-action on Psuch thatj’ is G—eqmvanapt (with the trivial action of G
on X), and that ]"1 (U0)=120.

Assumz that j.(Op) is locally free. Then the standard morphism P x G —
P xxPisanisomorphismif and only if itinduces an isomorphism j, (Op) ®j. (Op)
- j! 0, @ R(G). But these are Jocally free and of the same rank and therefore
if V' is the largest open subset of X' restricted to which it-is an isomorphism, then
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the complement of ¥ is of pure codimsnsion one. However, ¥ contains U ;
consequently V' = X and P is a principal G-bundle on X.

Thus it suffices to show that j; (Op) is locally free ; equivalently, j’ P - Yis
a flat morphism. For this purpose, we may clearly assume that X = spec R,
where R is a regular ring. _

For a scheme Y in characteristic p, let Ty : ¥ = Y be the Frobenius. If ¥ =

spec A4, my will also be noted by n,, and (7%) Oy = d,,. If A4 is an integral
domain, 4, = AY*". v
The commutative diagram

Spec k ——=Spec k

-

induces a homoimorphism G — @)* G
Similarly, the diagram

Q ——Q

Co—o

induces @ - (nf)* Q. Also (ng)* Q is easily seen to be a principal (z)* G-
bundle on U and the morph1sm Q- (@H* Q 1ntertw1nes the act1ons of G and
(@2)* G.

nm

. u | ‘ .
The directimage of the structure sheaf under @$)* Q - U - U » Xis precisely

T - ‘

R, ®z B, where B=iyj, (Og), because Rnis R-flat. And the morphism Q@ — (n)*Q
induces the usual R-algebra homomorphism R,, ®RB ~> By by takmg direct
images of structure sheaves.

Case 1 : If Gis a local group-scheme, G — (n)* G is the trivial homomorphism
for a suitably large m. The morphism Q — (@H)* Q thus makes (np)* Q the
trivial bundle on U. Therefore R, ® B is a free Ru-module, and because R,

is R-falthfully flat, B is a locally free R-module.

Case 2: If Gis geometrically reduced, then' G -z} G is an isomorphism ; it
foliows that @ — ny; @ and R, @z B — B, are isomorphisms too. In particular,
B, is B-flat. By a theorem of Kunze, this proves that B is regular. That B is
R-flat follows from the fact that it is a_ finitely generated Cohen-Macaulay
R-module,

- In both cases we have shown that j' : P — X is flat,

Now for the general case : there is an eXact sequence :

I»G',oc-—rG—)H—-)I

whete. Gy, is 2 local group-scheme and H is geometncally reduced In fact
this sequence is split if & is assumed to be perfect
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In any case Q/Gh, is a principal H-bundle on U, and by case 2, Q/G, is the
inverse imig: of Uin a principal H-bundle Z — X. The pair (Z, Q/G.) have
the same properties as (X, U) and @ — Q/Gy. is a principal Ge-bundle: by
case 1, Q is the inverse imige of Q/Gy, in a principal Gi-bundle W — 2Z. Thus
Q is the inverse image of Uin the flat morphism W — X showmg that iy ]* (0p)
is locally free. ,

This completes the proof of Proposition 7.

Proposition 8: If Xand Y are smooth complete biratiorally isomorphic varieties
over k, and x,, ¥, are geom:tric points of X and Y respectively, then 7 (X, Xo)
an 7 (Y, y,) are inner twists of each other.

If Y is assumad only to bs normal and complete instead, ard & is algebraically
closed, then 7 (Y, o) is a quotient of = (X, x,).
Proof : For the sake of simplicity, we shall prove the first statement only for
separably closed field k. In this case, there is a complete normal variety Z,
morphisms f : Z — X and g : Z =Y, open subsets U ~ X and ¥ — Y such that
F1(U) > U and g1 (V) -» V are isomorphisms and a k-rational point z, in
FAU) N gt (V). Patxg=f (%) and y, = g(z). Then we have :

-1 onto
rif (V) z2,) —(Z,2,)

|

m U, xq) w{X,xo

The dbove horizontal arrow is surjective by Proposition 6, and the one below
is an isomorphism by Proposition 7. Therefore 7z (Z, zo) — 7 (X, xo) is an iso-
morphism. Similatly 7z (Z, z)) = 7 (¥, yo) is an isomorphism, and the general
statement follows from Proposition 4.

'If ¥is only normal, then 7 (Z, zy) - 7 (Y, y,) is only a Surjectlon proving the
second statemnt.

Lemma @ If k is any field, = (P, &,) is trivial.

Proof : The representations of 7 (P, x,) are essentially finite bundles on Pt
But any semi-stable bundle on P! of degree zero is trivial, and therefore all
representations of 7 (P, x,) are trivial. Thus 7 (P, x) is itself trivial.

Proposition 9 : Let f:Z — Xbe a smooth proper morphism with. connected

fibres. Assume that X is reduced. Also, for every ¢ : spec k — X, the fibre Z,
has the trivial fundamentalgroup-scheme. Let zo be a k-rational pomt of Z
and.f (z) = %o. Then n(Z, z)) » = (X, %) is an isomorphism.

Proof : The surj:ctivity follows from the corollaries to Proposition 6.To prove
the injectivity we have to show that any j : P — Z which is a principal G-bundle
on Z is the pull-back of a principal G-bundle on X. Here G is a finite group-
schems.

For any ¢ : spec k = X, P| Z, is the trivial bundle. Thus the semi-continuity
theorem applied to the sheaf j, (Op) and the morphism f: Z — X shows that
S« jx (Op) is locally free, and, the natural homomorpblsm I *fi jx (Op)> jy (op)
is an isomorphism of Oz-algebras.
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. h L
Thus, if 2 : W — X is defined by h, (Ow) = fy jx (Op), ie., P — W= X is the
Stein factorisation of foj, then the natural map P — W x, Z is an isomorphism.
The Stein factorisation applied to the Vertical arrows of

PrG—P

gives

\/

Therefore there is a G-action on W, and P - Wand W — X are G-ecquivariant
(with the trivial action on X).

Also the standard W x G — Wxx W is an isomorphism because its base-
change to Z is P.x G - P xz P (which is by very assumption an isomorphism)
and Z— X is flat and surjective. e

This shows that W is a principal G-bundle on X and that P = f* @, Q.E.D.
Corollary : Any complete normal rational variety has a trivial fundamental
group-scheme.

Proof: By the above proposition, P* x Pt x --- P! has a trivial fundamental
group-scheme. The corollary now follows from Proposition 8. No assump-
tion on k is neessary; that k is algebraically closed was, required "in the proof
of Proposition 8 only to get hold of a k-rational point in any non-empty open
subset.

Corollary: If f: Z->X is smooth and proper with Z: rational for all ¢ :

spec k — X, then n(Z, z) - (n (X, xo) is an isomorphism.
This follows immediately from the above corollary and Proposmon 9

CHAPTER I

Parabolic bundles and ramified coverings

Let X be a smooth connected projective curve over an algebraically closed field
k with a base-point x, and a finite subset § of X'such that x,& S. We want to
identify the representations of (¥ — S, xo) with certain bundles on X — § wih
some additional structure (denoted by parabolic bundles) and show that the
main theorems of Chapter I hold in this modified mtuatlon, :

S




94 Madhav V Nori
First some generalities ¢ denote by T the diagram
2
Ty
2

where Z, Y; and Y, are schemes over k and f; and f; are morphisms.

A vector bundle Won Tis a W = (V, Vi, Va, 91, @2) Where V, ¥, and V; are
vector bundleson Z, ¥, and Y, respectively and ¢;: V = f ; V,are isomorphisms
for j = 1,2. Itis clear what a homomorphism of vector bundles on T is, and
what is meant by exactness of a sequence of vector bundles on T. The catcgory
of vector bundles on T shall be denoted by Vect T.

A principal G-bundle P on Tis P = (Q, Q1, @s, V1, Vo) Where @, @, and Qs
are principal G-bundles on Z, Y; and Y; respectively ard w; : Q — fi Q; are
isomorphisms for i = 1 and 2. If ¥; has a base point x,, 2 base-point for P
is a point of Q, sitting above x,. Thus we can form the category of triples
(P, G, v) where P is a principal G-bundle on T, G is a finite group-scheme, as
in chapter II ; this category we shall denote by € (T).

An immediate extznsion of Proposition 2.9, Chapter I is :

Lemma 1 : There is a bij.ctive correspond:nce between principal G-bundles
Pon T and functors F : G-mod — Vect T satisfying F1 to F4, where G is any
affine group-schems. The functor F associated to a purc1pa1 G-buv dlc P on T
will be denoted by F(P) as usual.

In applications Z, ¥; and Y, are going to be Very special : ¥; = X — § with

base-point x,. For cach x€ S, let K, = quotient field of Ox, .and E, an arbitrary

algebraic extension of K,. Let R, be the integral closure of ()x,, in E,. Put
Z = spec (C—D E) and Y, = spec ( 6—) R,), with the obvious morphisms f;

a.ﬁd f2

With this cholce of 7, a parabolic bundle on X — S'is just a vector bundle on
T, and homomorphisms of parabolic bundles are just vector bundles homo-
morphisms on 7.
2 : For each x€ 8 choose an 1somorph1sm of K, with k(t) and put E, =
U k(7). Then parabolic bundles on X — § are precisely “ parabolic bundles

a1
with fractional weights *” in the sense -of Seshadri.

3 : However, most frequently we shall put E, = K, the algebraic closure of
K,. One good reason is the following :

Lemma 2 : C (X — S, x) be the category of triples (@, G, v) associated to the
pair (¥ — S,xo). If B, =K, for all xeS§, then @ (T) = CX ~ S, x0) is an
1somorph1sm

Praaf A ‘principal G—bundle on spec E, can be regarded as 2 principal homo-
geneous space for spec E, Xgex G, but E, being algebraically closed, this always
admits a E,-rational point. Thus any principal G-bundle onspec E, is trivial.
By Proposition 6, Chapter II, it follows that any principal G-bundle on spec R,
is trivial, where @ is a finite k-group-scheme.
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Let P bea principal G-bundle on T. Then P = (Q, Q1, Qs ¥4, Va), and we may
assume that @ = Z x G, @y = Y, X G and y; is the obVious isomorphism from
Q to f3 Q.. Thus, such a P is completely determined by a principal G-bundle
Q, on Y; =X — S, and an isomorphism v, : Z X G — f; Q.

It follows that the objects of @ (T) can be identifled with (Q;, G, ¥y, v) Where
Q, is principal G-bundle on X — S, G a finite group-scheme, v a base-point of

Q, above x4, and y, : Z X G = f; Q.

Given (Q,, G, v) an object of C (X — S, x¢), such a y; always exists because all
G—bundles, on Z are trivial. This shows that @ (T) - € (X — S, Xo) is a ““ surjec-
tion’ ' o
A morphlsm from (Q3, G' wi,v') to (QF, G",y?,v") in € (T) is by definition
a (, hy, ks, p) such that 4 : (hy,p) : (Q:, G,v) = (QF, G",v") is a morphism in
C X — S, %) and a commutative diagram

B Y, x G' e———7x G —= ] Q|

hal lh lﬁ*h,

Y, « G' «——7xG ¥ al

where % and A, intertwine the right actions of G’ and G” via p : ¢ — G".
Giver a (y, p) satisfying A, we shall show that there is a unique (%, %, s, p)

satisfying both A ard B. The right side of the diagram determines 2. Now #

is equivalent to giving a morphism Z — G” and this necessarily factors :

_ . ‘ / -
Z —>spce k i G". Using the morphism Y, —spec kK — G”, one gcts the
required 7,.

This is exactly the same as saying that € (T') — e X - S Xo) is fully falthfu].
The lemma is now proved.

We now define the degree of a parabolic vector bundle. -

Let v, : E, - @ U c0 be the unique valuation such thatv,(K,) = ZU . If L
is a line bundle on Yy and sis a section of f L on Z, then ( 6—% R)s=@®h,L,

*€, #€S

for some #, € E,, where L, is the stalk of the sheaf of sections of L at x. Define
v, (s) to be v, (k).

If W= (L,L; Ly) is a line bundle on 7, and s is a sectlon of LJl on Y; =
X — S,putdegs = E v, (s}). Forxe X — S, v, (s) is as usual the order of vanshmg

of sat x, and if xe S then v, (s) makes sense as above, as a rational number.
Then deg s is easily seen to be independent of the choice of s and we define
deg W = degs.

If Wis a parabolic vector bundle of rank r, then we define deg W = dcg AT,
Clearly we have :

Lemma 3 : A. For an exact sequence 0 > V' >V >V -0 of parabohc
bundles, deg V' + deg V" = deg V.
B. If f : V> W is a homomorphism of parabohc bundles and f|Uis an
1somorph1sm for some open subset U of X — S, then deg V' < deg W.

C. Ifu(V)=deg VjrkV, then (V@ W) = u (V) + u(W).
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A homomorphism 2: W — ¥ of parabolic bundles is a generic injection if A|U
is an injection for som> nonempty open subset U of ¥ — S.

A parabolic bundle V of dsgree z:ro is sem!-stable if for all 2 : W — V which
are generic injections, deg W < 0.

Lemma 4 : A. Parabolic sem'~stable bundles of degree z ro form an abelian
category.

B. I Vis a parabolic bundle of rank » > 1, there is an exact sequence 0 — V*
= V- V">0 with rkV’ = 1.

C. f0->V" >V V" -0is an exact sequence of parabolic bundles and
h : W — Vis a generic injection, there is a diagram :

O —+=W-—=W—w"—e0

: h'l hl h"l

O—e V' —e\ — V'—=0

with the hotizontal arrows exact, and 4" and 4" are generic injections.

The proofs are simsle enough. For example C is proved by showing that
such a diagram exists on Z, ¥; and Y; separately (because torsion-free modules
are locally free) and patching up.

A finite bundle is a parabolic bundle ¥ such that f (V) = g (V) for som: f # g
which aré polynomials with norn-negative irteger coeffizients. An essentially
finite Bundle is defined exactly as in Chapter I.

Lemma 5 : The global sections of a parabolic bundle are finite dim-nsioral.

Proof : Let (V, V3, Vo) be a parabolic bundle. Let W be any vector bundle
on Xsuch that W | X — S = V;. Then itis easy to see that there is a 9ysuch that
the global sections of this parabolic bundle are contamed inrxw (ND)) where
D =Zx. This proves the lemma. ‘

weS

. Lemmas 3, 4 and 5 1mmed ately show that all the results of § 3, Chapter I
up to Proposmon 37 are valid for finiteand essentially finite parabolic bundles,

Proposition -1 :  Let P be a principal G-bundle on T, and G 2 finite group-scheme.
Then; for all repreaentatlons W of G, F(P) W is an essentxally ﬁmte parabohc

bundle.

Proof Let R be the co-ordinate riv g of G,and if n = rkR, then R®R = R*
as G-representations. Consequently, if V= F(P) R, tbcn VRV = V*1ie.,[V]
satisfies the polynom’al x* = nx.

If Wis a representation of G, then W — R™ for som: m, ardtherefore F(p)w
= p™ Tt suffices to' show that F(P) W has degree zero to prove that it is
essentially finite. Butifr =rkW, L = A'W, E = F(P) L, then'A" (F (P) W)=E
and Eis a parabohc line .bundle of finite ordsr and therefore has degree zero.

Exactly as in Chapter I, we see that all essentially finite burdles on T foym a
Tannaka. category Let z (T) be the associated group-scheme Then '

Proposition 2 : Objects of € (T) are in one-to-one cotrespond:nce- w1th homo-
morphisms from n(T)-—>G o o ‘ e AR
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Combining this with Lemma 2, we have :

Proposition 3: If E, = K, for all xe S, # (T) =7 — S, x,)and its category
of representations is precisely all essentially finite parabolic bundles on & — S.

If Char k = 0, note that E, = K, is the same as example 2,50 that we have
a good description of parabolic bundles in this case.

PART II

CHAPTER IV
1. Nilpotent bundles and formal groups for curves

An affine group-scheme G is nilpotent if every G-representation ¥ % 0 has a
v # 0 which is fixed by G.

Let X be a k-scheme of finite type with I'(X, Ox) = k. We shall be corcerred
with principal G-burdles P on X. -

Lemma 1 : If P and G-are as above, and V is a finite dim:nsional represen-
tation of G, then W = F(P) V has a ﬁlf:ration W=W,D> W D DW, =0
such that W;/W;,, is a trivial vector bundle on X.

Proof : Byinduction, wesee that V has a filtration ¥V = VoD V1D D V,=0

such that V;/V4, is a trivial represertation of G. Simply put W; = F(P) V,.
The full subcategory of all veetor bundles on X with objects as those Vector

bundles on X that admit a filtration as in Lemma 1 will be denoted by N (X).

Lemma 2 : N (X) is an abelian category and is closed with tespect to tensor
products and duals. ;

Proof : Let f:V — ¥ be 2 homomorphism with ¥ and W in N(X). For
convenience, we id:ntify vector bundles with their sheaves of sections. We have
to show that Keor (f) and Coker (f) are locally free, and moreover, belong to
N (X). We shall do so by induction on rk V + rk W. " S

If V=0 or W=0, or if rkV =rkW =1, then the statement is obvious
because I'(X, Oy) = k. .

Also, the statem'nt for fis equivalent for the statement for f* : W* — p*,
Therefore, replacing f by f * if nrecssary, we may assum: that rk W > 1. There

is an exact sequence 0 — W' s W—->0-0 with W in N(X). Also rk ¥V +
rk Qu< rk V + rk W, so the statem.nt holds for Jof. Thus jof=0or jof
is an isomorphism. - - o ‘ o

In the first case, we have g : V' — W’ such that ; o g =f% and by the induction
hypothesis ker (g) and coker (g) are locally free and in A (X). But clearly,
ker (f) = ker (g) and 0 — coker (g)— coker () — O, 0 is exact, so that ker (f)
and coker (f) have the requircd property. - o '

The category of modules over g ring is denoted both by A-mod and j.A | in the text,w
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In the second case, V' =f-1 (W) =ker(jof) is in N(X)and 2 : V' - W
defined by

v _h )
— W

1

V—sW

has the required property by the induction hypothesis, and here 2 and f have
the same kernels and cokernels. ;

That ¥ ® W is in N (X) if both ¥ and W are in N (X) is obvious.

Let x, be a k-rational point of X and let T : N (X) — k-mod be given by T (V)
= fibre of ¥ at x,. Then N (X) becomss a Tannaka category and by Chapter I,
§ 1, there is an affine group-scheme U (X, xo) such that U (X, xo)-mod is iso-
morphic to N (X).

Every non-z:to Vector bundle in N (X) has a trivial sub-bundle ; consequently
every non-zero representation of U (X, x,) contains a non-zzro fixed subspace,
In other words U (X, x,) isa nilpotent group-scheme. By § 2, Chapter I, we see
that there is a principal U(X, xo)-bundle P on X with 2 k-rational point * above
x, with the following universal property :

Praposition 1: For every principal G-bundle @ on X with a k-rational point
v of Q above %, (and G nilpotent), there is a unique homomorphism p : U(X, Xo)
- G, f : P— Q intertwining the actions of U(X, xo) and G, such that f (x) = ve.

Proposition 2: Hom (U(X, ), G,) = H* (X, Ox). In particular, if characteristic
k = O,‘ then U(X, xo)ab = Hl (X, Ox)*.

Proof : The second assertion follows imm -diately from the first.

The first follows from the well-known fact: isomorphism classes of principal
. G,bundles ate in one-to-one correspondance with memb.ts of H' (X, Oy)-

We recall som: basic facts about affine group-schemes : if x :R > R@Q R is
the co-multiplication of R, the coordinate ring of U(X, x,), and if 4 = R¥ =
the vector space dual of R, then 4 is an algebra. The collection of V<L, where
the V'tange through all finite dimensional subspaces of R such that uV < V® ¥,
give a system of neighdourhoods of z:ro under which 4 is complete :
A =1lim A4/VL. Note that 4/VL is a finite-dim>nsional k-alg:bra.

- .
v

In fact any open two-sided ideal is of the form V1 where V is of the above
type. ‘

Also, U (X, Xo)-mod is the category 4-mod of left 4-modules M such that each
member of M is annihilated by som: V. Bzcause U (X, x,) is nilpoteﬂt, it
follows that each 4/VL is an Artin-local ring (with maximal idzal m/VL where
m = k! and 4/m = k).

Let J, = 9 (m*+V1),ie., J, is the closure of m" in 4.

Lemma 3 : Assume that H! (X, O)y is finite dimensional, Then
(a) 7, is open for all #,
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(b) Every open two-sided ideal contains J, for some #x. Therefore
A =1lim A/7,.
s
- n

©) (u/7)* = H* (X, Oy).
@ 7, = m" for all n.

Proof ;- We shall have no occasion to use D, so we omit its proof. Leét J be

any open two-sided ideal. Letm = m/J be the maximal ideal of the Artin-local
ving A[J. Then (m/m®* = (m/m? + J)* = Dur (47, k)= all derivations D : 4

- = kthatvanish on J. If J= WL, all such derivations are in 1-1 correspon-

derce with x & W such that uX¥= X @ 1+ 1 @ X. This in turn is a subspace of

Hom (U (X, x0),G,) = L={xeR|uX=X® 1 + 1 @ x} = H (X, 0,).

Let rk L = g. By assumption, g is finite. Then

rk(A/m"* + 7)< 1 + rk m%/m®) + rk (m2/m3) + o+ + rk + (m™/m")
Sl+g+g2+ - + gL

From this it follows that there is an open two-sided ideal F such that for all
open two-sided J contained in E, A/m" + J - 4/m™ + E is an isomorphism.
This shows clearly that J, =m" + E. This proves (a).

By the above remarks, if J = WL, then J+ m? = (k + W N L)L. It follows
that J, = (k + L)*. Thus (J;/Jo)* = k + L/k = L. This proves (c).

If Jis any open two-sidzd id.al, then som: power of the maximal ideal of
A|J is zero. In other words, J contains some power of the maximal id:al, and
therefore contains its closure, w]ur'h is J, for some n. ThlS proVes (b).

Let R, < R be defined by = J,. Then
Lemma 4 :

@) #(R,) S R, ®R,.

(b) R, is firite dimznsionral.

(c) the R, span R.

Proof : (a) and (b) follow from the fact that J, is an open two~31ded ideal
(c) follows from dualising (b) of the above lemma.

We shall now get an explicit d-finition of the R,. Let R®" be the n-fold tensor
product of R and g, : R— R®" the iterated co—mult;phcatmn map. In fact it
is induced by the multiplication morphism G X G x ---x G — G where G =

U(X,x0). Leti,: RO™1 _, RO be the inclusion by tensoring with 1 in the
t-th factor, for 1=¢=2n. Let S, = span of the images of 7,

L ’z”.

Clearly, (R®")* =AQ AR ® A4 Where ® denotes the completed tepsor
product, and S, = (MR m Q - ® m)L, Then J, is the closure of the

image of S, in AQ AR -+ @ A 4, and therefore J,. RY, where R,={xcR|
SX €8,}. : o o

12:
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The following completely distinguishes the situation in characteristic zcro and
positive characteristic (assuming as always that rk H* (X, Og) < c0).

Proposition 3 : If characteristic k = p > 0, then U (X, Xo) is an inverse lim!t of
finite group-schemes.

If X has a fundamental group~cheme, by the uriversal properties enjoyed by
both 7 (X, x,) and U (X, x,), it follows that U (X, xo) is a quotient of z (X, %)

Proof : Let H, be the k-subalgebra of R generated by R, By lemma 4 (a),
H, is a Hopf sub-algebra of R. ‘ o ,

If # € R,, then g0 € S,. Wehave : 1, (0°) = (. 0y € S; < S,. Therefore ¢
also belongs to R,. v ' '
" Let ¥, X9, ***>% Span R,. Then xjrxg - - xp for0 < ¢;<p — 1 span H,.
because R is closed with respect to p-th powers. Therefore H, isfinite dimen-

sional.
By lemma 4 (c), R is the union of its finite dimznsional Hopf subalgebras, i.e,
U (X, xo) is an inverse limit of finite group-schemss.

For snn')hcxty, we assum: that X is complete from roow on.

Definition: An exact sequence 0 — 0% > U(V) - V — 0 is a universal extension
of V, if for every exact sequence 0 — O% — W' — ¥V — 0 there is a d1agram

m
O —= Oy —=U(V)—=V —=0

‘ _fl : l Iu

O — O;--——b- W' —— \/ —()

and while this diagram is not necessarily unique, the f: O — O% is urique.

Every vector bundle ¥ on X has a universal extension : Choose a basis &,
62’ "'aém of HI(X': V*)° Then 0 = (613 éz: et fm) € H* (X, V*) = H* (X:
Hom (¥, 0%)) defines the required extension : .

0-02->Ul)->V->0.

More canonically, the O% should be replaced by j (JLI1 (X, V¥))* where
J:X - Speck.
An immediate consequence of the definition is :

Lemma 5 : The natural map HY (X, V¥) > HL (X, U(V)*) is identically zero,
. Similarly, for A-modulus M, a universal extension of M is an exact sequence :
0 - k"> U(M)> M -0 of A-modules with an idsntical universal property.
Denote by Fthe natural equivalerce from | UX, %) | =] 4| » N(X). The
next lemma is obvious.

»Lemmaf'd’ . U(FM) = F(U(M)) for all A-modules M.
Lemma 7 : If V; = Og and V,4y = U(¥,)for all n, then F(4]J) = v, for all .

Proof By Lemm2 6, it suffices to show that U (4/J,) = A/Jnrs for all > 1,
Let 0 > k™ > M-~ A/J - 0 be an exact sequence of 4-modules annihilated
by soms open two-sided ideal E. But M is clearly annihilated by m™? ; there-
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fore its annihilator contains m™! + E> J. wr1- Commutative diagrams below are
Clearly in one-to-one correspondence with elements ¢ € M which: gotoTin A/J

O —= J, /Jn—= A/T 4

T
DL —— o A/Jn—>0

....A/J e 1O

But any two choices of & differ by an element of k™ which is arnihilated by 1.,
showing that % does not depend on the choice of £. Q.E.D.

Proposition 4 : If dim X = 1, then A= k{{X;, Xa,"**, X}} which is the non-
commytative formal power series ring in g variables, and g = rk H! (X, OX)

Proof : A =lm AJ,. Choose X;,Xs," ", X,€J; so that they form 2 basis for
€

Ji /7. Putting B = k{X;, X, - -+, X,}} and sendin g X; tothe x; for all j, there
is a natural surjection B — A. Th1s is an isomorphism if and only if B/m" — A}Ja
is an isomorphism for all #. For this it suffices to show that

rk (A1) = rk(Blm®) =1+ g +g*> + --- + g™,

But rk (4/J,) = rk (V,) where the V, are as in Lemma 7.
If0-0%->U(V,) =¥,y =V, -0 is the universal extension of V,, then

HL(X, V3) > H(X, Vi) > H (X, 0) — H? (X, V) = 0 is exact and therefore
rk H* (X, Vay,) = Ig L

= grk H (X, V3).

Therefore rk H* (X, V;) = g' forall nand rk V, =1 + g + «-+ + g™ for all
n. This proves the Proposition. '

‘We shall use this Proposition a little later. - .

We know what U (X, x,), is in characteristic zero. We attempt below to
understand this in the general case.

First we reed :

Definition : Pic X is the following functor from k-schemes to abelian _groups
for a k-scheme S, a member of Mor (S, Pic X)is a line bundle on X x S witha
chosen trivialisation on x, x S.

Proposition 5 : Let B be a commutative local finite~dimensional (Artin) k—algebra
with B/m = k " ' :

The following data are equivalent :

- 1. A k-algebra homomorphism 4 — B that Vanishes on some J

2. An elem:nt of Mor (Spec B, Pic X) which vanishes when restncted to Mer
(Spec k, Pic X).

Proof : We are given a line bundle L on Y= X x Spec B W1th a trivialisation
on X, X Spec Band X x Spec k. Let p, and pz be the projectiors. Fer a B-

module M, let GM = (p,). (L @ pi ).
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This is 2 functor from | B| to N (X) such that there is a natural equivalence
of the functors T'0 G and the forgetful functor from |[B| to |4]. Recall that
T :N(X) — | k|is defined by T'(V) = fibre of V at x,. This gives

B—mod—g-ﬁ’-N(X) A -mod

N

k-mod

and therefore a furctor from | B | to | 4 | which respects the forgetful functors
from both to |k |. Applying this functor to B itself, we see that B becomes
an A-module such that R, = right multiplication by o for « €B is a 4-module
homomorphism for all o€ B. Consequently there is a k-algebra homomorphism
from 4 to B. ‘ '

~ Conversely, given j:d4 - B, define G to be the composite i |B| = [4]
: N(X). Because B = End;s (B, B), it follows that G (B) has an action of B ;
equivalently, G (B) = (p1)x L where Lis a sheaf on Y = X x Spec B. We omit
the checking that L is an invertible sheaf on Y.

As a consequence, we have :

Proposition 6 : Assume Pic X is representable. Then
1. A, = the completion of the local ring of Pic X at zero.

5. The natural homomorphism A, — 4, ® A, is induced by taking comple-
tions at zero of Pic X' x Pic X' — Pic X.

3, Ifchark =p >0, then U(X, Xo)g = l(i_m é where the inverse limit is taken
G

over all local group-schemes G embedded in Pic X.
Proof ; 1 and 2 follows immediately from the previous Proposition. For 3,
observe that ‘

(2) The dual of the co-ordinate ring of U (X, X0)ap 18 Just Ag.

(b) if G, C— Pic X is the local group-scheme defined by the ideal J, generated
by p'th powers of all elemsnts of the maximal ideal, then 4, =limR (G,
o . ) €«

where R(G,) is the co-ordinate ring of G,, and -

©) R(G) =R(G)*

A morphism (¥, yo) = (X x,) clearly induces a homomorphism U (Y, y,) -
U(X,x;). Tne projections X x ¥ =X and X' x ¥ - Y thus induce 2 homo-
morphism o

U(X x Y, % X y¢) = UX, xo) x U(Y, o).

Lemma 8 : The above homomorphism is an isomorphism.

Corollary : If X is an abelian variety, then U (X, 0) is abelian.
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Proof : The multiplication X x X'— X clearly induces U(X x X,0 x 0) =
= U(X,0) x U(X,0) -» U(X,0) which is just the multiplication in the group-
scheme (U (X, xo). Because this is a homomorphism, U(X,0) is commutative.

Proof of Lemma : i:X —X x Y defined by X > X x y,» X x ¥ induces
U(X,xy) > U(X X Y, %9 X yg). Because p,0i =1y and p,0i = constant, it
follows that the composite U (X, xo) = U (X X Y, x, X o) = U(X, Xo) X U(Y,y0)
is just a |- (a, 0). _ |

Thus we- see that U(X X Y,x, x ¥o) = U(X, x¢) x U(Y,yo) is surjective,
To show that it is injective also, it suffices to show that any representation V
of U(X x Y, x, X yo) isa quotient of P @ @ where Pand Q are representations
of U (X, x,) and U (Y, yo) respectively. Or, what is the same, to show that any
Vin N(X x Y)is a quotient of P ® Q where P and @ are in N(X) and N(¥)
respectively.

Sublemma @ If V and W are in N(X) and N (Y) respectively, then U(V® W)
is a quotient of U(V) ® U (W). :

Proof i Let 0—H'(X,V*)*®,05 > U¥)~> V-0 and 0- H (Y, W¥)*
® Oy = U(W)—> W —0 be the universal extensions. The quotient of U (V)
@ U(W) by H*(X, V¥)* & H* (Y, W¥)* @ Oxyy gives an exact sequence :

0->H'X, V)*@,0x QWP H (Y,WN*R, VROy »Z -V
@ w 0. ‘

Also there are canonical surjections ¥V — H°(X, V*)* ®,05 and W — H°
(Y, W¥* ®, Oy. This gives a surjection from Z to Z’ with :

0~ (H' (X, V¥)* @ H* (Y, W¥)* @ H(Y, W¥)* @ H" (X, V%)%
®OX><Y =Z' > V@W-=0

which by the Kunneth formula is easily seen to be the umiVersal extersion of
V@ W. QE.D. ‘ ’

Let ¥, be as in Lemmnia 7 and let W, be the same sequence for Y. Using this
sublemma, we shall show that any T' in N (X x ¥) of tank n is a quotient.of
(Va® W,)* by induction on . ' '

If n =1, this is obvious. ‘ '

IfrkT=n+1,0->0xy = T— T - 0isexact with 7”in N(X x Y). There
is a surjection (V, ® W,)" — T" by which one pulls back this extension by Oxxy
to get the following diagram : :

n n
(Vn+‘® Wn.”) —-‘.‘(Vn@ Wn) —-0

O—-v--eL —-—-u(vn@wn)n-—-»(vna wn)n-—-.o

X xy

n
s (Vn Wn) —0)

R

—— T —— O
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If (Vyt; ® Woy)* = T is not surjective, its image is a sub-bundle N of T'such
that Oxxy @ N = T. In either case, it is clear that T is a quotient of (Vi
Q W)

This finishes the proof of Lemma 8.

- We come back to curves. Fixa g> L. '

Wz denote by k{{X; Y ;Z;---}} thenon-commutative formal power series
ring in X3, Xo,- . X, Vi, Yo, 0, Y, Z1, 25, Z, ", Mmodulo the relations :
X Y=Y X; foralliandj, X;,-Z; =2Z;- X;forall iandj, ¥;- Z;, = Z;- Y;
for all i and j, etc.

A non-comrmutative formal group is a FX; V) =(FR(X;Y), F,(X;Y), -+
F,(X; Y)) with the F,(X, Y)e k{{X ; Y}} such that

@ FX,0=F@0;:X)=X,for 1<i<g.

®b) FX:Y)=F(Y;X).

() F(F(X:Y);2Z)=F(X;F(Y;Z)). This is an identity in
k{X ;Y ; 2z

Every complete curve X with I' (X, Ox) = k gives rise to such a formal group:
with .4 as usual, there is an isomorphism 4 =~ k{{X}} and the homomorphism

R{X} > A AQ A 2 k{X ; Y} provides the F,(X;Y): put F,(X;¥) =
the image of X,. v

Given a non-commutative formal group, put R = continuous linear furctionals
on k{{X}}. Then Risa Hopfalgebra and G = Spee Ris an affine nilpotent group-
scheme with R* = k{X}}. : .,

In characteristic z:ro, after a change of co-ordinates, FX;Y)=X,+ Y.
The lie algebra of the affine nilpotent group-scheme G is canonically identified to
the completion of the lie sub-algebra of k{{X}} generated by X;, X,,- -+, X,. This
is an inVerse limit of finite dimnsional nilpotent lie algebras and the inverse limit
- of the cortesponding nilpotent algebraic groups is precisely G.

In positive characteristic, the situation is more difficult. Even in the commuy-
tative case, a complete classification of such objects is given by Deindorne modules.
We do not know as yet the non-commutative aralogue of this. Essentially it
amounts to a classification of finite nilpotent group-schemes.

. Here are some elemsntary examples :

Example 1 : Take disjoint sets S;, Sy,--+, S, of k-rationa] points of P’ such
that the sum of the cardinalities of the S;is g+ 7. Let X be the “semi-normal *
curve obtained by identifying all points of.S; to a single point Yofori=1,2,---,¢,
Then H'(X,Oyx) has rank g and the associated formal group is given by
FX:;D)=X+ Y, + X, Y.
Xis semi-norma] if the local ring completions of X are isomorphic to
k [[%1, Xa,° **, %u]1/(%: % for all i < j), for som= 7.

Proof : For simplicity assume that S =S, and ¢ = 1, and xg, x5, -, x, are
the points of S. The image of x, in X will still be denoted by Xo-

If f:P'— X is the normalisation map and W is in N (X), then f* (W) is
in N (P?) and is therefore trivial. Thus f*W = V ®, Op, canonically, where ¥
is the fibre of £ * (W) at x,. The diagram C
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p!

% f L

i Y

Spec k X

N,

P

gives an isomorphism of the fibres of f* (W) at x, and ¥; for 1 € i< g, ie.,
an automorphism ¢; of Vfor 1 € i< g. ‘

Using the filtration that W possesses, we see that there is a flag V= ¥, 5 ¥,
D Vzr+ D Vu=0so that g, X— X€ Vjy, for all xe V;. Consequently ¢,— I, =,
has the property that w,yw;, - - * v, = 0 for all possible choices of i, il',’A' S in €
{1,2,---,8}. This makes V a k{{X}}-module by letting the X; act by ;. This
immediately gives :

—-mod-—-w——an»N(X) v

\ /!

K -mod

where the vertical arrows are the forgetful functor and evaluation at x, respec-
tively, We have a natural isomorphism of 4 with k{{X}} in this case (unlike
the necessarily arbitrary isomorphism of Proposition 4).

If W and W’ are in N (X) with the corresponding ¢; and ¢7, then W' & W”
is defined by ¢:®4;. Putting ;=1 +y: and ¢ =1+ 1y}, this gives
$: Q4 =1+wyi®L + 1Qy +yi xy, and therefore the homomorphism

E{X) - k{X}} ® k{X}}is given by X, > X, ®1 + 1@ X, + X, ® X';
In our language, F; (X ; Y) =X;+ Y, + X, ¥;. QUE.D.

Example 2 : If yy, yg,** -, ¥, are k-rational points of P’ and X is obtained from
P’ by introducing a simple cusp at y, ya,***, ¥, then rk H (X, Ox) = g, and
F(X;Y)= X, + Y, in this case.

This means that f : P! — X is set—theoretically injective and if f (y;) =X then
Oy, x; = k + m} where m; is the maximal ideal of Op?,,
Proof : Choose a pointx,eP:. Let Wbein N(X). As before f*W = V®p
whete V'is the fibre of f* W at x,. ‘Thus all fibres can be canonically identified
to V. The diagram : | S

Spec k [q/qal — P!

. X

Spec k -—-—-.-'-_...5-)(’

gives an automorphism of V'® k [¢/q%] which is the identity modulo g. Thus
this automorphism g, is of the form 1 + qy; where y;€ End (V). ' Using ‘the
filtration of W, the y, preserve a flag as in exsample 1, showmgthat ¥V becomes a
k{X}-module. | \

P.(A)—3
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If W’ and W’ are in N (X) with the ¢; and ¢/, then d;® 4 =1 + q(Wi ® 1
+ 1 ®yi) and this shows that

FX;Y)=X,+7,

Example 3 : What is the affine group-scheme G associated to F(X;Y)=
X, + Y, + X, Y;? In characteristic zero, we have already seen the answer, so
we restrict ourselves to characteristic p with p> 0. Here the answeris : G is
isomorphic to a free pro-p-group on g letters. In particular, G is reduced.
Proof : Letw be a free group on uy, Uy, *, 4, and let P be its pro-p-completion.
Let A (H) be the group algebra of a finite group H. Then 4 (P) = dual of its
co-ordinate ring = Iinj A (H) where H runs through all finite p-quotients H of =.
H
Let p : k{Xy, Xa,* -, X} = A(P) be the homomorphism defined by p (X))
= y; — 1. For any finite p-quotient H of #, the composite k{X;, X5,- -, X} —
A (P) —» A (H) is clearly surjective, andits kernel contains (X;, Xy, - -, X,)* where
k is the cardinality of H. This is seen as usal by showing that 4 (H) has a flag
such that u; acts by the identity on successive quotients. Therefore there is an

induced diagram :

and p is a. surjection.

Now consider B, = | k{{X}}| the n-th power of its maximal ideal. The image
of the homomorphism 7 |- B} given by #; |- 1+ X is denoted by H,. We shall
show below (lemma 9) that H,'is a finite p-group. This induces 4 (P) — 4 (H,)
-» B, for all n, and therefore a continuous ‘homomorphism 4 (P) - lim B,

-~

n

- k{{XY}}. "This is seen to be the inverse of p quite easily.
The diagonal h'omomorphism A(P) » A(P) ® 4 (P) is given by #; = u, ® u,.

Under p :k{X}} > 4 (P), this becomes X,— X®lOIXOX,® X’, This
ﬁnlshes the proof modulo the following well-known.

Lemma 9 i Any finitely generated subgroup of a nilpotent affine algebraic group
in characteristic p is a finite p-group.

Proof ; By induction on the dimension of the algebraic group N : there is an
exact sequence 1 - N; - N - G, » 1. If H is the finitely generated subgroup,
then 1 >N, N H - H— G, is exact. The image of Hin G,isa finite abelian
p-group. Consequently N; N H is of finite index in H and is therefore finitely
generated. By induction, N; N H is a finite p-group and therefore H itself is a
finite p-group. ‘ _

We need the followmg

Lemma 10 ¢ The letters 4 and B stand for 1nversellm1ts of finite dxmensmnal
local k-algebras with residue field . It will also be assumed that they have finite
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dimensional m/m?. Any such algebra will be called free if it is isomorphic to
k{X,, Xy,+ -, X,}} for some g.
A, If fi4d - B is a homomorphism inducing a surjection on the m/m2-level,
then f is a surjection.

B. A homomorphism f i 4 — B inducing an isomorphic on the m/m?-level is
an isomorphism if there is a g : B — 4 such that fg (X) = X for all Xe B.

C. If f: 4 - Binduces an isomorphism on the m/mg-level and B is free, then
S is an isomorphism. :

D. If A4 is free and &y, ks, *, h, € m are such that their images in m/m? are
inearly independent, then A/(hy, kg, -, k) is free.

Proof ; A. The hypothesis implies that there is a surjection on the m"[m™1
level for all » and this is enough.

B. Clearly g is injective. But g induces an 1somorph1sm on the m/m2level
implying by A that it is also surjective.

C. By Part 4 of the lemma, f: 4 — B is surjective. But B is free ; ; therefore
thereis 2 g ; B = A such that fg (x) = x for all xe B. By Part B of the lemma,
S is an isomorphism.

D. Choose g, 82" * g in the maximal 1deal so that the &, ani the g; form
a basis for m/m?®. Let B be a free algebra on r + s generators and define
f i B 4 by sending the gcnerators to the #; and the g;. By Part C, f is an
isomorphism, therefore '

A/(hlahz’ *ty r) = k{{Xn X2:' ) }r+t}}/(X1’ X5+, Xr) = k{{yb Y,
e, T |
This proves the lemma completely.

Lemma 11 i Let G be the affine group-scheme associated to a non-commutative
formal group. Assume that k is perfect. Then Greq is also a2 group-scheme
associated to a non-commutative formal group. If k is algebraically close then,

Grea is a free pro-p-group.

Proofi Let 4 and B be the duals of the co-ordinate rings of G and G,.q respec~
tively. By assumption 4 is free, and the first assertion of the lemma is equi~
valent to the assertion that B is free.

The exact sequence 1— Gipe > G = Greg— 1 is spht by the natural inclusion of
Greq in G. This gives j: 4— B and i : B— 4 so that ji(x) = x for all xe€B.
Choose Iy, hs,+-+, b, in the kernel of j so that their images in ker (j)+ m?/m?
form a basis. Let p : A— 4/(hy, ky,' *-, ) = C be the projection. If fop=j
and poi =g, then fg(x) = x for all xeB Also C is free by Lemma 10- D By
10-B, fis an isomorphism, showing that B is free.

If k is algebraically closed, there is a surjection 7 : F — Gheq where Fis a f1ee
pro-p-group such that Hom (G.., Z/p) » Hom (F, Z/p) is "an  isomorphism.
'Consequently, 4(F) — B induces an isomorphism on the m/m2level. But B is
free and by 10- C it follows that 4 (F) — B is an isomorphism. Therefore F — (;,e .
is an isomorphism.

Corollary (due to Safarevich) : Let X be a complete curve with I"(X,0,) = k.
The maximal p-quotient of the etale fun damental group isa free pro-p-group in
characteristic p. .‘ )
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If f: Y- Xis a Galois etale ¢oviting of degree N where ‘N is a power, of p,

and r (Y) and r (X) are the ranks of the Hasse-Witt matrices of’ Y and X
‘Tespectively, then

r(¥Y) —1=N((X) - 1.
We first remark that Safarevich’s proof is much shorter than ours.

Proof : 1In this set-up the maximal p-quotient of the etale fundamental group is
just U (X, Xo)ea» By Lemma 11 and Proposition 4, thls is a free pro-p-group.
The second assertion is an immediate consequence.
W state without proof the following proposition which shows that U (X X0)
has flat variation at least in a special case :

Proposition 7 : Let f:X — S be a flat proper morphism with fibres of dimen-
sion one with & = SpecR. Letj: S — X be a section. There is an affire
group-scheme U (X,j) which is S-flat such that for all ¢ : Spec k-~ S, U(X, jk
= U(X,, x,) Where x, is the base-point of X, induced by j. :

We assume that /, O,= O, and R'f, O, is locally free If we assume further
that R'f, Q,= O}, then this gives a non-commutatzve formal group F(X:Y)
with coefficients in R.

The proof is not difficult ; one has to construct the ¥, as in Lemma 7 for
this situation and construct the 4/7, as End (V,)°.

We proved that U(X,x0) x U(Y,yo) = U(X X ¥,x, % y,). We conjecture
that the sams holds for the fundamental group-scheme. This would show that
7 (X,0) is abzlian for an abelian vatiety X and this shows in fact that 7 (X, 0)

= hm G where G tanges through all firite subgroup-schemes of X. The best

GC—>x
we can mapage now is :

‘Proposition 8 © If kis perfect and X is an elliptic curve, then z (X, 0) = lim G.

G—}X
Proof 't By Proposition 5, Chapter II, k may be replaced by any separable
extension and therefore we may assume it is algebraically closed.

With the ¥, as in Lemma 7, a theorem of Atiyah asserts that any semi-stable
bundle of degree z:ro is a direct sum of bundles of the type LAYV, where L is
a line bundle on X.

- This gives us an easy cla;smﬁ,atlon of all essentlally ﬁmte bundles on X direct
- sums of L® V, with L ranging through all line bundles of finite order,

 There is 2 natural surjecuon 7(X,0) >lim G and the Tepresertations of the
4._._

G-)X
_group on the right already gIVe all essentially finite bundles: if L is a line bun dle

of ordet m, this gives a Z/m — X, and the V., come from representanons of
U (X, 0) which by the Corollary to Lemma 8 is a quotient of 11m G

a—;x
Thercfore any representation of = (X, 0) is already a representatwn of lim G
-
G—)X

R

showmg that the homomorph1sm is mdeed an 1somorphlsm
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We examine finally the behaviour of U (X, xo) under base-change. Iet L be
any field extension of k and (X, %o) and U (X, xo) be the base~change of (X, x,)
and U(X, x,) to L respzctively. The universal properties show that there is a
natural homomorphism U (X, %) = U (X, x,) with a commutative diagram 3

U (X, Xo) — mod ——= U (X, Xo) ~mod

= l F : z l F
NIX) = NIX)
where the horizontal arrows are the obw ous ones and F is the given natura] equi-
valence of categories.

Let B be the dual of the co-ordinate ring of U (X, xo) and let J, bethe closure
of the n-th power of its maximal ideal. The arrow U X, %) — U(X, U (X, x,) induces
a continuous homomorphism f : B - 4 = 4 ®; L, and the first horizontal arrow
in the above commutative dtagram is induced by -this bomom01ph1sm

If W,is defined inductively by W,y = U(W,)and W; = O;, then W, = F (B/I,,)
But, by induction, it follows that ¥, (which is the base-change of ¥, to X)is
isomorphic to .W,, because H1 X, V) = H(X, V) ®, L

By the above commutative diagram, it follows that (A/J,,) ®EL conmdared as
a B-module is isomorphic B/I,, i.e., f* (J,Q L) = I, and B/I, - A @, L|J, @, L
is subjective for all #. Fromthis, f : B — A4 is itself an isomorphism, showing
that

Proposition 9 : With notation as above, U (X, £,) = U (X, x,) is an isomorphism.
In other words, U (X, x,) is invariant under base-change.

Appendix

Tanmaka categories

Section 2 of this appendix contains the proofs of all the results about Tannaka
categories that have been used freely (see chapter I, § 1). These follow easily
- enough from the results of §1.
Section 1. Let k be a field. The only algebras considered hete are k-algebras
A equipped with a topology such that
(a) 4/Jis a finite dimensional k-Vector space for all open two-sided ideals J, and
(b) A —>11m _A|J is an isomorphism where the J run through all open two-

sided ideals m 4.

In particular any finite dimensional k-a]gebra with the discrete topology will
do

All k-algebra homomorpmsms under con81d'=rat1on will be assumed to be

continuous.
If 4 and B are such algebras, A& B has a topology by taking{ ! ® B+ AR T:
Iand J are open two-sided ideals of 4-and B I’eSpectIVelY} to be a- basis of

The ca.tegory of mudqles over a ring is denoted both by A~mod and ] A[ m the text, .
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neighbourhoods of zero. The completion lim A @B/IQ B + AQ® J = lim Al
' —— —

1,d R
® B[J will be dznoted by 4® B. Here a neighbourhood-basis consists of the

kernels of A ® B — 4/I ® B/J with I and J as usual.
By | A| we shall mean the category of left A-modules M which are finite-
dimensional k-vector spaces and whose annihilators are open.
A homomorphism f:4 —» B induces a functor H(f):|B|=-|4]| If
:k — 4 is the canonical inclusion, we put H (is) = Tx.

More generally, if f: 4 - B, RB® - ® Bais a homomorphism, then there
is a functor H(f) :|By| x | Bg| x +-+ X 1B.. .
The main result of this section is :

Proposition 1 i Let @ be an abzlian category with finite directsums. Assume
that € (V, W)= C-morphisms from ¥ to W, where -V and W are objects of €
has the structure of a- k-vector space and thatfor objects ¥,-W, P of C, the
composition € (¥, W) x € (W, P) = C (V, P) is k-bilinear, Such a € will be
called an abelian k-category.

Assume further that Obj € is a set, and that T : @ — | k| is a faithful exact
k-linear functor. The phrase ‘ k-linear  in this context means that T'(V, W) ;
C (V, W) » Hom; (TV, TW) is k-linear for all objects ¥ and W of C.

. There is then an algsbra 4 () and an equivalence F; €— | 4(C) | with the
commutative diagram :

5-——-——-—>A (g)—mod

RNAS

k-mod

"The proof of this Proposition will take up the rest of this section.
The construction of 4(C) :

‘This is forced on us. Suppose we are given a commutative diagram :
. . ,

& — B-mod ,

A/

3 k-mod

* Then, for all objects 'V of €, TV becomes a B-module in a natural way
and therefore there is a homomorphlsm py : B = End (T¥) vanishing on some
open two-sided ideal.

- Iffe C(V, W), then If : TV - TWis B-linear showing Tf0 py () = Pw (b) oTf
for all be B.

- Pat p= l'Ip,, B _):IzIeE?}g (TV) and let 7y I'IEnd (TV) - End (TW) be
the pro_]ectlon for each We Obj e, : o
Then Ifony(p(3) = 7w (0 (B)) o TS .

Therefore, if 4 (@) ={a eIIEpd TV | 5 fe € (V, W), ¥V € Obj C", V- We Obj e,
TIf o my (@) = ny(4) o Tf}, the 1mage of p is contained in A©),
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Furthermore, if II(])Engl TV is given the product topology (with all finite
€ Obj

dimensional spaces having the discrete topology), clearly B—A4 (0) is continuous.

Finally, for all ¥€ObjC, 4(C) » Il End TV -—+End TV makes TV an

vV eObicC
object of | 4 (C)|which we shall denote by FV. All this goes to show that we
have a commutative diagram :

M-—f——-—AlG)"I‘T\Od
&

T\ / Tk ‘, - -

k-mod

and that any other commutative diagram

B- mod

\ /v

k-mod

is induced By a unique p : B » A (C) ; in other words, R = H(p) o F. ‘
If (@, T) = (| 41, Ty) itis easy to see that 4= A (C) canonically. This proves:

Corollary : a Fi|A|— |B]| such that T,0 F = T is equal to H(p) for a
unique p: B— 4. However we need the following slightly stronger statement
for §2.

Proposition 2 : Let®" : k| x [k} x - x |k]| = |k | be the usual tensoring
functor. The functors F:|By|x X |By| x -+ x|B,| =| 4] such that
T,0F=®"0(T; X T,  -*+ % Ty) are in one-ome correspondence with

f:A4>B,®B@ - QB,

Proof i For ease of writing, we take n = 2.
We may ignore T if we agree to identify modules with their underlying vectog
spaces. What F does is the following :

A. For objects M, and M, of | B, | and | B; |, there is an 4-module structure on
M, ® M,. For ac A and me M; Q M, the multiple of m by & will be denoted
by a'm.

B. If i iM; = N, and f5 : My - N are ‘module homomorphisms for B and
B, tespectively, then f; ® f is a A-module homomorphism.

In particular, putting B,/J; = M; = N, and B,/J;, = My = N; for two-s1ded
open ideals ; and J,, and f; = right multiplication by b;e B,/ T; fori =1and2,
we see that the Ad-action on B;/J; @ ByJ, commutes with all right multiplications.
Consequently there is a homomorphism (%, Jz) : 4 = B,/J; ® B, /75 such that

=(h (Jl, T aym for all a€ 4, me By/J, @ By/T,.
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It is easy enough to see that the A (/;, J») form an inverse system giving rise

tor:4->B @Bz, such that the composite

A___D_» BI @ BEMB,/J,Q 82/\%

\/

We shall show that F = H (h), i.e., forall me M, ® M, acd,a-m=h(a)m.
If M; and M, are annhilated by J, and 7, respectively, define f, : Bi/Jy > M
by fi (B) =bm; for i =1,2, Then a-(m@m)=a-((f,® f,(101) =
(L@ fa)(a- (1®1) = (f; Of) (h(a)) = h(a) (my ® my).

But the m; ® m, generate all of M so that a - m = A (@) m always. Therefore
F = H(h).

Given f: 4 — B, ® B, and F = H(f) it is easy to see that the & constructed
above equals f. This establishes the one-to-one cortespondence and completes
the proof of Proposition 2,

We have already constructed F:€ — | A(€)] . To show that this is an
equivalerce, we must prove : ‘ :
Fl. For all ¥ and Win €, € (V, W) - Homy (¢, (FV, FW) is an isomorphism.
Note that it is already 2 monomorphism because T = Ty 0 F is faithful.
F2. Forevery Min | A(C) | there is a Vin € such that FV = M.

What we need is functors going the other way :

Lemma 1 : Let B be finite dimensional k-algebra. Diagrams

B—mod——9—+5

NS

are in one-one correspondznce with the data &

1. An object N of € and an isomorphism TN ~ B, _ ,
2. a k-linear p : B —» C (N, N) such that under the above isomorphism T, (6)
=right multiplication by be B. .

Proof : Given G, put GB = N. Then B =T, GB = TN, and if Ry :B—> Bis
right multiplicatior by be B, put p (b)) = G (R,).

Conversely given N, theisomorphism TN = B, and p : B — @ (N, N). First
note that p(a) op(b).=p(ba) foralla, beB. This is so because T is faithfu]
and T(p(@)p(B)) = R,Ry = Ry, = T (p (ba)). |
~ Let P be any object of | B]. Fix a presentation :

B S B~ P 0. |
If his given by the matrix (hy), define GP by an exact sequence in e

() ) . . ’

‘ "N’l—->N‘-> GP -0
whete p (k) is the matrix with entries p (h;).

4
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Iff:P - Qisa B-module homomorphismand B* — B? - Q - 0 is the chosen
presentation of Q, then there is a diagram :

which in turn induces a unique diagram :

P P(h)

GP—>0O

N N
p(r)l l pln Ll
p(h")
] N

N —s -——-»GO-—-«-O

" Now [ :GP - GQ does not depend on the choice of r and r’ because 77 :
TGP —» TGQis just Tpf : Tu P — T3 Q and T is faithful. Put Gf =L

This defines G. We omit to check that G is a k-linear functor and the fact
that this establishes a one-to one COTrespone dence with the G and the N with the
~above data.

Lemma 2 : With N and G as above, there is a unique f i1 A(C) » B such that
Fo G = H(f). Thus if P and Q are B-modules, V =.GP and W = GQ, then
FV = H(f)P and FW = H(f) Q and the image of F:C (¥, W)-»Hom,uc,
(FV, FW) contains the image of Homg (P, Q) — Homy (o) (FV, FW). ‘

Proof : The existence and uniqueness of f follows from Proposition 2. The
next assertion follows from the diagram : '

P, FV,W)

(
H)ma(F’ Q) ———w B(V.W) ————a=Hom (FV.FW)

A(&)
HOP, Q)

We shall use this lemma while proving F1.

Lemma 3 : With N and G and B as in Lemma 1, wé shall characterise GP
for Pin | B|. ' ’ :

Given (a) VeObje
®) h:P->C(N,V) ‘
k-lmear m: p such that 2 (ap) = h(p) op (@) forallae B s0. that
(©) & : P — TV defined by % (p) = the value at 1 of T (h (p)) TN B~ TV
for all p€ P, is an isomorphism, then ¥ = GP. In future, G‘P w111 be derr oted

by N®;P.
This is fa1r1_y obvious so we skip the procf,
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Lemma 4 : Let N and B be as in Lemma 1. Let ¢ :B, > C be an algebra
homomorphism with C finite dimensional. Let Q be a left C-module. Then

' (a) there is an anti-homomorphism p:C—C(N®sC, N®zC) and an iso-
morphism € & T (N ®s C) so that T(c) is right multiplication by ¢ for all ce C
under this isomorphism.

(b) (W®sC) ®: @ = N®:s 2 with Qconsidered as a B-module in an obvious
manner,
Proof (@) i With G as in Lemma 1, the anti-homomorphism C — End¢ (C, C)

— Bndj (C, C) induces the an ti-hcmomorphism ,Z : C - C(GC, GC). The rest
of (a) follows from the fact that Ti = TogG. ‘

(b) Let ¥ = (N'Qs C) @c Q. Then there isa k-lincar & : Q0 = (N ®zC, V) such

that b (cq) = 1 (g)0 p (¢) forall c€ C, g€ Q. Using Gp: GB = N = GC = N®zC,
we define h'(q) = h(g) 0 G§. This gives B :Q — C(N, V). We check that A’
has the desired properties : ,

1. k' (g)op®) = h(q)0GpoG[R)
= I (q) 0 p (pb) 0 G§
= h($ (b)q)0 G
) = K09
2. We need to show that g|-> (T h' (¢)) (1) is an isomorphism from Q to

T((N®;C)@ Q). But this is the same as ¢ |- (T R (¢)) (1) because there is a
commutative diagram : , : :

which takes 1 to 1. This finishes the proof of the lemma.

Definition : A pair (B, N) with the data as in Lemma 1 will be called a ring
objectin ¢, Fora Pin |B], GP will be denoted by N ®; P.

We shall now construct plenty of Iing objects in €. For any subset S of
Obj @, let C(S) -—--VI‘Is Erd (TV) and let my : C(S) — End (TV) be the projection
for V€S. : |
Let 4 (S) ={aeC(S) | Ves, ¥ WeS, X.fC (V, W), Ifony () = ny () 0 Tf}

. There is a natural homomorphism 4 (€) —» 4 (S).

All subsets cf Obj C considered from now on will 'be assumed to be finite,

_ L'e'}hmaws : A(C) »lim A(S) is an isomorphism, -
. . ‘_,... N

s
This is obvious.
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Lemma 6 : Foreach finite SeObj C, let i (S) be the image of 4 (€) in X(S).
Then "

(2) there is a finite T containing S such that A(T)—-4 (S) has its 1mage cqual
to A(S) and ‘

(b) 4 (@) = A(S).

lim
-
S

Proof : (b) is clear so we need to prove only (a).

Let Az (S) be the image of A (T) — 4(S) for all T containing S. There is
some T containing S for which dim Ay (S) is the least possible. Consequently
for all T' 2 T, Ap (S) — Ay (S) is an isomorphism. Put A (S) = X (S).

If S; € Sj, choose T; and T, containing S, and S, respectively with the above
property. If T = T, U T,, the diagram -

ATy |
A \A (S
\

A(T,) —=A(S,)

shows that the image of X(S;) in A(Sy) — A(Sy) is precisely X (S;). Clearly,
lim X (S) —lim 4 (S)is an isomorphism. But {X(S)}is an inverse system of
- <«

N S

surjections showing that the image of A () — 4 (S) is precisely X (S). There-

fore X (S) = A(S) and this proves the lemma.

For every (finite) subset S of Obj @ we shall construct ring objects (4 (S), B (S)
and (C (S), D (S)).

We need first to make some trivial remarks there is a unique furctor
Hom |k | X € - C which is k-linear in each variable, contravariant in the first
and covariant in the second variable, and which satisfies : € — € defined by
W — Hom (k, W) is the identity functor. :

Moreover there is a commutative diagram :

. Hom -
k-mod x G 6

1xT . .. Tl

Hom, : ‘
k-mod x k-mogd = ——————=t k—mod_

where the Hom in the second row is the usual one. ‘

The category | k | can be assumed to have objects k" forn =0, 1,2, - -+, Define
Hom (k*, W) = W™ for.all WeObjC. ,

Given f (k* - k™and g 1 W, - Wy with W, and Wz in @, the corrsspordmg
hombmorphism from Hom (k™, W,) — Hom (k", W), i.e., from Wi — Wiis gIVeJJ
by )_‘,’ fue i,0 g0 p, where i, : Wy - W{is the r-th 1nclu81on
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Dy : WP — W, the s-th projection and the f,, are the coefficients of the
matrix f.

We have stéted the Hom functor in basis-free lan guage to avoid choosing
bases for plenty of vector spaces which could be Very cumbersome.

Definition : If f: Wy, — Wy is a linear transformation and VeObj €, the
€ morphism from Hom (W,, V) to Hom (W;, V) will be denoted simply by R,.
If feC(V, V;) and W is a vector space, the C-morphism from Hom (W, ;)
-» Hom (W, V) will be denoted by L,.
We now define the D (S) and B(S) :
D(S) = El—) I-Iom (TV, V). Clearly TD (S) = C(S)canonically. For ¥, We S and

fe e, W)we define o (f) € G’(D(S),I-Iom (TV W) bya (f)=L;0py — Ry 0 pw
where the py and Pware projections from D (S) to Hom (T'V, V) and Hom (TW, W)
respectively.

Clearly T(a(f)) : C(S) » Hom (TV, TW) is glven by T(a. (f)a=Tfo Ty
(@) — 7w (@) 0 Tf

Define B (S) = : ker (e (£)). This makes sense because itis a

feC(V Wy; V. w8
finite intersection : any collection of f thatspar all the € (V, W)with Vand W

in Swill do.
Clearly TB(S) = 4 (S).

Lemma 7 : (4 (S), B(S)) and (C (S), D (S)) are ring objects for all finitesets S,

In addition, : .
B(S)Qus) C(S) = D(S)

2. if' Sy £ 8y, then B(Sy) Busy 4 (S1) = B(S1)

- 3. if 8 € S5, then D (Sy) Qersyy C(S) = D (8)).

Lemma 8¢ If § = {V}is a singleton, then TV is a C (V) = End (TV)-module
for Whlch D(V) Qe TV =V.

We first show that these lemmas together imply that Fis an eqmvalarce of
functors. Wc first check F2.

Let M be an”4 (€)-module. Then Mis an A (S)-module for some finite Sand

by lemma 6, A (T) — 4 (5) is a surjection for a suitable T containin g S. Conse-
quently M may be regarded asa A (T)-module. By lemma 2, F(B(T) ® xm M)
is isomorphic to M. Therefore Finduces a surjection from Obj € to | Obj (4 (C) |,
Now we come to F1. For Vand Win €, we have to prove that € (V, W) —
Homyc) (FV, FW) is a surjxction. Let S = {V, W}< ObjC. Then TWand TW
are A (S)-modules in a natural manrer ard the corresponding 4 (€)-module struc-
tures induced by A4(C) — A4 (S) are precisely FV and FW respectively. Choose
any R C ObjC which contains S. L:t S; ={V}and S, ={W}.
By Lemma 4 and Lemma 7, we have :

B(R) ®um TV = (B (R) Bam) 4 (5) Qusy TV=B(S) Qas, TV,and
B(8) Qusy TV = (B (82) Baisy € (81)) Ocisy TV = D (Sy) @eisy T V.

. By Lemma 8, D (S§;) ®cs,) TV = V. Thus we have : B(R) Qup TV = Vand
B (R) Qu» TW = W, By Lemma 2, the image of € (¥ W) - Homug) (FV, Fw)

oo SRR TR

.
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contains all the A4 (R)-module } omomorphisms from FV to FW. Bychoosing
R large enough (by lemma 6), 4 (R) — 4 (S) has its image equal to 4 (S), and
for such R the 4 (R)-module homomorphisms and 4 (€)-module homomorphism
are the same. This finishes the proof of Proposition 1 modulo Lemmas 7 and 8.

- 'We retain the use of R, and L; defired by the Hom functor.

To define p:C(S) ——>C° (D (S), D(S)), first consider the C-morphism R,r,,(.,),
Hom (TV, V) - Hom (TV, V) for all Ve § and putp (a) = @ R,y With the
natural identification of TD (S) with C(S)clearly T'p(a) As,rxght multiplication
by a.

This proves that (C (S), P (§)) is a ring object.

. To show that (4 (S), B(S)) is a ring object, it suffices to show that p (a) B ($)
< B (S) for all ac 4 (S).
Take any aeC(S) Then

p(a) B(S) = B(S)
< 0 = p(a) B(S) + B(S)/B(S)
< 0= T(p(a) B(S) + B(S)/B(S)) by the faithfulness of 7"
= A(S)a + A4 (S)/4(S) by the exactness of T
o acA(S). |
Therefore (A4 (S), B (S)) is a ring object.
The k-linear map : C(S) - C (D (S), D(S)) » € (B (S), D (S)) after an apph-

cation of T becomes D (S) — Hom, (4 (S), C (S)) which is just.a |- the restric-
tion of the right multiplication by & to 4(S), for all a€ C (S). This proVes 7 I

B (8) Bas C(S) = D(S).
7.2 and 7.3 are equally clear : look at
C(S)-»>C(D (Sz), D (83)) = € (D (S3), D (S))) and
A(Sy) = C (B(S), B(Sy)) - C(B(Sy), B (S))) given by
composing with the projections D (Sa) — D (Sy)and B (S,) — B (S,) respectively.

It only remains to prove Lemma 8. Here the ring objectis (C, N) = (End TV,
Hom (TV, V)), and p : C (N, N) is given by p(f) = R,;. To show that N ®; TV
=V, we peed to :

1. define & ; TV = € (C, V)

2. check that h(ap) = h(p)op(a) for all pe TV, acC, and

3. check that /& : TV - TV is an 1somorph1Sm

Every pe TV gives A(p) :k — TV and induces therefore a C"-morplnsm RA(p)
Hom (TV, V)= C ->Hom(k, V) = V. We define %(p) = Ra,y.
This takes care of condition 1.

To see 2, we must show that h (ap) = h(p) 0p (@), for allae End (TV), forall

pETV. The composite KTV TV is piecisely A (ap), so0 h(@pP) = Rawp) =
Ruaty) =Rae) O Rs = h(p) 0 p (a).




i18 Madhav V Nori

Naxt we show that 7 is the 1d‘=nt1ty. Note that T'(k(p)) : End (TV) — TV is
just a->a(p) for all acEnd(TV). Therefore () = Tk (@)1 =p. QED.
Proposition 3 : f:A— B is surjective if and only if H(f):| B|— | 4|

is fully faithful and any exact tequence : 0 — W' — H(f) V—>W" -0 is iso~
morphw to the H(f)-image of an exact sequence

05V ->V->V >0in | B|.

Proof : If fis indeed sutjective, that these properties are enjoyed by H (f) is
absolutely clear.

Conversely, we have to show that 4 — B/J is surjective for all open two-51ded
ideals J of B given the hypothesis on H(f). Let I be the kernel of 4 — B/J,
Then 0 — AT - H(f) (B]J) = H - 0 shows that thereis N ©— B/J and a com-
mutative diagram :

HfFIN —e H(f)(B/J)

2\

A/1

In other words the image of 4/Iand B/Jis a B-module, i.e., itis an ideal on
B/J But 1 is in this image : Therefore 4/I — B/J is an isomorphism. Q.E.D.

Remarks : 1. We have been purposely careless by identifyingfunctors when
in truth there is only a natural equivalence between them. .

2. We could have extended the G of Lemma 1 to @ G: |4(C)| —» € such
that Fo G = identity. But this would have been much more tedious to write out.
‘To check Fl and F2, defining G at a finite stags, i.e., from | A(S) | = € suffices
as we have already seen.

§2. Tannaka categories

If G =Spec R is an affine group-scheme over k, let | G| be the category of
finite dimensional G-representations. If 4 = R*, then 4 becomes an algebra in
the sense of § 1 and itis easy to see that| 4| = | G | canonically. Let Ty : | G |
- | k| be the ““forgetful functor ” as usual. The multiplication homomorphism
a@b[— ab from RO®R -~ Rinduces A : d—» A® 4. Given representa‘uons

Va,ndqu of 4, V® W becomes an 4 @ A-module and by using A it becomes a
A-module again. This is just the tensor product of representations ¥ and W;

it will be denoted by ¥ ® W. Let L, be the trivial representation.

Putting |G| =C, T, = T, the (@, T, ®,L,) has the following properties :
€1, €2, €3 : the pair (C, T) satisfies the hypothesis of Proposition 1,

C4, é :€ x € - Cisacovariant furctor which is k-linear in'each variable, and

e 2 &

1m ®' lr"

‘k=mod x k-mod ——= k-mod
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commutes, where @ is the usual tensoring functor. ‘ .

€5 i ®is associative preserving T : there is a natural eqﬁiValence of the functors
from € X € x € - € given by ® o (Ic x &)and ® 0 (® x Io) such that for all
objects P, @, R of C, the isomorphism H (P, @, R) from P ® (Q ® R) to (P &® Q)

@R after an application of T gives the standard isomorphism TP @ (TQ @ TR)
- (TP ® TQ) ® TR which gives the associativity of the tensor product for
k-modules. ‘

C6: ®is commutative preserving T (in the above sense).

C7: the functor € — @ given by P|— L0®P is naturally equivalent to the
identity functor, and there is an isomorphism k = T, so thatforall Pe ObJ C.

L,®P "P yields after 7T an isomorphism : ‘
k® TP —» TLy® TP - TP which is the standard isomorphism ¢ ® P — ap.

§ : 1f Le Obj € and TL has dimension one, there is a L-2such that L ® L1y Ly

4@, T, ®, L) satisfying all the above properties is called Tannaka category,
The aim here is to prove :

Proposition 4 i Any Tannaka category is | G | for a unique affine group-scheme
G, and homomorphisms of Tannaka categories are induced by a homomorphism
of affine group-schemes.

Proof i By Proposition 1, if 4 = A(C), the pair (C, T) may be identified to
(l A l: Tk)

By Proposition 2, the axiom € 4 shows that @ is induced by a umque homo-
morphism A :4 -4 & A.

€ 5 and C 6 show that

(L®A)OA =(A®I)0A and A =600 Awhere 8 : A®A-—>A® 4 is
defied by 0 (a @ b) = b ® a.

C T shows that there is a homomorphism ¢ ; 4 — k such that 4 -+ A ® A-—
k® A = A is the identity.

Now let R be the vector space of continuous linear functlorals on 4, ie.

all linear functionals that vanish on some neighbourhood of zero.

Aid—-> A ® A gives a linear transformation A¥:RQR ->R. ;I‘h;en‘ CS
and € 6 show that A* defines as associative commutative algebra-stiucture on R.
And €7 shows that this algebra R hasan identity. Put G = Spec R. .

‘Now 4 is itself an algebra : thus 4 ® 4 - A given by a® b1 ab’ mduces

L:R->RQ®R. Because A : A >A® 4 is an algebra homomerphlsm and .:
not just a linear map, it follows that g is 2 homomorphism of k-algebras. Thus

kinduces m : G x @ = G.

The assocjativity of the algebra siructure on 4 shows that m makes G an
affine semi-group-scheme (z e., the multiplication m is associative) and finally the
identity of 4 gives an 1dent1ty to G making Gan affine monmd—scheme We
have to use € 8 to show that G is an affine group-scheme. ~

¢Q1
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For a discrete monoid M there is a natural embedding M — k[M). This
generalises in the above situation to 2 closed immersion i :'G — 4. ~

Any finjte dimensional vector space V gives a scheme V¥ by ¥ = Spec S (V™).
For any k-scheme X, I'(X,0) ® V = Mor (X, V). _
We define 4 = Spec S (R). The reason being: for any k-scheme X, lim Mor

(X, (4/1)) = Mor (X, 4) where the I run through open two-sided ideals of 4.

The natural homomorphism j : S (R) — R given by jx = xfor allxe Rin duces
a closed immersion i :G - 4.

Next note that 4 is a monoid-scheme and in fact an inverse limit of the
monoid-schemes 4/I. The operation 4 x 4 - A is given by S(R) » 8 (R)

® S (R) so that for xe R its image isy x &R ® R< S(R)® S(R). Itisclear
that i : G —» 4 is 2 homomorphism of monoid-scheme.

Similarly we form the schemes (4/I)* and A* ; these are affine group-schemes

for fe (A/T), Nf= determinant of left-multiplication by fis a polynomial function
on (4/I), thus it is anelement d(I) e § (4/D*. Put(4/D* = Spec S (4/D®)auny

and A4*is the spectrum of the ring got from inverting all the d @ in S(R).

" Let us now assume @8, Then for an open two-sided ideal I, if r = rk (4/I),
consider 4" (4/T). By € 8 it will follow that the composite G — 4 - A/I has its
‘im‘age in (4/I)*. This gives a factoring

N

and clearly j is a closed immersion. That G is an affine group-schéme follows
from - : : '

Lemma : If G - P is a ¢losed monoid-scheme of an aﬁine group-scheme, then
G is an affine grOup-scheme.

Proof : Let P = Spec B and let I be the ideal defined by G. The morphism
Z :P x P> P x P given by (py, p) |- (p1, p1ps) is an isomorphism. It suffices
_to show that Z induces an isomorphism from G x G to itself.

Let Z* :B®B - B® B be the induced homomorphism on co-ordinate
rings. LetJ=ITQ®B+ B®I.. Then Z*({J)< J. We have to show that
Z*=J.

" Itis well-known that B is the union of its finitely g:nerated I-Iopf sub—algebras
{C}. For any such C, Spec € is a group-sckeme and Z* restricts to an iso-
morphism of ‘C.- Thus if (Z¥) 1N (CRC)N#*IN(CP®C), then (Z¥™
(TN (C®C)) =T, gives a strictly increasing sequerce of ideals, which is no}
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possible because C is Noetherian. Therefore, Z*(JN (CAC) =T N (C® O)
for all C implying that Z* (J) = J. This proves the lemma.

The second assertion about homomorphisms of Tannaka categories follows
again from Proposition 2.

From now on R (G) will d:note the co-ordirate 1ing of an affine group-scheme
G and 4 (G) will d.note its dual.

A homomorphism G — H is s1id to be surjuctive if R (H) — R (G) is inj.ctive ;
equivalently if 4 (G) —» A(H) is surjcctive,

Proposition 5 : A homomorphism G — H is surjective if and only if the corres-
pondng furctor F:| H|—| G| is fully faithful and for any exact sequence
0> W = FV— W -0 in | G| there is an exact sequence 0 — V' — V = V”
-0 in | H| and a commutative d.agram ; , :

O—e W —o FV vt W e O

10T

O —+FV'—sFV—esFW'—e0O
This is an immediate consequence of Proposition 3.

Proposition 6 : An affine group-scheme is finite if and only if there is a finite
set § of G-representations such that any representation of @ is a sub-quotient
of a finite direct sum of representations from S.

Proof : If G is finite, then any representation is contained in a direct sum of
copies of R (G) which is itself a finite-dimensional representation of G.
Conversely, given such a set, put (C,T) = (| G|, T). To prove that R(G) is
firsite dim:nsional, it suffizes to prove that 4 (G)= 4 (€) is {nite-d mensiov.al.
We shall show in fact that 4 (®) - 4 (S) is an injection. Let ae 4 (€). Suppose
that @, (4) = 0 for all Ve §. If ¥V and W belong to S, and p and ¢ are the
proj:ction from V @ W to Vand W respectively, then Tp o ny@w (8) =7y (a)o Tp=0
and Tq o ny@w (@) = my (a) 0 Tg= 0. Tais shows that #y@w (@)= 0. Sim.larly
Tig (@) = 0, for all @ whenever Q is a finite direct sum of oijzcts from 8. If i :
P — Q is an injection and 74 (@) = 0, then Tio 7, (@) = 74 (@) 0 Ti= 0 showing
that 7, (@) = 0. Similarly if j : P — @ is a surj.ction and 7, (@)= 0, then 7y (@)
= 0. Thus we have shown that 7z (@)= 0 for all sub-quotierts of all fizite d.rect
sums of members of S, i.e., mp (@) = 0 ¥ Pe obj @, and therefore a = 0. Q.E.D.
The last two propositions are just what are required to show that (see Chapter I,

§ 3): . ‘

1. # (X, xo) =7 (S, x,) is a surjection, for all finite sets S of essentially finite
vector bundles.

2. (X, x,) —->1i(513 7 (S, x¢) is an isomorphism with the § as above,
S

3. ®(8,xo) is a finite group-scheme with the S as above.

P.(A)—4
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