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SYMPLECTIC GEOMETRY OF SEMISIMPLE ORBITS

HASSAN AZAD, ERIK VAN DEN BAN, AND INDRANIL BISWAS

ABSTRACT. Let G be a complex semisimple group, 7' C G a maximal torus and B a
Borel subgroup of G containing T'. Let 2 be the Kostant—Kirillov holomorphic symplectic
structure on the adjoint orbit O = Ad(G)c ~ G/Z(c), where ¢ € Lie(T), and Z(c) is
the centralizer of ¢ in G. We prove that the real symplectic form Re € (respectively,
Im ) on O is exact if and only if all the eigenvalues ad (¢) are real (respectively, purely
imaginary). Furthermore, each of these real symplectic manifolds is symplectomorphic to
the cotangent bundle of the partial flag manifold G/Z(c)B, equipped with the Liouville
symplectic form. The latter result is generalized to hyperbolic adjoint orbits in a real
semisimple Lie algebra.

1. INTRODUCTION

This work grew out of attempts to understand the following theorem of Arnold [I], p.
100, Theorem 1].

Theorem 1.1 ([I]). Let Q be the standard complex symplectic structure on a regqular
coadjoint orbit of the group SL(n + 1,C). This orbit, equipped with the real symplectic
structure Im(S2), is isomorphic to the total space of the cotangent bundle of the variety
parametrizing the complete flags in C" L, equipped with the standard Liouville symplectic
structure on it, if and only if all the eigenvalues of some (and hence any) matriz in the
orbit are real.

A proof of this theorem is outlined in [1, p. 100-101]. The assertion about the equiv-
alence of the above mentioned symplectic structure Im(2) with the one on total space
of the cotangent bundle of the flag variety is made in lines 13-15 of [I, p. 101]. Appar-
ently, the regular coadjoint orbit is identified with an adjoint orbit in sl(n+ 1, C) through
the non-degenerate bilinear form (X,Y) — Tr(XY), so that it makes sense to speak of
eigenvalues of matrices in the orbit.

Arnold’s result may be reformulated in terms of the theory of semisimple Lie groups.
In the present paper we will state this reformulation and prove a generalization of it.

Let G be a connected complex semisimple Lie group. Its Lie algebra, which will be
denoted by g, comes equipped with the Killing form B, which is an Ad(G)-invariant
symmetric non-degenerate bilinear form. Given an element ¢ € g, we denote by B(c) the
complex linear functional on g defined by X — B(c, X). Accordingly, the Killing form is
viewed as a G-equivariant linear isomorphism

B:g— g"
1
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Unless specified otherwise, we will use B to identify g with g*. In particular, by pull-back
under B of the canonical Kostant-Liouville holomorphic symplectic form on any coadjoint
orbit O C g* may be viewed as a holomorphic symplectic form on the associated adjoint
orbit B~1(0).

If ¢ € g, then by ad (¢) we denote the endomorphism Y +— [¢, Y] of g. The element
c is called semisimple if and only if ad (¢) diagonalizes. Equivalently, this means that ¢
is contained in the Lie algebra of a maximal torus (or Cartan subgroup) 7" of G. The
centralizer of ¢ in G is denoted by Z(c). If ¢ is semisimple, then Z(c) is known to be the
Levi component of a parabolic subgroup P of G. In fact, one may take P = Z(c)B, where
B is a Borel subgroup containing a maximal torus which contains c¢. We will prove the
following generalization of Arnold’s result.

Theorem 1.2. Let G be a connected complex semisimple group, and let ¢ be a semisimple
element of its Lie algebra g. Let Q be the Kostant—Kirillov holomorphic symplectic form
on the orbit O = Ad(G)c ~ G/Z(c). Then the real and imaginary parts ReQ and Im )
are real symplectic forms on O. Moreover, the following hold.

(a) The form ReQ (respectively, Im Q) on O is exact if and only if all eigenvalues of
ad (c) are real (respectively, purely imaginary).

(b) In either case, these symplectic manifolds with exact real symplectic forms are
symplectomorphic to the total space of the cotangent bundle of G /P, equipped with
the Liouville symplectic form, where P is any parabolic subgroup of G with Levi
component Z(c).

In fact, we will prove a refinement of assertion (b) in the more general context of a real
hyperbolic adjoint orbit of a real semisimple Lie group; see Theorems 2.11] and [6.11

Here are a few words about our interpretation of the above mentioned result of Arnold.

Set G = SL(n+1,C), and let T" C G be the subgroup of diagonal matrices. For any
¢ € Lie(T) with distinct eigenvalues we have Z(c) = T, so that the adjoint orbit of ¢
can be identified with G/T. Let ¢; denote the i-th diagonal entry of c¢. The eigenvalues of
ad (c) are all the numbers of the form ¢; — ¢;, with 1 <4, j <n. As 3 . ¢; =0, it follows
that the eigenvalues of ¢ are all real if and only if those of ad (c) are.

The group G naturally acts on the manifold JF of full flags in C**!. The stabilizer of the
standard flag C c C? C --- C C" is the subgroup B C G of upper triangular matrices.
Consequently, F ~ G/B, as G-manifolds. Arnold’s result asserts that Ad(G)c ~ T*F ~
T*(G/B) as real symplectic manifolds. In the present set-up, our generalization concerns
the analogue for an arbitrary diagonal matrix ¢ and the associated partial flag manifold

G/P.
As G/T ~ G xp (B/T), the natural projection

v : G/T — G/B
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makes G/T" a fiber bundle over the full flag manifold G/B; its fibers are translates of
B/T. Since G/B is a complete variety, and G /T ~ O an affine variety, the bundle ¥ does
not admit any holomorphic sections.

On the other hand, let K = SU(n + 1). Then the natural map j: K/KNT — G/T
determines a real analytic section of 1. Indeed, since G = KB and K N B = K NT, the
map K/K NT — G/B is a real analytic diffeomorphism. Composing its inverse with j
we obtain a section s : G/B — G/T. Moreover,

G/T ~ G x5 (B/T) = KB x5 (B/T) ~ K xgnp (B/T) ~ K X gor Ru(B),

where R, (B) denotes the unipotent radical of B. This unipotent radical has the structure
of a complex linear space on which the adjoint action of 7" linearizes. Therefore, the last
isomorphism realizes G/T as a real analytic vector bundle over K/(K NT) ~ G/B with
s corresponding to the zero section. This real analytic vector bundle is in fact isomorphic
to the cotangent bundle of K/(K NT). It follows that the inclusion K/(K NT) — G/T,
and hence the real analytic section s : G/B — G/T, induces an isomorphism on the
cohomology algebras of these spaces. Hence, one can decide whether a given closed
differential two-form on G /T is exact from its restriction to K /(K NT'). This is roughly
a translation in group theoretic terms of [I, p. 100-101]. The generalization of this

argument to our more general setting is worked out in the next section and leads to part
(a) of Theorem

Assertion (b) in Theorem is based on the crucial observation that the fibration
YV : G/Z(c) — G/P has Lagrangian fibers and that K/K N Z(c¢) — G/T defines a
Lagrangian section. This implies the existence of commuting vertical vector fields on the
bundle 1 and is enough to establish the existence of a local symplectic isomorphism along
the section K/KNZ(c); see Section 3l This argument is indicated in [I], but an argument
for the existence of a globally defined symplectic isomorphism seems to be lacking.

We prove the existence of such a global symplectomorphism in Section [/ by showing that
the mentioned vertical vector fields have complete flows which can be used to construct
global coordinates along the fibers of 1. Moreover, we give this argument of integration in
the more general setting of real hyperbolic adjoint orbits for a real semisimple Lie group.

The above mentioned commuting vector fields are used to construct a K—equivariant
diffeomorphism

¢+ K Xknze) (8/Lie(P))" — G/Z(c).

The pull back of Re(€2) — in the notation of Theorem — is the Liouville form on
K Xknz(e (g/Lie(P))* identified with T*(G/P).

Acknowledgement: One of us (EvdB) would like to thank Hans Duistermaat for a
helpful discussion on symplectic geometry.
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2. COMPLEX SEMISIMPLE ORBITS

We will recall some generalities concerning the Kostant-Kirillov symplectic form, after
fixing the notation. At first we assume that G is a connected Lie group over the base
field k£, which is either R or C. Let n be an element of g*, the k-linear dual of g. Let
Z(n) denote the stabilizer of n in G, and let 3(n) be the Lie algebra of Z(n). The map
x — noAd(z)~! induces a G-equivariant diffeomorphism from G/Z(n) onto the coadjoint
orbit O = O, C g* through 7.

The Kostant-Kirillov form € = ,, on O is defined as follows. The action of G on O gives
rise to a Lie algebra homomorphism from g to the space Vect(O) of vector fields on O.
Given X € g, the associated vector field X on O is given by X =: —¢oad X € T;O C g,
where ¢ € O. We agree to write X for X; and note that the map X — X descends to
an isomorphism from g/3(§) onto T¢O. The two-form € on O is given by the formula

(2.1) Qe(Xe, Ye) = £([X,Y]),

where £ € O and X,Y € g. Here we note that the expression on the right-hand side of
1) depends on X and Y through their images in g/3(&), so that € is a well-defined.
The form €2 is G-invariant. Moreover, it is readily seen to be closed and non-degenerate
at the point £, hence it is a symplectic form. See [5], p. 6]. Note that if £ = C, then O is
a complex submanifold of g*, and €2 is a holomorphic symplectic form.

Via the natural diffeomorphism G/Z(n) — O the form €2 may be pulled-back to a form
on G/Z(n). The resulting form, also denoted by 2, is the unique G-invariant two-form
which at the element € := eG(n) is given by the formula

(2.2) Qa(Xe, Ye) = (X, Y]),  (X,Y eg)

We now assume that G is a semisimple connected Lie group over k, so that the Killing
form B(X,Y) = Tr(ad (X)ad (Y) is non-degenerate on g. The form B is G-invariant
and symmetric. Hence it induces a G-equivariant linear isomorphism g — g* that maps
adjoint orbits diffeomorphically and G-equivariantly onto coadjoint orbits. Let £ € g* and
let ¢ = ¢ = B7'(£). This means that

(2.3) n(Y) = B(c,Y), (Y eg).

Then Z(n) coincides with Z(c), the centralizer of ¢ in G. Via pull back under B, the form
2 may be realized as a form on the adjoint orbit Ad(G)c.

In the rest of this section we assume that £k = C, so that G is a connected complex
semisimple Lie group. We assume that n € g* is such that ¢ = ¢, is semisimple, i.e., the
endomorphism ad (¢) € End(g) given by X — [c, X] is diagonalizable. Equivalently, this
means that c is contained in the Lie algebra of a maximal torus in G.

We fix a maximal torus T" of G whose Lie algebra contains ¢, and in addition a maximal
compact subgroup K of G for which K N7 is a maximal torus. Writing £ for the (real)
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Lie algebra of K, we have
(2.4) g=tov-1-¢

as a direct sum of real linear spaces. In particular, £ is a real form of g. The associated
conjugation map 6 : g — g is called the Cartan-involution associated with K.

Lemma 2.1. With notation as above, let €2 be the holomorphic Kostant-Kirillov symplec-
tic form on G/Z(c) = G/Z(n). Then both Re ) and Im Q) are real symplectic forms on
G/Z(c).

Proof. We will write gg for g, viewed as a real Lie algebra. Accordingly, we put g for
the real linear dual of gg. Then gi = Homg(g, R). Both Ren and Im# belong to gi. Let
Z(Ren) and Z(Imn) be the stabilizers of these elements for the coadjoint action for G,
viewed as a real Lie group. We claim that

Z(n) = Z(Ren) = Z(Imn).

Indeed, this is seen as follows. Let J denote the linear automorphism of g given by
X +— /=1 X. Pull-back by J induces the real linear automorphism J* of g5 given
by £ — £oJ. As GG is a complex Lie group, the adjoint action of G on g commutes
with J. Therefore, the coadjoint action of G on gy commutes with J*. It follows that
Z(J¢) = Z(§) for all £ € gi. Now J*Ren = Re(in) = —Imn, from which we see that
Z(Ren) = Z(Imn). Since Z(n) = Z(Ren) N Z(Imn), the claim follows.

We now observe that Re € is the unique G-invariant two-form on G/Z(n) = G/Z(Ren)
given by Re Q:(Xz, Yz) = [Ren](X,Y). This implies that Re 2 is just the Kostant-Kirillov
form associated with the coadjoint orbit through Ren in ggr, with G viewed as a real
semisimple Lie group. Likewise, Im 2 is the form associated with the coadjoint orbit
through Imn in gp. U

In the rest of this section we will prove the following theorem.

Theorem 2.2. Let ¢ € Lie(T), let n = Bl(c,-) € g* and let Q be the holomorphic
Kostant-Kirillov symplectic form on G/Z(c) defined by (2.2).

The real symplectic form Re ) (respectively, Im Q) on G/Z(c) is exact if and only if all
eigenvalues of ad (¢) are real (respectively, purely imaginary).

We will prove Theorem through a number of lemmas.

Lemma 2.3. The centralizer 3(c) is stable under 6. Equivalently, €N 3(c) is a real form

of 3(c).

Proof. Write t for the Lie algebra of the maximal torus 7. Since T'N K is a maximal torus
of K, we have

t=tne+v-1(tNe).
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Accordingly, we write ¢ = a++/—1b, where a and b belong to tN¢€. Fix a positive definite
K-invariant Hermitian inner product ( -, - ) on g. Then ad (a) is anti-Hermitian, hence
diagonalizable with purely imaginary eigenvalues. Similarly, ad (v/—1b) is diagonalizable
with real eigenvalues. Since ad (a) and ad (v/—1b) commute, they allow a simultaneous
diagonalization. From this we see that ker(c) is the intersection of ker ad (a) and ker ad (b).
Since both a and b are #-stable, it follows that 3(c) = ker ad (c) is #-stable. O

If g € G centralizes ¢, then g also centralizes the one-parameter subgroup {exp(tc) |
t € C} of G. The closure of this one—parameter subgroup will be denoted by S. Clearly
g centralizes S. In other words, we have Z(c) = Z(S5).

It is well known that the centralizers of tori are connected reductive. More precisely,
Z(c) = Z(95) is the Levi complement of a parabolic subgroup of G [4, p. 26, Proposition
1.22], [3.

Fix a simple system A; of roots of the reductive group Z(c) relative to the maximal
torus T and extend it to a simple system A of roots of G relative to the same maximal
torus. Let B be the Borel subgroup of G defined by the simple system of roots A. Then
P = Z(c)B is a parabolic subgroup of G. Its Levi-complement is Z(c), and its unipotent
radical R,(P) is given by the roots in B whose supports are not contained in A;. So
P = Z(¢)R,(P), and G = KB = KP. We agree to write Zk(c) for K N Z(c), the
centralizer of ¢ in K.

Lemma 2.4. The manifold G/Z(c) is real analytically a vector bundle over K/Zk(c).

Proof. This is a consequence of basic results of Mostow [7]. A direct argument is as
follows.

The exponential map induces a holomorphic diffeomorphism from Lie(R,(P)) onto
R,(P) ~ P/Z(c). Accordingly, we equip P/Z(c) with the structure of a complex vector
space. As kexp XZ(c) = expAd(k)XZ(c) for X € R,(P) and k € KNP = KnNZ(c),
the action of KNP on P/Z(c) by left translation is linear for this structure. Accordingly,

K xxnp P/Z(c) —» K/K NP = K/Zx/(c)
has the structure of a real analytic vector bundle over K/Zk(c).

The multiplication map induces a surjective and submersive real analytic map K x P —
GG, which factors to a submersive real analytic map

KXKQPP%G.

This map is clearly injective, hence a real analytic diffeomorphism. Therefore, the induced
map

K X KNP P/Z(C) — G/Z(C)
is a real analytic diffeomorphism as well. It realizes G/Z(c) as a real analytic vector
bundle over K/Zk(c). O
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Lemma 2.5. Let Q) be the holomorphic symplectic form on G/Z(c) defined in (2.3). The
K—orbit through € = eZ(c) is Lagrangian relative to Im Q (respectively, Re Q) if and only
if all the eigenvalues of ad (¢) are purely imaginary (respectively, real).

Proof. In Lemma 2] we established that Re and Im {2 are real symplectic forms on
G/Z(c). It follows from Lemma that Ke ~ K/Zg(c) is a real form for G/Z(c). In
particular, Ke has half the real dimension of G/Z(c). Hence it suffices to establish the
above assertion with the word Lagrangian replaced by isotropic.

It follows from (2:2]) combined with (Z3]) that the form Im (2 is at € = eZ(c) given by
Im(Qé(X57}/é>> = ImB(07 [va])7 (X7Y€g)

We write ¢ = a + v/—1b with a,b € tN ¢, as in the proof of Lemma 2.3 Since B is
real-valued on ¢, it follows that

Im(Qg(Xé7}/é)) = B(b, [XvYD)
forall XY € ¢

If Ke is isotropic, then taking into account that [¢, €] = € we see that B(Z,b) = 0 for
all Z € £, and hence also for all Z € g = €C. It follows that b = 0. Hence ¢ = a € tN € and
it follows that the eigenvalues of ad (¢) are all purely imaginary.

Conversely, assume that all eigenvalues of ad (c¢) are purely imaginary. Then ¢ € tN ¢,
so that b = 0. It follows that K is isotropic at the point e. By invariance, K is isotropic
everywhere. This completes proof of the result involving Im 2. The proof for Re(2 is
similar. O

Lemma 2.6. The K-orbit of € = eZ(c) is Lagrangian with respect to Im Q) if and only if
the form Im() is exact.

Proof. As in the proof of the previous lemma, it suffices to prove the assertion with the
word Lagrangian replaced by isotropic.

By Lemma 24 the G-orbit Gé ~ G/L can be retracted onto the K-orbit of Ke ~
K/K N L. Hence, the inclusion Keé — G/Z(c) induces an isomorphism on de Rham
cohomology. Therefore, the closed form w = ImQ is exact if and only if its restriction to
Ke is exact. Now the lemma is a consequence of the following more general result. [

Lemma 2.7. Let K be a compact Lie group and H C K a compact subgroup containing
a mazimal torus of K. Let w be a K—invariant closed two—form on K/H. Then w is
exact if and only if w = 0.

Proof. We need to show that if w is exact, then w is identically zero.

Assume that w = dn. By integrating the left-translates [;n over k € K with respect
to the Haar measure on K of total volume 1, we may assume that the form 7 is also
K-invariant.
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Let Ty be a maximal torus of K contained in H and consider the natural fibration
7w K/Ty — K/H . The pull back

ni=7n
is a K—-invariant one—form. Let € = eT". Then the evaluation 77(€) is an Ad(7p)-invariant

linear functional on the tangent space Tz(K /Tp). Its complex linear extension is therefore
an Ad(Ty)—invariant C—linear functional on the complexification T-(K/Ty) ®g C.

A basis for this complexification is given by the canonical images of root vectors
{Xo}acr, where R is a system of roots of K€ relative to T-. The Ad(T,)-invariance
of 77(e) implies that 7(€¢) = 0 on each of these root vectors, hence on T;(K/T;). By K-
invariance, it follows that 17 = 0. Since 7 is a surjective submersion, this in turn implies

that n = 0. U

Lemma and Lemma together complete the proof of Theorem In view of
Lemma [2.]] this completes the proof of Theorem (a). For the remaining part of the
proof of Theorem [L.2], the following observation will be of fundamental importance.

Lemma 2.8. The fibers of the fibration v : G/Z(c) — G/P are isotropic for the holo-
morphic symplectic form Q.

Proof. Put € := eZ(c). By G-invariance, it suffices to show that €2, vanishes on the tangent
space at € to the fiber ¥~} (eP) = PZ(c) = R,(P)e. In view of (2.2) and 23] it suffices
to show that
B(e, [X,Y])=0

for all X, Y € Lie(R,(P)). By linearity it suffices to prove this identity for X, Y contained
in root spaces of R,(P). If [X,Y] = 0, the identity is trivially valid, so we may assume
[X,Y] # 0. Then [X,Y] is contained in a root space for a root a of P. Let ¢t € T' be such
that t* # 1. Then by G-invariance of B,

B(c, [X,Y]) = B(Ad(t e, [X,Y]) = B(c, Ad()[X,Y]) = t*B(c, [X,Y)).

The lemma follows. U

The rest of the paper will be devoted to the proof of Theorem (b), or rather its
generalization to the setting of real semisimple Lie algebras. We will proceed under the
assumption that all eigenvalues of ad (c¢) are real. The case with all eigenvalues purely
imaginary is treated similarly. Thus, Re( is a real symplectic form on G/Z(c) and
K/Zk(c) is a Lagrangian submanifold for this form. Moreover, by Lemma [2Z8] the fibers
of the fibration G/Z(c) — G/P are Lagrangian for Re ().

In order to facilitate the comparison with the theory of real semisimple Lie algebras,
we make a few more remarks about the real Lie algebra gg, see the proof of Lemma 2.1
This algebra has a real Killing form which we denote by Bg.

Lemma 2.9. As maps gxg — C, the Killing forms B and By are related by Bg = 2Re B.



SYMPLECTIC GEOMETRY OF SEMISIMPLE ORBITS 9

Proof. Let A : g — g be a complex linear map. Its complex trace is denoted by TrcA. At
the same time A defines a real linear endomorphism of gg. As such, its trace is denoted
by TrrA. It is straightforward to check that Trg A = 2Re TrcA. Hence, for X, Y € g we
have Br(X,Y) = Trr(ad (X) oad (Y)) = 2Re Tre(ad (X) oad (Y)) =2Re B(X,Y). O

If A € g we denote by X, the dual of A relative to Bg, i.e., A(Y) = Bgr(X,,Y) for all
Y € gr.

Lemma 2.10. ¢, = 2Xge,.

Proof. For every Y € g we have
Br(2XRen,Y) =2Ren(Y) =2Re B(c,,Y) = Br(c,,Y).

The result now follows from the non-degeneracy of Bg. O

We assumed that all eigenvalues of ¢ = ¢, are real. Because of Lemma it follows
that the element Xge) is real hyperbolic in the real semisimple Lie algebra gg, in the
sense of Section [0l Let B be a Borel subgroup of G containing 7" and such that the roots
of R,(B) are non-negative on c¢. Then the parabolic subgroup P = Z(c)B corresponds to
the parabolic subgroup P(Ren) introduced in Section [l Therefore, the results of that
section apply to the present setting. In particular, the following result is a special case of
Theorem [G.11

Theorem 2.11. Let n € g* be such that ¢ = ¢, belongs to LieT and such that ad (c) has
real eigenvalues. Then the projection

G/Z(c) — G/P

is a Lagrangian fibration with Lagrangian section K/Z(n) relative to the symplectic form
Re€),. Moreover, there exists a unique symplectic isomorphism from this fibration onto
the cotangent fibration T*(G/P) — G/P equipped with the Liouville symplectic form,
mapping K/Zk(n) to the zero section.

Theorem [I.2] (b) follows from this result.

3. BACKGROUND IN SYMPLECTIC GEOMETRY

In this section we will discuss some background from symplectic geometry. Let M be a
smooth manifold, and let 7 : Z —— M be a fiber bundle whose total space Z is equipped
with a symplectic form €2. The bundle 7 is called Lagrangian if for each point x € M the
fiber 771(z) is a Lagrangian submanifold of Z. A section

s: M — Z

is said to be Lagrangian if the image s(M) is a Lagrangian submanifold of Z. If 7 : Z — M
is Lagrangian, then by application of the Darboux theorem, it follows that for any point
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29 € Z there exists a Lagrangian section s of Z locally defined in a neighborhood of
mo = 7(z0) and with s(mg) = 2o.

The following result is well known in basic symplectic geometry and can be found in [2],
Sect. 4.2. See also [9], where the result is established in the context of Banach manifolds,
with a useful review of the finite dimensional case. A manifold M will be identified with
a submanifold of its cotangent bundle 7™M through the zero section.

Theorem 3.1. Let m : Z — M be a fiber bundle whose total space Z is equipped with
a symplectic form §2. Assume that:

(1) m has Lagrangian fibers;
(2) m admits a Lagrangian section s.

Letp : T*M —— M be the cotangent bundle of M equipped with the Liouville symplectic
structure o. Then there exists an open neighborhood U of M in T*M and embedding
¢ : U — Z such that

(a) o =ponU;
(b) p = s on M;
(€) ¢"(Q) = 0.

If ¢ . U — T*M is a second such embedding, then ©' = ¢ on an open neighborhood
of M inUNU'

Although this result is well known, we include a proof to prepare for our later arguments
leading to the proof of Theorem [6.1] see also Theorem 211l The point is that there is a
canonical way to define the map .

We agree to write n for the dimension of M. Then s(M) is a submanifold of Z of
dimension n. Since this submanifold is Lagrangian, the dimension of Z must be 2n. The
fibers of m have dimension n.

Let x € M and n € T M. For each z € n~*(x) we define a vector H,(z) € T.Z by the
requirement that

(3.1) Q.(X, Hy(2)) = n(dr(2)X), VX eT,Z.

Since dr(z) = 0 on T,7 (), which is a Lagrangian subspace of T, Z, it follows that H,(z)
belongs to this Lagrangian subspace. Hence H,(z) is tangent to the fiber 7~!(z) at any
of its points z. Accordingly, H, will be viewed as an element of Vect(n~!(x)), the space
of vector fields on 7= 1(z).

We will use the flows of these vector fields to define . The motivation for the above
definition is the following relation to Hamilton vector fields of functions that are constant
along the fibers of 7.
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Lemma 3.2. Let x € M, n € T*M and let f : M — R be a smooth function such that
df(z) =n. Let f = 7*(f) and let Hy be the associated Hamilton vector field. Then

H;=H, on 7 ().
Proof. This is an immediate consequence of the definitions of H, and Hy. O

Corollary 3.3. Let x € M and ni,m, € T;M. Then H,, and H,, commute as vector
fields on the fiber 7=1(z).

Proof. We select smooth functions f; : M — R with df;(z) = n; and define f; = 7*(f;).
Then Hy, fo = 0, hence {fi, fo} = 0 and it follows that Hy and H;, commute. These
vector fields are tangent to the fiber 77(x), hence their restrictions to the fiber commute.
These restrictions equal H,, and H,, by the lemma above. U

Proof of Theorem[31. 1f n € T:M we denote by ¢ — e'1s(z) the integral curve of H,
in 7~1(z) with starting point s(z). Its maximal interval of definition is denoted by I,.
There exists an open neighborhood U of M in T*M such that for each x € M, the open
set TxM N U is star shaped and for each n € Ty N U the interval I, contains (—2,2). We
define ¢ : U — Z by

(3.2) p(n) =e"s(p(n)), (e U).

Then ¢ is a local diffeomorphism at each point of M and coincides with an embedding on
M. Shrinking U if necessary, we may arrange that in addition to the above, ¢ becomes a
diffeomorphism from U onto an open neighborhood of s(M) in Z. From the construction
it is clear that (a) and (b) of Theorem Bl are satisfied.

We will now establish (c). As this is a local statement, we may assume that there exists
a diffeomorphism f = (fi,..., f,) from M onto an open subset of R". Put f = 7*(f) =
(fi,---, fn)- Then by Lemma the Hamilton vector fields Hy, are all tangent to the
fibers of 7, from which we deduce that Q(Hy,, Hy,) =0, for all 1 <4,j < n.

Define g : o(U) — (R™)* by

(3-3) gle(m) = df(x(n) ™", (nel).
If t = (t1,...,t,) € (R")* we agree to write tf =to f =t f; +---+t,f, and &(z,t) =
d(tf)(zr) =todf(xr) = tidfi(z) + - -+ tudfa(z). Then

(45 00 ¢ s(a)) = g, ("0 () = pry dFx) M €l ) = 1

for (z,t) in a suitable neighborhood of the zero section in M x (R™)*. From this we see that
Hyg; = 6;5, so that Q(Hy,, Hy ) = &;; for all 1 <4, j < n. The functions g; are constant
on the Lagrangian submanifold s(M) of Z. Therefore, the vector fields H,, are tangent
to s(M), and it follows that {g;,g;} = Q(H,,, Hy,) = 0 on s(M). Now Hp{gi,9;} =
{fr:{9i9;}} = 0 by application of the Jacobi identity. It follows that Q(H,,, Hy,) = 0
on a suitable neighborhood of s(A) in Z. We conclude that @ = ). df; A dg; on this
neighborhood, by evaluation on the vector fields Hy,, H, . Shrinking U if necessary, we
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may assume the identity to hold on ¢(U). Hence, Q| ) is the pull-back under (f, g) of
the standard symplectic form on f(M) x (R™)*. Let F': T*M — T*f(M) = f(M) x (R™)*
be the canonical symplectic isomorphism induced by f. Then for (c) it suffices to prove
that the following diagram commutes

T"M > U =, o(U)cC Z
P\ /(£,9)
F(M) > (R™)*
Let £ € U and put z = p(€). Then, by definition, F (&) = (f(z), df(x)~**¢). On the other
hand,

(f,9)(¢(&)) = (f(m((€)),df (7 (§))™) = (f(=),df(x) 7€),
by ([B3]), and commutativity of the diagram follows.

It remains to establish uniqueness. Assume that ¢ satisfies the conditions of the theo-
rem. We will show that it must be given by (B.2) in a neighborhood of the zero section.
The cotangent bundle p : T*M — M is Lagrangian, with M as a Lagrangian section.
Hence, for n € TyM and £ € p~'(z) = T*M, we may define f[n(f) € Te(p~*(x)) as H,,
but for the bundle p instead of w. Using that ¢*(2 = o, it is an easy matter to check from
the definitions that

dp(§) H,(§) = Hy(¢(£)),

for all ¢ in a suitable neighborhood of M in T*M. For the associated flows in the fibers
p~ () and 71(x) this implies that

po et = ettn o ©.

A computation in local coordinates of M shows that etﬁ"g = & + tn. On the other hand,
©(0;) = s(x) = s(m(n)), and it follows that

o(tn) = eMs(p(n)),

for all ¢ in any interval containing zero on which both expressions are well-defined. It
follows that ¢ must be given by (3.2]) on a suitable neighborhood of M in T*M. O

4. REAL SEMISIMPLE GROUPS

In this section we recall some of the basic structure theory of real semisimple Lie groups
and their Lie algebras. As a basic reference for this material we recommend [6].

Let G be a connected real semisimple group with finite center. The group G has a
maximal compact subgroup K. All such are conjugate and connected. The Killing form
B of g is known to be negative definite on € and positive definite on the orthocomplement
p of €. In particular,

(4.1) g=tdp
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as a direct sum of linear spaces. It is known that [¢,€] C ¢ [¢,p] C pand [p,p] C & The
decomposition (4.1]) is called the Cartan decomposition of g associated with the maximal
compact subgroup K. It is readily seen that this decomposition is Ad(K)-invariant.

The map € : ¢ — g given by § = I on € and § = —I on p is called the associated
Cartan involution. It commutes with the adjoint action of K. We define the bilinear form
(-,-Yongby (X,Y)=—B(X,0Y). Then ( -, - ) is a K-invariant positive definite inner
product on g; in other words, Ad(K) acts by orthogonal transformations with respect to
it. We note that ad p consists of symmetric transformations.

It is known that the map (k, X') — kexp X is a real analytic diffeomorphism of K x p
onto G. Define 6 : G — G by 0(kexp X) = kexp(—X), then it is readily verified that 6
is an involution of G with derivative equal to the Cartan involution 6 of g. We agree to
write 6 for 5; this involution of G is also called the Cartan involution associated with K.

Remark 4.1. We note that if GG is a complex semisimple group, then it may be viewed
as a real semisimple Lie group with finite center. If K is a maximal compact subgroup,
then p = +/—1- ¢, and @ is the involution associated with the real form ¢.

On the other hand, if G is linear, then G has a complexification G¢ and
E=tpyVv_1- p

is the Lie algebra of a maximal compact subgroup of G©.

Let a be a maximal abelian subspace of p. It is known that all such are conjugate under
K. For each linear functional A € a*, we put

(4.2) gy = {X €g|[H X]=NH)X, VHEeal.

Since a is abelian, and ad (H) is symmetric for ( -, - ), for all H € a, the adjoint repre-
sentation of a in g has a simultaneous diagonalization. It follows that g decomposes as a
finite direct sum of joint eigenspaces of the form (£.2). Let ¥ be the set of nonzero A € a*

with 3(\) # 0. Then
g=0 @ P ga.

A€y
It is known that (a,Y) is a root system, which is possibly non-reduced. A root a € ¥ is
called reduced if %a is not a root. The set ¥ of all reduced roots forms a genuine root
system in a*. For each a € ¥ there exists a unique oy € ¥y such that o € {ag,2a9}. We
note that [gq, gs] C [ga+s] for all o, 8 € X.

A positive system for ¥ is a subset II of ¥ such that ¥ = II U (—II), and II and —II
are separated by a hyperplane in a*, i.e., there exists a H € a such that II = {a € ¥ |
a(H) > 0}. It follows that II — Il := II N X, defines a bijection from the set of positive
systems of > onto the set of positive systems for . Let a™® be the complement in a of
the union of all root hyperplanes ker o for a € . Then the connected components of a™
are called the open Weyl chambers of the root system Y. There is an obvious bijection
between the set of all such chambers and the set of positive systems for .
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Clearly, go is the centralizer of a in g. As § = —I on a, it follows that go is invariant
under 6. The centralizer of a in € is denoted by m. Since a is maximal abelian in p, the
intersection go N p equals a. Therefore,

gozm@aa

Remark 4.2. In the notation of Remark BTl t := /=1 -a @ a is a maximal torus of
g whose intersection with £ is a maximal torus of €. Moreover, a is the real subspace of
t consisting of all points on which the roots of t are real. Let R be the set of t-roots.
Then restriction to a induces an isomorphism R — . In particular, the root system
is reduced in this setting. Accordingly, the root spaces for t coincide with those for a.

Finally, go =tand m=tNné¢=+—-1-a.

Fix a positive system X7 for X. Let n be the sum of all positive root spaces g,, for
a € X1, Since § = —I on a, we have

0(ga) = 9-a,
for every a € ¥. Hence,
g=10n ®go®n.
As ¢ is the eigenspace of 0 for the eigenvalue 1, we see that
(4.3) t=ma > (X+0(X)).
a€Nt, X€ga
It now follows that
g=tdadn,

as a direct sum of vector spaces. The exponential map exp : g — G maps a and n
diffeomorphically onto closed subgroups A and N of G, respectively. Moreover, one has
the so-called Iwasawa decomposition

(4.4) G = K AN,

the multiplication map (k, a,n) — kan being a diffeomorphism K x A x N — G.

5. PARABOLIC SUBGROUPS

We recall that a Borel subalgebra of the complexified semisimple Lie algebra g® is by
definition a maximal solvable subalgebra. A subalgebra of g which contains a Borel
subalgebra is said to be parabolic. It is well known that such a subalgebra equals its own
normalizer in g°.

A parabolic subalgebra of g is defined to be a subalgebra 8 whose complexification ¢
is parabolic in g®. Such an algebra B equals its own normalizer in g.

A parabolic subgroup of G is defined to be a subgroup P which is the normalizer of
a parabolic subalgebra B of g. Being its own normalizer, P is the Lie algebra of P. We
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proceed by describing the basic structure theory of parabolic subgroups of G. Details can
be found in, e.g., [§], p. 279.

The algebra m + a +n = gy + n is a parabolic subalgebra of g. It is known to be
minimal in the sense that it does not contain any strictly smaller parabolic subalgebra.
The associated minimal parabolic subgroup of G is given by

Py= MAN.

Note that this decomposition is compatible with the Iwasawa decomposition (@4]). In
particular, the multiplication map M x A x N — P, is a diffeomorphism. Moreover, from
the Iwasawa decomposition (£.4) it follows that

(5.1) G=KP,

It is known that every parabolic subgroup of GG is conjugate to one containing F,. The
parabolic subgroups containing F, are finite in number, and may be described as follows.
Let

at={He€a|alH) >0, YVaell}
be the closed positive Weyl chamber in a. Given ¢ € a* we define
‘B(d = @ Ha-
a€Y, a(c)>0

Clearly, this is a subalgebra of g containing m & a & n, hence parabolic. Moreover, it
depends on ¢ through the set II(c) := {a € II | a(c) > 0}. It can be shown that every
parabolic subalgebra of g containing m @ a @ n is of the form PB(c) for some ¢ € at. In
particular, we see that these parabolic subalgebras are finite in number.

Let n(c) be the sum of the root spaces g, for a € I1(c). Then

Ple) = 3(c) @ n(o).
As 3(c) is reductive and normalizes the nilpotent subalgebra n(c), this is a Levi decom-
position of P(c). In particular, n(c) is the nilpotent radical of B(c). Since n(c) C n, the
exponential map maps n(c) diffeomorphically onto a closed subgroup N(c) of G. Let P(c)
be the normalizer of PB(c) in G, then we have the semi direct product decomposition

P(c) = Z(c) x N(c).
In particular, N(c) is the unipotent radical of P.

Finally, we note that (c) is the sum of the eigenspaces for the nonnegative eigenvalues
of ad (¢). Now this definition can be given for any element ¢ € g which is real hyper-
bolic, i.e., for which ad (¢) diagonalizes with real eigenvalues. Moreover, Ad(z)B(c) =
PB(Ad(z)c), for each = € G. It is known that every real hyperbolic element is conjugate
to an element of at. From what we just said, it follows that every algebra of the form
B(c), with ¢ real hyperbolic, is a parabolic subalgebra of g. Moreover, since all minimal
parabolic subalgebras are conjugate, it follows that every parabolic subalgebra arises in
this way.
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We retain the assumption that ¢ € at. Let P = P(c) be the associated parabolic
subgroup of G. Since G/Z(¢) ~ G xp P/Z(c), the natural projection
m:G/Z(c)— G/P
gives the quotient manifold G/Z(c) the structure of a real analytic fiber bundle over the
real flag manifold G/ P, with fiber P/Z(c) ~ N(c).

We note that P contains Fy, so that G = K P, by (5.1)). It follows that the inclusion map
K — G induces a diffeomorphism K/KNP ~ G/P. Now KNP = KNPNIP = KNZ(c).
Put Zk(c) = KN Z(c). Then

(5.2) G/Z(c)~ KP|Z(c) ~ K Xz, P/Z(c) ~ K Xz, N(c),
exhibiting G/Z(c) as a K-equivariant real analytic vector bundle over K/Zk(c) ~ G/P.

From (43) it follows that the map X +— X + 6.X induces a linear isomorphism from
n(c) onto €/€ N 3(c). This implies that K/Zk(c) is a submanifold of G/Z(c) of half the
dimension.

6. REAL FLAG MANIFOLDS

Let G be a connected real semisimple Lie group with finite center, and let A € g* be
a real linear functional. We write X, = B7'()\), i.e.,

AY) = B(X,,Y), (Y eg).
The element A is called real hyperbolic if ad (X)) € End(g) is diagonalizable with real
eigenvalues. From now on we assume A to be real hyperbolic.

From the discussion in the previous section we know that the element X, is conjugate to
an element of the positive chamber in a. Thus, for the purpose of studying the symplectic
geometry of the coadjoint orbit through A\, we may — and will — assume that X, is contained
in the positive chamber in a from the start.

Let 2 = ) be the Kostant—Kirillov symplectic form on the coadjoint orbit G- A\. The
centralizer Z(\) of A in G equals Z(X), by invariance of the Killing form. Via the natural
G—equivariant diffeomorphism

G/Z(\) — G-\,
the form Q may be pulled back to a symplectic form on G/G(X). For convenience, the
latter form will also be denoted by 2.

With notation as in the previous section, we write n(\) = n(X,) and P(A) = P(X)),
and likewise N(A) = N(X,) and P(\) = P(X,). Then P()) is a parabolic subgroup of G
with Levi decomposition P(A) = Z(A)N ().

The projection
(6.1) w: G/Z(N) — G/P(\)
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is a G—equivariant fibration with fibers equal to the G—translates of N(\) — G/Z(\).
On the other hand, the cotangent bundle 7%(G/P()\)) comes equipped with the natural
Liouville symplectic form o.

In this section we will prove the following result.

Theorem 6.1. There exists a unique diffeomorphism
ox : T(G/P(X) — G/Z(N)
satisfying the following conditions:

(a) ™o wy equals the projection of T*(G/P(N));
(b) @ maps the zero-section of T*(G/P(X\)) t
(c) @i() = (o).

The proof of this result is based on the ideas of the proof of Theorem B.1] and will be
given through a number of lemmas. We start by observing that the symplectic form 2
on G/Z(\) is G-invariant. At the origin € = eZ(\) it is given by

(6.2) 0:(Xz,Ye) = A([X,Y]) = B(Xy, [X,Y]) = =B(X, [X),Y]),
for X,Y € g.

K/Zk(N);

The following lemma expresses that we are in the set-up of Theorem [3.11

Lemma 6.2.

(a) The fibers of m, defined in (G1l), are Lagrangian for €.
(b) The submanifold K/Zk(\) — G/Z()\) is Lagrangian for €.

Proof. From (6.2) one sees that € vanishes on n x n, so that T;(N(\)é) is isotropic in
T:(G/Z(N\)). We agree to write n = fn and n(A\) = n(A). From the decomposition
g = 1) @3 en(d)
one sees that dimg/3(\) = 2-dimn. Hence, the orbit N(\)e is Lagrangian in G/Z(\).
By equivariance, the fibers gN(\)é are Lagrangian as well. This establishes assertion (a).
For (b) we observe that for X Y € £ we have
O.(X,Y) = B(X\[X,Y]) = B(0X,, [0X,0Y])
= —B(X),[X,Y]) = —Q(X,Y).
This implies that T:(K/Z k(X)) is isotropic in T:(G/Z())). By K-invariance, K/Z(\)

is isotropic in G/Z(\). In the text below equation (5.2]), we observed that K/Zx(\) has
dimension equal to half the dimension of G/Z (). O

We proceed by following the ideas of the proof of Theorem 3.1l Our first goal is to define
suitable vector fields along the fibers of the fibration (6.1I). The natural projection G —
G/P()) induces an isomorphism from g/B(A\) onto the tangent space T,.pn)(G/P(\))
which we use for identification of the two spaces.
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Let n € (g/B(N\))* and n € N(X). Since Q,,; is non-degenerate on T,,:G/G(\) we may
define a tangent vector Hy,(ne) = H,(ne) € T,:G/Z(\) by

(6.3) Qe(Z, Hy(ne)) = ﬁ(dﬁ(né)Z),

for all Z € T,:G/Z(}). Viewing n as an element of 17, (G/P())), we see that this
tangent vector coincides with the vector H,(née) deﬁned in (B:[I) In particular, H,(ne) is
tangent to the fiber N(\)e.

If X is a homogeneous space for GG, and g € G, we denote by [, the left multiplication

x +— gz on X. For the space G/P(\) we note that dl,(eP())) is a linear isomorphism
from g/PB(\) onto Typ()(G/P(N)). Given n € (g/PB(N))" and g € G, we put

g1 = dlg(eP(N) ™" =nodly(eP(N)™

Lemma 6.3. Let g € G and n € (g/PB(N))*. Let Hy,, € Vect(gN(N)e) be defined as in
(31), for the bundle w: G/Z(\) — G/P(\). Then

Hy,(gne) = dl,(e)Hy(ne),  (n € N(V)).

Proof. This is a straightforward consequence of the G-invariance of 2 and the G-equivariance
of the projection map 7 : G/Z(\) — G/P(\). O

At a later stage the situation that ¢ = m € P(\) will be of particular interest to us. As
left translation by P(\) fixes the element eP(A) of G/P(\), we see that (m,n) — m-n
defines an action of P(A) on (g/B(N))* =~ T.pp)(G/P(N)).

Lemma 6.4. The action (m,n) — m-n of P(A) on (g/B(N\))* is induced by the adjoint
action of P(\) on g.

Proof. Let pr : G — G/P(\) be the natural projection and for m € P(A),let C,,, : G — G
denote the conjugation map x — mam~'. Then pr o C,, = I, o pr. Differentiating this
expression at the identity element, we see that dl,,(eP(\) € End(g/9B(\)) is induced by
dC,,(e) = Ad(m). The result follows. O

We will now derive a formula for the vector field H, along N(\)e that will allow us to
understand the global behavior of its flow.

Lemma 6.5. Letn € N(\). The map n — H,(née) is a linear isomorphism from (g/PB(N))*
onto Trz(N(N)e).

Proof. Since €,z is non-degenerate, the map is injective. The expression on the right-hand
side of (6.3) vanishes for all Z € T,,:(N(A)e). Since T,,:(N(A)é) is Lagrangian for the form
Q¢ it follows that H, (ne) belongs to T,,:(N(A)e). The result now follows for dimensional
reasons. U

For each point n € N(A) the natural map n +— né is an embedding of N(A) onto the
closed submanifold N(\)e = 7' (eP()\)) of G/Z(\). The derivative of this embedding is
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a linear isomorphism from 7, N(\) onto T,zN(A)é through which we shall identify these
spaces.

Since n(A) and PB(A) are perpendicular for the Killing form B, the map X — —B(X, -)

induces a linear map

(6.4) Vi v, n(d) — (g/BN)"
As B is non-degenerate, the map (6.4]) is a linear isomorphism onto. Given V' € n(\) we
agree to write

Hy(n) = Hy,(ne),  (n e N(})),

viewed as an element of T, N(\). Accordingly, Hy becomes a vector field on N(A). The
following lemma gives an explicit formula for this vector field. It involves the endomor-
phism

(65) Ty := ad (X)\)|n()\) c End(n(A))

As the roots of n(\) are positive on X, this endomorphism is invertible. From (6.2) we
see that

(6.6) Q.(X +3(0),Y +35(\) = —B(X,T,Y),
for all X,Y € g.

Lemma 6.6. Let V € n(X). Then for each n € N(A),

(6.7) Hy(n) = dl,(e) o Ty ' o Ad(n)" 1 (V).

Proof. Let n = ny. From (6.3) it follows that for every X € g we have
Qa(X +P(A), Hy(e)) = n(X +PB(A)
— _B(V,X).
On the other hand, since H,(€) = Hy(e) +B(A) it follows from (G.6]) that
Qa(X +B(A), Hy(€)) = —B(X, TaHy (e)).

Comparing the two equalities, and using that the Killing form is non-degenerate, we find
that

(6.8) Hy(e) = TV
This establishes (6.7)) for n = e.

To establish the formula in general, we observe that from Lemma [6.4]it follows that for
every n € N(A) we have

- [pv] =m0 Ad(n) ™ = naamv-
From Lemma with ¢ = n~! we now infer that

H77v (né) =H

Aad(n)—1v (é>
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Therefore,
Hy(n) = dl,(e)Hpqmy-—1v(e) = dly(e) o T)\_1 o Ad(n)_l(V).
O

Proposition 6.7. For every pair Vi, Vo € n(\), the associated vector fields Hy, and Hy,
in Vect(N (X)) commute. Moreover, the flows of these vector fields are well defined as
maps R x N(A\) — N(X). The associated map

V — exp(Hy)eyn
induces a diffeomorphism from n(X\) onto N(X).
Proof. The first assertion follows from Corollary B.3] applied to the bundle 7 : G/Z(\) —
G/P(\).
Let now V' € n(A). In our study of the flow of the vector field Hy € Vect(N()\))

formula (€7) will play a crucial role. Let hy denote the pull back of the vector field Hy
under the exponential map exp : n(A) — N(\). Thus,

(6.9) hy(U) = dexp(U) ' Hy(expU).
Now
(6.10) dexp(U) = dlexpu(e) o [I + R(adU)],

where R is the analytic function R — R given by the convergent power series

Ry = 1= oy

t e (n+ 1)1

Since n(\) is nilpotent, there exists a smallest positive integer Ny such that (ad U)Mot! =

0 for all U € n(\). It follows that formula (G.I0) is also valid with the polynomial

“—~ (n+1)!
Combining (6.7), (6:9) and (6.10), we see that the vector field hy on n(\) is given by
hy(U) = [I+ R(dU)] o Tyt o e U(V)

with py = p € R[t] a polynomial divisible by ¢; see (6.5]) for the definition of 7).

We recall that, by assumption, the element ad X, diagonalizes with real eigenvalues.
Let

v <y <<

be the positive eigenvalues, and let n(v;) be the eigenspace associated with the eigenvalue
v;. Let d; be the dimension of this eigenspace. The sum of the eigenspaces n(v;) equals
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n(\). Accordingly, we fix a basis of eigenvectors Vi,...,V, for ad X, in n()), and put
n; = RV,. By choosing a suitable numbering we may arrange that for each £,

@ n(y;) = @ n,.

i<k <+t
Given 1 < k < n, we put
N>p = @ n;.
Jjzk
In addition, we put nsp = 0 for & > n. The subspaces n-, n<; and n.; of n(\) are

defined in a similar fashion.

For 1 < j < n, we denote by pr; the projection map n(A\) — n; along the remaining
summands n;, i # j. Also, we define pry;, = ijk pr;. The projections pr.y, pre; and
pr.; are defined in a similar fashion.

By the Jacobi identity, ad X, acts on [n(1;),n(v;)] as the scalar multiplication through
v; +v;. Hence, for each k > 1,
M(A),ng] C nop.

Let V€ n(A). Then the integral curve t —— U(t) of the vector field hy with initial
point U(0) = Uy is determined by the initial value problem
(6.11) U't)=V+pad[U®)])(V), U) =U,.
For the component U; := pr; o U in ny the equation becomes
Ui(t) = pr,V, U1(0) = pry(Up) -
Indeed, p(ad U)V has its values in n-;. The equation for U; has the solution
Ui(t) = tpr,V + pry(Uo) ,

which is linear in ¢. The remaining components may now be obtained by a recurrence
procedure and integration. More precisely, let k& > 2, assume that U; := pr; o U has been
solved for each 1 < 7 <k — 1, and put

Ui = > Uj.
i<k
Then Uy is determined by the initial value problem

{%@==MW+WWMMW@MW=mW+mwMMWMmWW,

This equation may be solved directly by integration. By induction one sees that the
integral curve is defined for all ¢ € R and is in fact a polynomial function of ¢.

For the final part of the proof it is important to make the following observation. If
V' € nsy, then the integral curve U(t) satisfies

(6.12) U(t) — Uy — tV € noy
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for all ¢ € R. Indeed, this follows by applying the projection pr., to the constituents of
the equation (G.I1]) and solving the resulting equation.

The vector fields h; := hy,, where 1 < j < n, form a collection of commuting vector
fields for which the flows are defined globally. Consequently, the associated flow maps
(t,c) — ethic are smooth maps R x n(\) — n(\). Let 1 < k < n. It follows from (6.12)
that

(6.13) pro, €a = proz + tVj,

for all x € n(\) and ¢ € R. Since the vector fields h; commute, the map ¢ : R* xn(\) —
n(\) given by

n(a)
defines a smooth action of (R™,+,0) on n(\). It follows by repeated application of (6.13])
that

o(t,z) = ™Mo .0e

pr (0, tk, ..., tn, ) = pryx + 4 Vi,
for all ¢y,...,t, € R and x € n(\). We will use this observation to show that the action
 is proper.
For the proof of this, it is convenient to have the following notation. For a compact
subset C C n(\) we write

T(C) := prga(@ ' (C)N R"xC) = {tcR"|Ic€C: ¢(t,c)€C}.

For proving properness of the action, it suffices to show that for every compact subset
C C n()\), theset T(C) defined above is bounded. Indeed, this implies that ¢~1(C)N R"xC
is compact. For 1 < k < n, let 7<), : R® — R”* be projection onto the first coordinates.
By induction on k& we will show that for every compact set C C n(\) the set m<x(7T'(C))
is bounded.

First, let K = 1, and let t € T'(C). Then there exists some ¢ € C such that ¢(¢,¢) € C.
Since

pry p(t,c) =pryc+t,Vy,
it follows that ¢;V; belongs to the vectorial sum —pr,(C) + pry(C), which shows that
m<1(T(C)) is bounded.

Next, let 1 < k < n, and assume that pr_,(7'(C)) is bounded for every compact subset
C C n(N). Let t € T(C). Then there exists a ¢ € C such that ¢(t,c) € C. The element
(t1,... 1) lies in the subset

S = clpro,(T(C))
of R¥, which is compact by the inductive hypothesis. It follows that
()0(07 Ukt1s -5 lny C) = e ... e_tkhksp(ta C)
lies in the compact subset

C'={e M. ...e7thc| (t,c) € S xC} C n(N).
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Now

Prepyt 90, thsr, o tn,€) = Progic+ tep1Viyr
from which we see that ¢11Vi11 belongs to the vectorial sum —pre;,,(C) + prey,(C').
From this we conclude that <1 T'(C) is bounded.

We now come to the final assertion. It follows from the above that the map
Y R* — n())
defined by ¢ —— ¢(t,0) is proper. Moreover, since at every point the vector fields
hi,...,h, are linearly independent, it follows that 1 is a local diffeomorphism. Therefore,
1 has open and closed image, hence it is surjective onto n(A). Moreover, the fibers of v

are finite and discrete. Hence, v is a covering map. Since n(\) is simply connected, it
follows that v is a diffeomorphism from R"™ onto n(\). We consider the linear bijection

7 :n(A) — R"

given by V.= Y ;7(V);V;. By linearity of the map V' +— hy it follows that for all
Ve n()),

exp(hy)(0) = exp(7(Vi)hy + - - - + 7(Va) i )(0) = @(7(V'), 0).

This implies that the map defined by V' +—— exp(hy)(0) is a diffeomorphism from n(\)
onto n(A). Since hy is the pull back of Hy by the diffecomorphism exp : n(A) — N(A),

it follows that

efv = exp o e o exp L.

Hence, the map defined by V' +—— effVey is a diffeomorphism from n()\) onto N(A). This
completes the proof of the proposition. O

Corollary 6.8. The map ® : K x (g/PBN)* — G/Z()\) given by
®(k,n) = kexp(H,)e
induces a K—equivariant diffeomorphism of fiber bundles
Dy 1 K Xz (0/BO) — G/Z(N).
Here the action of Zx(X) on (g/PB(N))* is induced by the adjoint action of Zx(\) on g.

Proof. The map ® is the composition of the diffeomorphism
© K x(g/P(N) — K x N(\)e
defined by (k,n) —— (k, exp(H,)€) and the submersion
j: KxNMNe — G/Z(N)

defined by (k,né) —— kne. The latter map factors to a diffeomorphism K Xz,
N(A)e — G/Z(X\). The quotient K xz,(»y N()A) is defined by using the left action
of Zx(X) on N(N)e. It follows from Lemma [6.3] that for all m € Zx () we have

lm o exp(H,) = exp(Hpy) 0 by,
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on N(A)e. This implies that
(I)(kmv 77) = (I)(kam ) 77) )

so that ® induces a diffeomorphism K x 7,y (9/BN)* — K Xz,.0) N(Ne. In view
of Lemma this completes the proof. O

The action of K on G/P()\) naturally induces an action of K on the total space of the
cotangent bundle 7*(G/P(\)) through symplectomorphisms for the Liouville symplectic
form o on T*(G/P(X)). In particular, the stabilizer Zx(\) = K N P(\) acts linearly
on the cotangent space of T,p\)G/P(A) at eP(\). The latter is naturally identified with
(g/PB(N\))*. By Lemma [6.4] the resulting action of Zx () on (g/FP(N))* coincides with the
one induced by the adjoint action of Zx(\) on g.

The map defining the action of K on T*(G/P())) induces a submersion
K (g/PN)" — THG/P(N))
which factors to an isomorphism of vector bundles
Uy K Xz (8/BON) —TH(G/P(N).
We will complete the proof of Theorem by showing that the bundle isomorphism
or =Dy 0 U THG/P(N) — G/Z(N)
satisfies the properties of the theorem.

Completion of the proof of Theorem[G 1. Since KNP(\) = Zk(A) and G = KP()), the
inclusion map K — G induces a diffeomorphism K/Zk(\) — G/P()), whose inverse will
be denoted by 5. Let j : K/Zx()\) — G/Z()\) be the embedding induced by the inclusion
map; then s = j o § is a section of the bundle 7 : G/Z(\) — G/P ().

Let x € G/P(\) and £ € T (G/P()N)). Fix k € K such that kZx(\) = s(x) and define
n = dlx(eP(X\))*¢. Then
so that

ea(&) = ®a([k,n])
= kexp(H,)e
= exp(Hy.n) ke
= exp(He)s(z).
It follows that ¢ = ¢, equals the map defined by (B.2)), for the bundle 7 : G/Z(\) — G/P.
Moreover, in view of Lemma [6.3] Proposition [6.7 and Corollary [6.8] the proof of Theorem
B works with U = T*(G/P())); in particular, all appearing flows of vector fields are

defined without any restriction on their domains. This establishes conditions (a),(b) and
(¢) of Theorem Bl with U = T*M and ¢(U) = G/Z(\). From these, conditions (a), (b)
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and (c) of Theorem follow. Uniqueness of ¢, follow by the arguments of the proof of
Theorem [B.1] that are valid without any restrictions on domains. O
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