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Strong Rigidity of Q-Rank 1 Lattices 

Gopal  Prasad (Princeton) 

Introduction and Statement of Main Result 

A discrete subgroup F of a locally compact topological group G is 
said to be a lattice in G if the homogeneous space G/F carries a finite 
G-invariant measure. A lattice F in G is said to be uniform (or co-compact) 
if G/F is compact;  otherwise it is said to be non-uniform. A lattice F in a 
linear semi-simple group is said to be irreducible if no subgroup of F of 
finite index is a direct product of two infinite normal subgroups. Let G 
be a linear analytic semi-simple group which has trivial center and no 
compact factors, given a lattice A in G it is known that G decomposes 
into a direct p r o d u c t / / G i ,  such that for all i, Gi is a normal analytic 
subgroup of G; Ai=Ac~Gi is an irreducible lattice in G~ and llAi is a 
subgroup of A of finite index. Furthermore, if G = 1~ Gj is any decom- 

position of G into a direct product of normal analytic subgroups with 
pj: G ~  Gj denoting the natural projection and if F is an irreducible 
lattice in G, then the restriction of pj to F is an injective homomorphism for 
all j~J (cf. 1-12, Cor. 5.23-1). 

Let F be an irreducible lattice in a linear analytic semi-simple group 
G which has trivial center and no compact factors. F is called strongly 
rigid if given a lattice F'  in a semi-simple analytic group G', G' having 
trivial center and no compact factors, any isomorphism ~ 0: F---~F' 
extends to an analytic isomorphism of G onto G'. Strong rigidity has been 
proved by G.D. Mostow for irreducible uniform lattices in semi-simple 
groups which are not locally isomorphic to SL(2, R) and has been 
announced by G.A. Margolis and M.S. Raghunathan for non-uniform 
lattices in semi-simple groups which have no rank 1 factors. The purpose 
of this paper is to complete their results so as to apply to arbitrary 
irreducible lattices in semi-simple groups. 

In order to state our main theorem we need to introduce a definition. 
Let G be a linear analytic semi-simple group with trivial center and no 

compact factors. We call an irreducible non-uniform lattice F (in G) a 
Q-rank 1 lattice if it has the following two properties 

i Note that according to [10, Prop. 3.6], F' is uniform if and only if F is uniform. 
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256 G. Prasad 

(R 1) Given a nontrivial unipotent element of F, there exists a unique 
maximal unipotent subgroup of F which contains it. 

(S 2) For any maximal unipotent subgroup ~ of F, the commutator 
subgroup [q~, ~]  of q~ is central in ~. 

(In w 1 we show that if G has a R-rank 1 factor then every irreducible 
non-uniform lattice in G is a Q-rank 1 lattice (cf. Lemma 1.1). Also 
(of. Lemma 1.4) if G is a connected semi-simple linear algebraic group 
defined over the field Q of rational numbers and of Q-rank 1 and G = G ~ 
the identity component of the real points of G, and if F c GQ is an irre- 
ducible non-uniform lattice in G, then ~(F) is a Q-rank 1 lattice in 
where ~: G--~ G/Gc = G is the natural projection and Gc is the maximum 
compact normal subgroup of G.) 

We can now state the main theorem of this paper. 

Theorem A. Let G be a linear analytic semi-simple group with no 
compact factors and trivial center. Assume that G is not isomorphic to 
SL(2, R)/+ 12 . Then any Q-rank 1 lattice in G is strongly rigid. 

In view of Lemmas 1.1 and 1.4 this theorem supplements the recent 
results 2 of G.A. Margolis and M.S. Raghunathan on strong rigidity of 
non-uniform lattices in semi-simple analytic groups. In fact the results 
of Mostow, Margolis and Raghunathan together with Theorem A 
provide the following 

Theorem B. Let G (resp. G') be a semi-simple analytic group and F 
(resp. F')  be an irreducible lattice in G (resp. G'). Assume that G, G' have 
trivial centers and no compact factors and G is not locally isomorphic to 
SL(2, R). Then any isomorphism O: F - , F '  extends to an analytic iso- 
morphism of  G onto G'. 

Our proof of Theorem A reduces to verifying that the hypothesis of 
the main theorem (stated below) of Mostow [9] are satisfied for Q-rank 1 
lattices. One of the central notions underlying Mostow's procedure is 
what he calls a pseudo-isometry q~: X ~ X'  between two metric spaces X, 
X '  that is, a map q~ for which there exist positive real numbers k and b 
such that 

d(cp (x), q~(y))<kd(x, y) for all x, y ~ X  
and 

d(~o(x), ~o(y))>k -1 d(x, y) whenever d(x, y)>b. 

Mostow's Theorem (cf. [9]). Let F, F' be lattices in G, G' respectively 
(G, G' as in the preceding theorem) and let 0: F--* F' be an isomorphism 
of  F onto F'. Let X,  X '  be the symmetric riemannian spaces associated 
with G, G' respectively. Assume that there exist pseudo-isometries ~p : X-- ,  X '  

2 To appear. 
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and qg' : X'---~ X such that for all x e  X, x' ~ X'  and y (resp. 7') in a suitable 
subgroup o fF  (resp. F') of finite index 

~o (x ~) = ~o (x) 0 (v) 
and 

~o'(x'7') = ~o'(x') 0 -~ (~'). 

Then 0 extends to an analytic isomorphism of G onto G'. 

Thus to prove Theorem A it suffices to establish (cf. w 1.7 and Lemma 1.8) 
the following 

Theorem C. Let G and G' be linear analytic semi-simple groups which 
have trivial centers and no compact factors. Let K (resp. K ' )  be a maximal 
compact subgroup of G (resp. G') and let X = K x . G  and X ' = K ' \ G '  be 
the associated symmetric riemannian spaces with the reimannian structure 
induced from the Killing form on the Lie algebra g and g' of G and G' 
respectively. Let F (resp. F') be an irreducible non-uniform lattice in G 
(resp. G'). Assume that both F and F' are net 3 (and so in particular torsion 
free), G is not locally isomorphic to SL(2, R) and further that F is a Q-rank 
1 lattice. Let O: F--~F' be an isomorphism. Then there exists a pseudo- 
isometry 

~o: X---~X' 
such that 

qa(x?)=qa(x)O(y) for all x ~ X  and ?~E 

We shall achieve the demonstration of Theorem C in w 

It is a pleasure to thank Professor Mostow who suggested that I look into strong 
rigidity of non-uniform lattices and with whom I had useful conversations related to the 
problem. 

w 0. Preliminaris 
In the sequel we let Z denote the ring of rational integers. Q (resp. R, 

resp. C) will denote the field of rational (resp. real, resp. complex) numbers. 
Let G be a linear semi-simple real analytic group with Lie algebra g. Let 
g = t~ + p be a Cartan decomposition of g. It is well known that maximal 
abelian subspaces of p are conjugate under K (where K is the analytic 
subgroup of G corresponding to the subalgebra ~ of g) and that every 
element of p is semi-simple and has all the eigenvalues real. By definition 
R-rank of G is the dimension of a maximal abelian subspace of to. 

If G is a linear semi-simple algebraic group defined over a field k, then 
the dimension of a maximal k-split torus T is by definition the k-rank of G. 
It is known that when k = R  then the R-rank of an algebraic group G 
defined over R is the same as the R-rank (defined above in terms of Lie 

3 See w 1.7 for the definition of net subgroups. 
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algebra) of the identity component of the group GB of R-rational points 
in G. 

If G is a real analytic semi-simple group with trivial center, then G 
can be realized as the topological identity component of the real points 
of a suitable connected algebraic group G defined over R. We call a 
subgroup P of G parabolic if P = P n G where P is a parabolic subgroup 
of G defined over R. It is known that any parabolic subgroup of G is 
connected in the Zariski topology, also since the identity component H ~ 
of real points HR of an algebraic group H defined over R is of finite index 
in HR [8] it follows that if P is a parabolic subgroup of G then p/pO is 
finite. 

In the following Ad (resp. ad) denotes the adjoint representation of a 
Lie group on its Lie algebra (resp. of a Lie algebra on itself). Let G be a 
real analytic semi-simple subgroup of SL(n, R). We assume that G is self 
adjoint i.e., if x e G  then txeG. Here for a matrix x, tx denotes its trans- 
pose. It is well known that any connected linear semi-simple group can 
be realized in this form (cf. Mostow [7]). The isomorphism x ---, 'x-  1 is a 
Cartan involution of G. Let tr be the corresponding Cartan involution 
of the Lie algebra g of G and let g = ~ + p be the Cartan decomposition 
determined by a, f being the compact subalgebra. The subgroup K = 
{x ~ G Ix = tx- 1} is a maximal compact subgroup of G, G = K.  (P(n, R) c~ G) 
where P(n,R) is the set of positive definite symmetric matrices in SL(n, R) 
and P (n, R) n G = exp p. Let a c p be a Cartan subspace (i. e., a maximal 
abelian subspace of p). Let a* be the dual of a. For 2~a* let 

g~= {X~gl [n ,  X]  = 2 ( n )  X for H~a} 
and 

�9 = {212ea*, 2:~0 and fl~=0}. 
Then 

g= ~ gz+flo 

and 
g~176 

We fix an (open) Weyl chamber in a. This gives rise to an ordering on 
the set �9 of roots. Let r  (resp. # - )  be the set of positive roots (resp. 
negative roots) in this ordering and let A c #+ be the set of simple roots. 
For a subset ~ c A we define a parabolic subgroup Be of G called the 
standard parabolic group associated to ~ as follows. Let u~, be the sub- 
space generated by {g*l~0e~ +, q~ has a component in A-7J} ;  uv, is a 
subalgebra. Let 

a~,={H~alct(H)=O for a ~ }  
and let 

Z(a~,)= {g~GIAd g H = H  for all H~a~,}. 
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The Lie algebra 3~ of Z(a~,) is 

~oqa~ , =0 r =Xm~ 
0t~F 

Let U, be the connected (unipotent) subgroup of G corresponding to 
the subalgebra u~. Then it can be seen easily that Z (a~) normalizes U,. 
Set B~=Z(a~) .  U~. Then B~, is a parabolic subgroup of G, U~ is its uni- 
potent radical (i. e., it is the maximal normal unipotent subgroup of B~,) 
and Z (a,) is a reductive Levi supplement. 

Since a~, ( c  p) is stable under a, it follows that Z (a~) is stable under 
the Cartan involution and hence Z (a~,) = (Z (av,) c~ K). (Z (a~) c~ exp p); 
Z(a~)c~expp is diffeomorphic to a Euclidean space and Z(a , )c~K is a 
maximal compact subgroup of Z(a~,). Since B~,=Z(a~,). U~, (a semi- 
direct product) and U, is unipotent it follows that K n B~= K n Z(a~) 
and K c~ B ,  is a maximal compact subgroup of B , .  

It is well known that any parabolic subgroup P of G is conjugate by 
an element of K to a unique B~, ~ c A .  

Let Y be a nonzero element of p. By it (Y) we denote the subspace of fl 
spanned by the eigenspaces corresponding to the positive eigenvalues of 
ad Y; u(Y) is a nilpotent subalgebra. Let U(Y) be the analytic subgroup 
of G corresponding to the subalgebra n(Y). Then U(Y) is a unipotent 
subgroup. Let B(Y)  be the normalizer of U(Y) in G, then B(Y) is a para- 
bolic subgroup of G. From the above description of parabolic subgroups 
it can be deduced that 

1. B ( Y ) = M ( Y ) .  U(Y) (a semi-direct product) where M(Y)  is the cen- 
tralizer of the one parameter group exp R Y in B (Y). 

2. Kc~B(Y)  is a maximal compact subgroup of B(Y)  and the one 
parameter group exp R Y centralizes it. I.e., K n B (Y) c M (Y). 

For convenience we collect below some known results which will be 
used in the sequel. Proofs of all these can be found in Raghunathan [12], 

0.1. Lemma (Selberg)([12, Lemma 1.15]). Let S be a Lie group and A 
a lattice in S. Let H be a closed subgroup of  S. I f  there exists a neighborhood 
s of  the identity in S such that H ~  H c~ A c H, then H c~ A is a lattice in H. 

0.2. Lemma (Malcev) ([12, Chap. II]). Let U be a connected simply 
connected nilpotent Lie group. Let Z ( U) be the center and u the Lie algebra 
of U. Then a discrete subgroup of  U is a lattice in U if and only if U is the 
minimal analytic subgroup of  U containing the discrete subgroup. Let A be 
a lattice in U then A is uniform and isfinitety generated, Z(U)c~A is a 
lattice in Z(U) and the Z span of  exp-1 (A) is a lattice in u. Let A' be a 
lattice in a connected simply connected nilpotent Lie group U' and ~: A --* A' 
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be an isomorphism. Then there exists a unique isomorphism at: U--+ U' 
such that aria = co. 

0.3. Lemma (Zassenhaus, Kazdan-Margolis) (I-12, Th. 8.16]). Let H 
be a Lie group. There exists a neighborhood 12 of  the identity in H such that 
if A is any discrete subgroup of H, then A n O  is contained in a connected 
nilpotent Lie subgroup of H. 

In the sequel a neighborhood 12 of the identity as above will be called 
a Zassenhaus neighborhood. 

0.4. Lemma (Garland-Raghunathan I-21). Let G be a semi-simple 
algebraic group defined and of rank 1 over a field k ~ C. Then any non- 
trivial unipotent element Oe G k is contained in a unique maximal unipotent 
k-subgroup of G. In particular, if G is a linear semi-simple real analytic 
group of R-rank 1 then any nontrivial unipotent element 0 of G is contained 
in a unique maximal unipotent subgroup of G. 

0.5. Lemma (Raghunathan [12, Th. 13.1]). Let G be a connected 
linear semi-simple analytic group with trivial center and no compact factors. 
Let F be an irreducible non-uniform lattice in G. Let 4 be a maximal uni- 
potent subgroup of F and let U be the minimal analytic subgroup of G con- 
taining 4. Then the centralizer Z(U)  of  U in G is contained in U. 

w 1. Q-Rank 1 Lattices 

1.1. Lemma. Let G be a semi-simple linear analytic group which has a 
R-rank 1 factor (i.e., G has a normal analytic subgroup G1 such that R 
rank Gz = 1). Assume that G has trivial center and no compact factors. Let 
F c G be an irreducible non-uniform lattice. Then Fis a Q-rank 1 lattice. 

Proof. Let G = G1 x G2 where G1 is a R-rank 1 factor and G2 is its 
normal analytic supplement. Let p: G ~ G1 be the canonical projection. 
Let 0e F be a nontrivial unipotent element. Let 4 be a maximal unipotent 
subgroup of F containing 0 and let O c r be a unipotent group containing 
0. To check that F has property (R 1) it clearly suffices to show that O c 4. 
Since F is an irreducible lattice, Pit is an isomorphism. According to 
Lemma 0.4 the unipotent subgroups p(4) and p(O) which have a non- 
trivial unipotent element p(O) in common are contained in the same 
maximal unipotent subgroup of G1 and in particular the subgroup of 
p(F) generated by p(4 )wp(O)  is nilpotent. Since Plr is an isomorphism 
this implies that the unipotent subgroups 4 and O together generate a 
nilpotent and hence a unipotent subgroup of F, since 4 is a maximal 
unipotent subgroup this group coincides with 4 and hence O c 4. 

To show that F has property (S 2) too we argue as follows. Let 4 be a 
maximal unipotent subgroup of F.. Again since Plr is an isomorphism it 
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suffices to prove that [p(~), p(~)] is central in p(~). Let gl =~1 +P l  be a 
Cartan decomposition of the Lie algebra gl of Gt and let tit c p l  be a 
Cartan subspace (i.e., a maximal abelian subspace of P0. Since Gt has 

- 2 ~ •  -a~_ o +  ~ +  2~ R-rank 1, al is one dimensional. Let gl = gl T gt T gt gl gt be the 
root space decomposition of gl with respect to at. Then as is well known, 
gl gl is the Lie algebra of a maximal unipotent subgroup of G1 and 
any two maximal unipotent subgroups of G1 are conjugate to each other. 

r ~ +  2, Since g2~ is central in g~ +g2~ and Lgt gt , g~ + g 2 ~ ] c g 2 ,  it follows 
that if Nt is a maximal unipotent subgroup of Gt then IN1, N1] is central 
in N1 and so a-fortiori [Pl (~), Pt (~/i)] is central in Pt (q~). Thus F has 
property (S 2). This completes the proof of Lemma 1.1. 

1.2. Lemma. Let G be a linear analytic semi-simple group with trivial 
center and no compact factors. Let F be an irreducible non-uniform lattice 
in G which has property (R1). Then F has the following property 

(R 2) Let �9 be a maximal unipotent subgroup of F and U be the minimal 
analytic subgroup of G containing q~. Let N(U) be the normalizer of U in G 
and N~ preserves a Haar measure on U}. Then 
N O (U) n F is a uniform lattice in N O (U). 

The proof given below of this lemma is essentially due to M.S. Rag- 
hunathan. 

Proof of Lemma 1.2. Let O be a nontrivial subgroup of �9 which is 
normalized by every y(~F) which normalizes 4. Let V be the minimal 
analytic subgroup of G containing O and let N~  {geN(V)lIntglv 
preserves a Haar measure on V}, where N(V) is the normalizer of Vin G. 
We shall in fact prove that N O (V)c~ F is a uniform lattice in N o (V). First 
we shall show, using Lemma 0.1, that N o (V) c~ F is a lattice in N o (V). 

Let Oo be an open Zassenhaus neighborhood of the identity in G 
(cf. Lemma 0.3) and let t2 be an open symmetric neighborhood of the 
identity such that O4 C~r~0. We assume (as we may) that V c N where 
G = K .  A �9 N is an Iwasawa decomposition of G (K is a maximal compact 
subgroup of G, N is a maximal unipotent subgroup and A is an analytic 
diagonalizable subgroup which normalizes N). Since given any compact 
subset E of N and any neighborhood 09 of the identity in N we can find an 
a~A such that aEa -1 ~oo and since by Lemma 0.2, O and hence Vc~F 
is a uniform lattice in V, after replacing F by a suitable conjugate we can 
assume that ' there is a compact subset E of V c~ f2 such that E .  (V c~ F ) =  V 
and thus in the measure on V / V n F  induced by a Haar measure # on V, 
Vol.(V/Vc~ F) </~ (V c~ g2). 

Let y = t l  ~ot 2 be an element of N~176 with q, t2~N~ 
and o ~ .  Since #(q (Vc~2) t7l)=la(Vc~g2)=#(t~t(Vc~f2)t2) and 
Vol(V/VnF)<#(Vc~2)  it follows that if n: V ~  V / V n F  is the natural 
projection, then the maps nl,,r and nl,~,r can not be injective. 
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From this it follows that we can find (e 4=) Yl ~ V n F (resp. (e :~) ),2~ V c~ F) 
such that ti-1 ),1 q ~ 02 (resp. t2 ),2 t ~ ( 2 2 )  .) Consider now the subgroup 
of F generated by ),1 and ),),2 ),- 1. Since 

t l  I 772 7 -1 tl = t l  1 (tl ~ t 2  72 t21 (D-1 t l  1) tl 

=C~ )'2 t21) ~ =Qo 

and ti- 1 ),1 q ~ 02 c O0, the group generated by ti- t y ),2 7-1 tl and ti- t 71 q 
is nilpotent. Thus the unipotent elements y72),-1 and ),1 generate a nil- 
potent and hence a unipotent subgroup of E Since (cf. Property (R 1)) �9 is 
the unique maximal unipotent subgroup (of F) containing any non- 
trivial element of itself, it follows that ),),2 Y-I~ # i.e., 72 ~),-1 @ y but since 
),2~Vc~Fc~ ' y - t ~ ) , = ~  and hence y normalizes 4 and therefore it 
normalizes O. Thus ),EN(V). Since Y normalizes the lattice @ in V, we 
conclude that ), preserves a Haar measure on V i.e., 7~N~ Thus we 
have proved that N o (V) t2 N o (V) n F ~ N o (V). According to Lemma 0.1, 
N~ is a lattice in N~ 

Now we claim that N~176 Since 4 is a maximal uni- 
potent subgroup of F and 4 =  U, U c~F= 4. Thus every element of 
N~ normalizes 4 and hence also O. This clearly implies that 
N O (U) n F c N O (V) c~ F. On the other hand if ), ~ N o (V) n F, ), normalizes 
the nontrivial unipotent subgroup V c~ F of 4 and in view of property (R 1) 
it normalizes 4 and thus ),EN~ This shows that N~ 
N~ and hence N~176 In view of this to prove 
that N~ is uniform, it suffices to show that N~ is uniform 
in N~ 

We shall first show that the unipotent radical of N(U) is U. Let W be 
the unipotent radical of N o (U). Since N o (U)c~F is a lattice in N o (U) by a 
standard argument using a result of Auslander ([12, Th. 8.24 and 
Cor. 8.28]), Borel's density theorem and the fact that the centralizer Z (U) 
of U is contained in U (Lemma 0.5) one can prove that Wc~F is a lattice 
in W. Since W ~ U and since U c~ F = 4 is a maximal unipotent subgroup 
of F it follows that W n F = 4 and hence in view of Lemma 0.2, W =  U. 
Now since the unipotent radical of N(U) contains U and is evidently 
contained in the unipotent radical of N O (U), it follows that U is the uni- 
potent radical of N (U) (this also implies that N (U) is a parabolic subgroup 
of G cf. 1-12, Prop. 12.8(b)].) 

By Lemma 0.5 the centralizer Z(U) of U is contained in U Also since 
U is the minimal analytic subgroup containing 4, according to Lem- 
ma 0.2, 4 is a uniform lattice in U and the Z-span Uz of exp-  ~ (4) is a 
lattice in the Lie algebra u of U. Since the centralizer Z (U) of U in G is 
contained in U, it is the center of U and hence (again by Lemma 0.2) 
Z (U) c~ ~ is a uniform lattice in Z (U). Consider now the natural represen- 
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tation of N~ on u = n |  It induces an algebraic morphism 
p: N~ which clearly is a monomorphism and the 
image H of p is up to commensurability the real rational points of an 
algebraic group H defined over R. Let et be the projection N ~  
N~ then since Z(U)c~F=Z(U)n4) is a lattice in Z(U) and 
A=N~ is a lattice in N~ et(A) is a lattice in et(N~ and 
pet (A) is a lattice in H. 

Evidently p ct (A)c GL(nz) , hence the Zariski closure OH of pet (A) is a 
group defined over Q. Clearly ~  and hence ~176 is 
commensurable with ~ Thus since p , (A) (c~  is a lattice in H, 
it is a lattice in ~ Since the unipotent radical of N~ is U and 
Z(U)c  U, it follows that the unipotent radical (i.e. the maximal normal 
unipotent subgroup) of N O (U)/Z (U) is U/Z (U) and hence the unipotent 
radical of H is precisely p(U/Z(U)). Moreover since ~(~) is a lattice in 
U/Z(U) it follows that pet(b) is Zariski dense in the unipotent radical 
p (U/Z (U)) of H. This shows that OH contains the unipotent radical of H. 
According to Borel's density theorem (see e. g. [12, Chap. V]), OH contains 
also all the non-compact simple, semi-simple analytic subgroups of H. 
Since H ~ H n OH ~ p c~(A), H/~ c~H carries a finite invariant measure, 
from this it readily follows that H/~ c~H is compact. Thus to prove that 
N~176 is compact it suffices to show that ~ is com- 
pact. Since pct (A) is a lattice in ~ and is contained in ~ z = ~ c~ GL(uz) 
it follows that pet(A) is a subgroup of finite index in ~ z i.e., p~(A) is an 
arithmetic lattice. Since Z(U), the kernel of ~, is a unipotent group and 4~ 
is a maximal unipotent subgroup of F it follows that every unipotent 
element of pet(A) is contained in pet(~)cp(U/Z(U)) and hence by Gode- 
ment's criterion ~ is compact. This completes the proof of 
Lemma 1.2. 

1.3. Remark. Let G be a linear analytic semi-simple group with trivial 
center and no compact factors. Following Raghunathan we call an 
irreducible non-uniform lattice in G a rank 1 lattice if it has properties 
(R 1) and (R2). In [12] Raghunathan has constructed a nice fundamental 
domain for such lattices, a short description of this fundamental domain 
will be given in the next section. We should note here that according to 
Lemma 1.2 if a lattice has property (R 1) then it necessarily has property 
(R 2) and hence is a rank 1 lattice. 

1.4. Lemma. Let G be a connected linear semi-simple algebraic group 
defined over Q and let G = G ~ be the identity component of the R-rational 
points of G and let F cGQ be an irreducible non-uniform lattice in G. Let 
Gc be the maximal compact normal subgroup of G and let n: G --~ GIG c = 
be the natural projection. I f  Q-rank G =  1, then F = n ( F )  is a Q-rank 1 
lattice in CJ. 
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((~ is a semi-simple analytic group with trivial center and hence can be 
thought of as the adjoint group of its Lie algebra.) 

Proof. Let Go be the normal analytic subgroup of G such that G = 
Gc x Go (almost direct product) and let no: Go ~ G be the restriction of 
to Go. Evidently no is a surjective map whose kernel is precisely the finite 
center of Go. Also since Gc is compact, every unipotent element of G is 
contained in Go. Now let ~p~F be a unipotent element and let r EF c GQ 
be an element which under 7r maps onto ~ and let ~o = tps. cp, be the Jordan 
decomposition of r with (o s (resp. ~ou) semi-simple (resp. unipotent). Then 
both ~0 s and r are contained in GQ moreover ~0u being unipotent is actually 
contained in G O c~ GQ. Since n (tp)= ~ is unipotent, zt (~0~)= ~p and thus we 
have shown that given a unipotent element ~ in F there is a (in fact unique, 
since the kernel of no is central and hence has only semi-simple elements) 
uni_potent element in Go n GQ which is mapped under no onto ~. Now 
let 0 be a nontrivial unipotent element of F and O be a unipotent sub- 
group of r containing 0. Let 0e Go c~ GQ be the unique unipotent element 
such that no (0)=0. Let U be the unique maximal unipotent Q-subgroup 
of G containing 0 (cf. Lemma 0.4) and 4 = U c~ Go, clearly 4 is contained 
in Go and it is the unique maximal unipotent subgroup of GQ containing 0. 
Since kernel no is central, ~zff ~ (O) is a nilpotent group. Let O be the sub- 
group of no 1 (~) generated by the unipotent elements in no z (~) then, 
O ( c  Go) is a unipotent group which contains 0 and hence O c 4. It is 
clear that no (O) = O. Thus we have proved that any u__nipotent subgroup 
of F which contains 0 is contained in no (4) and hence 4 = ~o (4) c~ F is the 
unique maximal unipotent subgroup of F containing 0. This establishes 
property (R 1) for F. 

To show that [4', 4 ]  is central in ~, it clearly suffices to prove that 
[4,  4 ]  is central in 4. Since 4 is contained in the unipotent Q-subgroup 
U of G we will be through if we show that [U, I5] is central in U. But the 
latter can be proved for example by considering the root space decom- 
position of the Lie algebra g of G with respect to a maximal Q-split torus 
T (see the proof of Lemma 1.1 above and note that since Q-rank G = 1, 
T is one dimensional). 

1.5. Remark. One can use Lemma 1.2 and certain observations made 
in the proofs of Lemmas 1.2 and 1.4 to prove a converse of Lemma 1.4. 
More precisely one can prove that (in the notations of the preceding 
lemma) if the lattice FJaas property (R 1), then Q-rank G = 1. 

1.6. Remark. It follows from certain results announced by Margolis 
and proved independently by Raghunathan that property ($2) is a 
consequence of property (R 1) (thus a rank 1 lattice is a Q-rank 1 lattice 
and vice versa). In fact let G be a linear analytic semi-simple group which 
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has trivial center and no compact factors and let F be an irreducible non- 
uniform lattice in G, if G has a R-rank 1 factor then according to Lem- 
ma 1.1, F has property ($2) so we can assume that G has no R-rank 1 
factors. Then according to the results of Margolis and Raghunathan there 
exists a connected semi-simple algebraic group G defined over Q such 
that G is isomorphic to the identity component G ~ of the group of R 
rational points GR of G and F c GQ. Now if F has property (R 1), by the 
previous remark Q-rank G = 1 and then according to Lemma 1.4, F has 
property ($2) too. Since the results of Margolis and Raghunathan have 
not yet appeared in print we have preferred stating explicitly property 
(S 2) in the definition of Q-rank 1 lattices. 

1.7 Definition. An element ge GL(n, C) is said to be net if the subgroup 
of C* generated by the eigenvalues of g is torsion free. A subgroup of 
GL(n, C) is net if its every element is net. 

It is known that lattices in analytic groups are finitely generated 
([12, w 6.18]), thus according to [12, Th. 6.11] any lattice in a linear analytic 
group admits a subgroup of  finite index which is net. 

1.8. Lemma. Let G ( resp. G') be a linear semi-simple group with trivial 
center and no compact factors. Let F be an irreducible non-uniform Q-rank 1 
lattice in G. Let F' be a lattice in G' and let O: F -*  F' be an isomorphism. 
Assume that both F, F' are net. Then F' is also an irreducible non-uniform 
Q-rank 1 lattice. 

Proof. Since irreducibility of a lattice has been defined above in terms 
of the group structure of the lattice it follows that F' which is isomorphic 
to the irreducible lattice F, is also irreducible. Proposition 3.6 of [10] 
implies that F' is a non-uniform lattice. It remains to show that F' has 
properties (R 1) and (S 2). Let us first consider the case when G is locally 
isomorphic to SL(2, R). In this case according to [11, w R-rank G '=  
R-rank G =  1 and then in view of Lemma 1.1, F' is a Q-rank 1 lattice. 

Now we assume that G is not locally isomorphic to SL(2, R) then by 
[2, Th. 0.12] G' is not locally isomorphic to SL(2, R) and hence according 
to [10, Th. 3.1] 0 takes unipotent elements into unipotent elements and 
vice versa. This immediately implies that F' has properties (R 1) and (S 2). 
This completes the proof of Lemma 1.8. 

w 2. Fundamental Domains for Rank 1 Lattices 
In the proof of Theorem C we shall use the results connected with 

Raghunathan's construction (see [12, Chapter XIII])  of fundamental 
domains for irreducible non-uniform lattices which have property (R 1) 
(and hence also (R 2) in view of Lemma 1.2). In the following proposition 
we collect some of his results which will be used in this paper. 
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We introduce some notations first. 

Notations. Let g = [ + p (resp. g' = [' + p') be the Cartan decomposition 
of g (resp. g') determined by the maximal compact subgroup K (resp. K'). 
For c~R and a nonzero element Y~p (resp. Y'~p') let 

and 
A~(Y)= {exp t YIt<c} 

A~ {exp t YIt <c} 

(resp. Ar = {exp t Y'lt  < c}) 

(resp. A~ {exp t Y'I t<c}) 

and we let u (Y) (resp. u (Y')) denote the subalgebra of ~ (resp. g') spanned 
by the eigenspaces corresponding to the positive eigenvalues of ad Y 
(resp. ad Y'). Both u(Y) and u(Y') are nilpotent subalgebras. Let U(Y) 
(resp. U(Y')) be the analytic subgroup of G (resp. G') corresponding to the 
subalgebra u(Y) (resp. u(Y')). Then U(Y) and U(Y') are unipotent sub- 
groups. Let B(Y) be the normalizer of U(Y) in G and let 

D1 (Y)= {g~B(Y)llntglvtr)preserves a Haar measure on U(Y)}. 

B(Y) is a parabolic subgroup of G (cf. Preliminaries), D 1 (Y) is a normal 
subgroup of B(Y) and it evidently contains K c~B(Y) which is a maximal 
compact subgroup of B(Y). Thus K r =  K riD1 (Y)---K c~B(Y) and Kr is a 
maximal compact subgroup of DI(Y ). We define B(Y') and DI(Y') 
analogously. 

2.1. Proposition. Let G be a linear semi-simple group which has no com- 
pact factors and let g = [ + p be a Cartan decomposition of the Lie algebra 
g of G. Let F be an irreducible non-uniform lattice which has property (R 1). 
Then the set of conjugacy classes of maximal unipotent subgroups of F is 
finite and given a maximal unipotent subgroup �9 of F there exists a Yep 
such that ~ =  U ( Y ) n F  and ~ is a lattice in the unipotent group U(Y). Let 

~ p be a finite subset such that 

(a) U(Y)c~F is a maximal unipotent subgroup of F and it is a lattice 
in U(Y). 

(b) Any maximal unipotent subgroup of F is conjugate (in F) to 
U (Y) n F for a unique Y~ ~.  

Then we can find a constant c~R such that 

(1) I f  Yl, Y2 e~l and Y~ 4= Y2, then 

KAe ( Y 0 D, ( YO r n KA~ ( Y2) D~ (Y2)F = IJ. 
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(2) For Y~ ~,7 ~ F; tl, t2 <~ c; k l, k 2 e K and d 1 , d 2 ~ D1 (Y) if 

kl exptl Ydl =k 2 expt 2 Yd27, 

then t 1 = t  2 and y~D~ (Y)c~E 

Also (3) I f  n: G - - ~ K \ G = X  and p: X--~X/F denote the canonical 
projections, then V t ~ R the set f2, -- X - n ( U K A~ ( Y) D~ ( Y) F) is compact 

Y e ~  
modulo F i.e., p(f2t) is compact. 

2.2. Remark. A few words on the proof of the above proposition are in 
order. It has been noted in Preliminaries that B ( Y ) = M ( Y ) .  U(Y) (semi- 
direct product) and the reductive subgroup M(Y)  is centralized by the 
one parameter group expR Y. Hence, if t 2c  B(Y) (and in particular if 
f2cD~ (Y)) is a relatively compact subset then for any t o u r  the set 
{exp t Yg exp - t Yig~O, t < to} is relatively compact. Note that the ex- 
ponential map restricted to u(Y) is a diffeomorphism and since the Lie 
algebra n (Y) of U(Y) is the sum of the eigenspaces of ad Y corresponding 
to the positive eigenvalues, for any relatively compact subset co of n(Y) 
the set U Ad exp t Ym is a relatively compact subset. Also since F has 

t<--_to 

property (R 1) it has property (R2) (cf. Lemma 1.2) and hence for any 
Y e ~ ,  D 1 (Y)/D 1 (Y) c~F is compact. Thus we can choose a compact subset 
t/(Y) of D 1 (Y) such that t/(Y). (DI (Y) c~ F) = D1 (Y). Wc can use these 
observations to modify the proofs in Raghunathan [12, Chapter XIII ]  
to get a proof of Proposition 2.1. 

2.3. Lemma. Let G, F, ~ be as in Proposition 2.1. Then for any t eR  and 
Y ~ ,  KA, (Y)  D l (Y)F is a closed subset of  G. 

Proof Since Kis compact and in view of property (R2) DI(Y)/DI(Y)c~F 
is compact, to prove that KA,(Y)Da (Y)F is closed it suffices to show 
that if {exp tl YdT,} with tl < t, deDt (Y) and ?ieF is a convergent sequence, 
then it converges to a limit in A,(Y)D~ (Y)E If ti's are bounded then the 
sequence {exptl Y} is contained in a compact subset of At(Y) and hence 
if necessary by passing to a subsequence we can assume that {exp t~ Yd),~} 
as well as {expt~ Y} are convergent and hence {dT~} and therefore also 
the sequence {~} is convergent. Clearly in this case {exptiYd~i} con- 
verges to a point in At(Y)D~ (Y)E So if possible, let us assume that 
ti---~-cx) and {expt~Yd~i } converges. As noted in Remark2.2, 
{exptl Yd e x p -  ti Y} is contained in a relatively compact subset of D~ (Y) 
and hence has a convergent subsequence, so we can assume (after passing 
to a subsequence) that {expti Y~,} converges to 2eG. Let tp(~ee) be an 
element of U ( Y ) n E  Since U(Y) is the subgroup corresponding to the Lie 
algebra n(Y) which is the sum of eigenspaces of ad Y corresponding to 
the positive eigenvalues, if t~--~ - oo, {Ad(expt~ Y)Z} for a fixed Z~u(Y) 
converges to 0 and hence exp t, Y~0 exp-t~ Y ~  e. 



268 G.  P r a s a d  

Thus the sequence 

{(exp t~ YTl) (7/- 1 go 7~) (exp t i Y73- t } (=  {exp ti Y go exp - ti Y}) 

converges to the identity. Hence {7/- ~ goTi} is a convergent sequence 
converging to the identity. Since F is discrete this implies that for all large 
i, 77 ~ go 7i = e and hence go-  e, a contradiction. This completes the proof 
of the lemma. 

2.4. Remark. Let ~ and c~R be as in Proposition 2.1. For beR, the 
canonical map 

K x A~ (Y) x DI (Y)--~ G 

(k,a,d)~-~k.a.d for k~K, aEA~ and d~Di(Y ) 

is an analytic map of maximal rank and hence by rank theorem it is an 
open map. In view of Proposition 2.1 and the observation that the group 
expR Y centralizes K n B ( Y ) ( = K  nDt (Y)) made in the Preliminaries, it 
follows that if b < e this map gives rise to a diffeomorphism, 

L) A~ (Y) • ((K n D~ (Y)) ". Dx (Y)/D~ (Y) c~ F) --> X/F 
YegI  

such that the image is an open co-compact subset of X/F (i. e., it contains 
complement of a compact subset of X/F). It is also evident now that for 
any b < c if 

f2b= X - L_) rt( KA~ (Y) D~ (Y)F), 

then p(f2b) is a strong deformation retract of X/E 

In the sequel ~b (resp. ~0) will denote the closed set 

U ~ (KAb(Y) D1 (Y)F) (resp. the open set U rc(KA ~ (Y) D 1 (Y)F)). 

w 3. Two Lemmas 

In this section we shall prove two results of technical nature. 

3.1. Lemma. Let G be a real analytic semi-simple group with trivial 
center and let g = ~ + p be a Cartan decomposition of the Lie algebra fl of G. 
Let B be a parabolic subgroup of G and U the unipotent radical of B. 
Let u (resp. b) be the Lie algebra of U (resp. B). I f  [U, U] is central in U, 
then we can find a (unique) Y~p such that 

b o + 1 + 2  (1) n = g ~ + 9 ~ ,  --gY gr grand 
0 1 2 g = g f 2 + f l r l + g y + g r + g r ,  
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where for ~t=0, ___ 1, ___2, g~ is the eigenspace of ad Y corresponding to the 
eigenvalue ct. 

(2) g~ = Eu, . ] .  

Proof Let a ~ p be a Cartan subspace. Let g = ~ g*+ go be the root 

space decomposition of the Lie algebra g with respect to a. Let us fix a 
Weyl chamber in a, this gives rise to an ordering on the set �9 of roots. 
Let �9 + be the set of positive roots and A c ~ + be the simple roots. Let u § 
be the nilpotent subalgebra )-" g*. 

~ +  

Let K be the analytic subgroup of G with Lie algebra f. Since any 
parabolic subgroup of G is conjugate by an element of K to a standard 
parabolic subgroup (cf. Preliminaries) and since p is stable under A d K  
it suffices to prove the lemma in the case when B = B e for a ~P c A. 

Let Y~ a be the unique element such that a (Y) = 0 for a ~ ~ and a (Y) = 1 
ifa~A - ~. Let N be the set of natural numbers and for m~Z, let g~ denote 
the eigenspace of ad Y corresponding to the eigenvalue m. Then clearly 

g =  E --n 0 g,., + gy + ~ g~, 
hEN n~N 

u =n~,= ~ g~ 
nEN 

b = be = gO + ~ g~, and 
nEN 

.+  = u =  Z g~'" 
hEN 

As is well known n § is generated (as a Lie algebra) by the space ~ g~ and 
~tEA 

clearly ~ g" c gO + g~, it follows that u = ~ g~, is contained in the Lie 
~t~A n~N 

algebra generated by o 1 g r + g r .  Now since by the hypothesis [u, u] is 
central in u and since g~ cat  it follows (using Jacobi's identity) that 
go+ ~+ 1 1 gr [gr,  gr] is a subalgebra. This implies that 

SO 

Y', g~- = g~, + Eg~,, g~,] 
n~N 

[g~,,g~,]=g2 and g~,=0 for n>2.  

Since g{n is dual to g~, under the Killing form, it follows that g~-n=0 if 
n >2. Hence 

1 0 1 g = g r 2 + g ~  + g r + g r + g ~  
b=gor- 1+ 2 +gr Or, tt=g~+g~ 

and 
Bt, it] = Eo~, g~] = g~. 
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The uniqueness assertion of the lemma 4 follows from the conjugacy 
of maximal R-split tori in B and the fact that a is the Lie algebra of a 
maximal R-split torus in B. 

In the following the real rational points of a connected reductive 
algebraic group defined over R will be called a reductive real algebraic 
group. Note that a reductive real algebraic group need not be connected 
but in any case it has only finitely many connected components. 

The proof  of our next lemma depends upon the strong rigidity of 
uniform lattices (proved in Mostow I-9]) and the classification of two 
dimensional closed differentiable manifolds. 

3.2. Lemma. Let A (resp. A')  be a uniform lattice in a reductive real 
algebraic group M (resp. M').  We assume that A, A' are net. Let L 
(resp. E )  be a maximal compact subgroup of  M (resp. M')  and Y= L \ M, 
Y ' = E ' . . M '  be the associated "symmetric spaces". Let O: A---~A' be an 
isomorphism. Then there is a C oo diffeomorphism ~o: Y--~ Y' such that 
q~ (y2)= ~o (y) O(2) for y e  Y,, 2cA. 

Proof Let M ~ GL(V) (resp. M ' c  GL(V')) be a connected reductive 
algebraic group defined over R such that M = ]VI e (resp. M ' =  M~) and let 
M = S - T ,  M ' = S ' .  T' (almost direct products) where T (resp. T') is the 
maximal central torus in M (resp. M') and S = [M, M], S ' =  [M', M' ]  are 
connected normal semi-simple algebraic subgroups defined over R. If H 
and f are algebraic groups defined over R and if n: H ~ f is a surjective 
morphism defined over R, then n (Fie) is a subgroup of f i r  of finite index. 
This implies that if Kis a maximal compact subgroup of He  then K • n (He) 
is a maximal compact subgroup n(l-le) and the natural inclusion 
n (HR) c~ K'-, n (HR) ~ K \ He  is a diffeomorphism. Thus since L (resp. E) 
obviously contains the maximal compact normal subgroup o fM (resp. M') 
we can, after dividing out the center of S, the maximal connected normal 
R-anisotropic subgroup 5 of S and also the R-anisotropic component 
of T, assume that T is split over R, S has no R-anisotropic factors and 
further S has trivial center. Thus T n S =  {e} which implies that M is 
actually direct product of T and S and M~ = M = SB x T~. Similarly we 
can assume that T' is split over R, S' has trivial center and no nontrivial 
R-anisotropic factors and then M ' =  S ' x  T' (direct product), M~ = M ' =  
S~ x T~. Let ct:Se x Te--* Se (resp. ct': S~ x T~ ~ S~) be the natural pro- 
jection. Then since an algebraic morphism takes net subgroups into net 
subgroups, both at(A) and ct'(A') are  net. 

Te is direct product of its maximal finite subgroup F and the identity 
component T ~ similarly T~ is direct product of its maximal finite sub- 

4 In the sequel we shall not use uniqueness. 
An algebraic group defined over R is said to be anisotropic over R if it has no nontrivial 

R-split torus. A reductive algebraic group defined over R is anisotropic over R if and only 
if the group of its R-rational points is compact in the Hausdorff topology. 
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group F'  and the identity component T~ ~ Clearly the finite central sub- 
groups F and F' are contained respectively in L and E. Thus dividing out 
M and M' by F and F '  respectively we can assume that we are in the 
following situation. M = SR x T and M ' =  S~t • T' (direct products) where 
T and T' are (connected) vector groups; S, S' are connected semi-simple 
algebraic groups defined over R which have no nontrivial R-anisotropic 
normal subgroups and in particular they have trivial center. (Of course 
we no longer assume that M and M' are real reductive algebraic groups.) 
A (resp. A') is a uniform lattice in M (resp. M') such that if we denote the 
natural projection Sn • T ~  S~ (resp. S~ • T' ~ S~) again by ~t (resp. ct'), 
then ~(A) (resp. ct'(A')) is a net subgroup of S I (resp. S~); L (resp. E) is a 
maximal compact subgroup of M (resp, M'), Since T and T' are vector 
groups, L c SB and E c S~. 

It easily follows from a result of Auslander (see [12, Th. 8.24]) and 
Borel's density theorem that ct(A) is discrete and hence is a uniform 
lattice in SR and A c~ T is a lattice in T. From this it is also clear that (since 
S has trivial center) A n  T is precisely the center of A. Similarly T ' n A '  
is the center of A', ct' (A') is a uniform lattice in S~ and T ' n  A' is a lattice 
in T'. The isomorphism 0: A ~ A '  thus defines isomorphisms OJTc~A: 
TnA---~ T' n A '  and 0: A/TnA- -~A ' /T '  nA' .  Since L \ M = ( L \ S R ) •  
E \ M ' = ( E \ S ' I ) x  T' and the isomorphism 0JrnA: T n A ~ T ' n A '  ex- 
tends to a unique analytic isomorphism T ~  T' it suffices to prove the 
result assuming that T and T' are trivial i. e., when M = Sit and M' = S~. 

Now since A is a (uniform) lattice in SR by a well known argument 
using Borel's density theorem (cf. [12, Chap. V]) it follows that S =  1] Si 

i~ l  

where Si's are connected normal algebraic subgroups of S defined over R 
and Ai = S  i n A  is an irreducible uniform lattice in S~. As FIAi is a uniform 
lattice in s~=VI  s~, it is a subgroup of A of finite index. Let A'i=O(Ai) 

i 6 l  

and let S' ~ be the identity component of the Zariski closure of A~ in S'. 
Clearly S'~ is an algebraic group defined over R and A'~ = AI c~ S'~ is a sub- 
group of finite index in A'/. Let 0 -  i (~)  = Ai, then A~ is an irreducible uni- 
form lattice in S~. Since A~ is normal in the lattice O(HAi), by Borel's 
density theorem it follows that S'~ is a normal subgroup of S'. By density 
arguments it also follows that HS '~=S ' and if i~ej then S 'i commutes 
with S ' j  and so S'~n S'i is trivial. Thus S ' =  1-I S'~ (direct product). Since 

i e l  

�9 " ' (HAi)=Ai is a S~ . / / , t ~=S~ .  l-Izi~ is a closed subgroup of S, ,  S~ c~ "' " 

uniform lattice in S~. 
For i~I let pi: S ~ S ~ (resp. p'i: S ' ~  S'~) be the natural projection. Let 

A = [ 1  p,(A) (resp. A'=l-- I p~(A')). Obviously A c A  (resp. A'cA ' ) .  Since 
i ~ l  i ~ l  

for i~I, pi(A) (resp. p'~(A')) is a uniform lattice in S~ (resp. S~), A (resp. A') 

19 lnventiones math., Vol. 21 
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is a uniform lattice in Su (resp. S~t). It can be seen (using Borers density 
theorem) that there exists a canonical isomorphism O: A ~ A' such that 
Ola=0. Thus it suffices to prove the lemma assuming that A=A and 
A'=A'. Since corresponding to the decomposition H s~ (resp. l-I s~) 

i~ l  i e l  

of SB (resp. S~t) there is a decomposition of the maximal compact subgroup 
L (resp. E) and hence also of the associated symmetric spaces it follows 
that we can further assume that A and hence A' are irreducible. 

Now we shall consider the two possible cases separately. First we 
consider the case when Stt is locally isomorphic to SL(2, R). In this case 
according to [11, w S~ has R-rank 1 and since a uniform lattice deter- 
mines the dimension of the symmetric space associated to the ambient 
semi-simple Lie group (this follows from a simple cohomology argument), 
d i m E \ S ~ = d i m L \ S B = 2  and hence S~ is also locally isomorphic to 
SL(2, R). Now ~ =(L- .SR,  fl, L \S~/A)  (resp. ~ '=  (E \ S ~ ,  fl', E \S~/A'))  
is a locally trivial A (resp. A') bundle where fl: L\SR-~L \SR /A  
(resp. fl': E\S'a--~ E \  ' ' SR/A) is the canonical projection. Since L'--SR 
and E \ S~ are contractible (L, E being maximal compact subgroups of 
respectively SB and S~) it follows that these bundles are classifying 
principal bundles. Now if we identify A' with A with the help of the iso- 
morphism 0 then from the properties of classifying bundles (see for 
example [4-1) it follows that there is a homotopy equivalence ~0: 
L\SR/A-* E "-S'R/A' such that the bundle induced by Up0 from ~' is iso- 
morphic to the bundle ~ (note that we have identified A' with A). Now 
since L',SFJA and E'.S'dA' are two dimensional closed manifolds, it 
follows from the classification of such manifolds (see [1, w and [6]) 
that there is a diffeomorphism Fp: L x SpJA ~ E "-. Sk/A' which is homo- 
topic to Fpo. Since homotopic maps induce isomorphic bundles it follows 
that ~ * ( ~ ' ) , ~  and hence there is a map ~0: L\Sa -~E \S 'a  such that: 
cp(x2)=~o(x)O(2) and the induced map L\Sa/A~E',S'm/A' is the 
diffeomorphism ~p. Clearly then ~0 is a diffeomorphism and in this case the 
proof is complete. 

Next we consider the case when SR (and therefore Sk) is not locally 
isomorphic to SL(2, R). Since 6 S~/S ~ and Sk/S'R~ finite, there exists a 
subgroup A1 of A of finite index such that A a is contained in S ~ and 0 (A1) 
is contained in S~ ~ Clearly At (resp. O(AI)) is an irreducible uniform 
lattice in S ~ (resp. in Sit~ According to Mostow [9] there exists an iso- 
morphism 0: o o,o SR--*aR such that OIA~ =OIAl. Let us consider now the 
groups S~ and S'R~ ', clearly these are subgroups of finite index in SR 
and Sk respectively. We define a map ~k: S~ --* S]t~ ' by setting $ (x2)= 
O(x) 0(2) for x e S  ~ and 2~A." It can be checked that $ is a well defined 
isomorphism. 

6 For  a g r o u p  H we let H ~ denote  the connected  componen t  of the identity in H. 
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Since the natural inclusions (L c~ S ~ A) \ S ~ A ~ L \ S~ and 

r rO , ~0 ( E n S ~  A ) \ S R  A ~ E \ S ~  

are diffeomorphisms it suffices to show that there is a C ~ diffeomorphism 

~o: ( L ~ S ~  ~ , , o  , , o  , A---~(E n S ~  A ) \ S ~  A 
such that 

~p(x2)=qg(x)O(2) for x e ( L n S ~ 1 7 6  and 2eA. 

Now if EnS'B~176 then ~k induces a diffeomorphism of 
required type between the symmetric spaces, but in general E n S~~ ' 
may not be equal to ~b(LnS~ In any case the groups E n S ~ ~  ' and 
~b(Ln S ~ A) are maximal compact subgroups of the group S~~ ' which 
has finitely many connected components, hence there is an element g' in 
the identity component S~ ~ of S~~ ' such that 

~b(Ln S~ nS~~ ') g' - 1  

Let us consider the inner automorphism y ' ~  g' y' g'-1 of the group 
S~~ '. This induces a diffeomorphism 

~ :  (L nS~~176 ~ ~(LnS~176  ' 
such that, 

~p~ (y' �9 a') = ~p0 (y') �9 g'a'g '-1 for y'e(E nS~'~ A ) \ S R '  ,0 A ' 

and a' eS'~~ A '. 
Thus to complete the proof of the lemma it suffices to show that there 

is a diffeomorphism 

r ( L n S ~  A) " S ~  A ~ ~b(Lc~S~ A)"S'n ~ 
such that 

~Po(X2)=~Po(X)g'O(2)g '-1 for x e ( L n S ~ 1 7 6  and 2~A. 

For  convenience we shall denote the symmetric space (Ln S ~ A)'-, S ~ A 
by Y and shall identify the group Sk~ ' with S~  and the symmetric 
space (L n S ~ A ) \  Sk~ ' with Y with the help of the isomorphism ~b. Let 
y: [0, 1] --, Sk ~ be a differentiable curve such that y(0) is the identity and 
7(1) =g ' .  We have a differentiable map 

I x A x Y - - * Y  

(t, 2 , y )~y .? ( t )2~( t  -~) for t~I, 2~A and y~Y 

We can now use Theorem4 of Koszul [5, w (p. 59)], in a suitably 
modified form, and compactness of [0, 1] to produce a diffeomorphism 
tpo: Y--, Y such that 

qgo(y2)=qgo(y).y(1)Ay(1)-l=qgo(y).g'Ag '-~ for yEY and 2~A 

19" 
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(note that we have identified S~~ ' with S~ and hence A' with A). This 
completes the proof of Lemma 3.2. 

w 4. Proof of Theorem C 
In this section we shall use the notations introduced in w 2. Let ~ ( c  p) 

and c e R  be as in Proposition2.1. For Y e ~  since Or=U(Y)nF is a 
maximal unipotent subgroup of F and since F is a Q-rank 1 lattice, 
[Or, Oy] is central in Or and hence [U(Y), U(Y)] is central in U(Y). 
Also since B (Y) is a parabolic subgroup with unipotent radical U(Y) we 
can assume, in view of Lemma 3.1, that #~ is so chosen that for every Y e ~  
(in the notations of Lemma 3.1) 

u ( Y ) = g ~ + g  2, b 'Y" o+ , . 2 / ) = g r  gY+gr 

and [u(Y), u(Y)] =g~. 
Since G and therefore G' is not locally isomorphic to SL(2, R) and 

since F, F '  are net according to [-10, Theorem 3.1] the isomorphism 0 
takes unipotent elements into unipotent elements and vice-versa. Thus 
for any Ye~ ,  0(Or) is a maximal unipotent subgroup of F'  and hence in 
view of Proposition 2.1 and Lemma 3.1, there exists a Y'ep' such that 
O(Or)=U(Y')nF'=O'r,; O'r, is a lattice in U(Y') and u(Y' )=g~,+g~ 2, 
b(Y')= g~o + g~, + g~2. Thus we get a finite subset ~ '  of p' and a bijection 
~ ' .  In the sequel image of any Y ~  under this bijection will be 
denoted by Y'. 

Clearly any maximal unipotent subgroup of F'  is conjugate (in F') 
to U(Y')nF' for a unique Y ' e ~ ' .  Hence according to Proposition 2.1, 
there exists a constant c ' eR such that if Y~', Y~ e ~  and YI' 4= Y~ then 

K'A',, (Y() Dt (Y~') r' nK' A',,(Y~) DI (Y~) r '= 0 

and for Y'~ ~/', y 'e F' ;  tl, t2 < c'; k~, k~ eK '  and dl, d[eD,  (Y') if 

k~ exp tl Y' d~ = k~ exp t 2 Y' d~ 7', 

then t l= t2 ,  7'eD~(Y')nF'. Also if 7t': G'--*K"..G' and p': X'--,X'/F' 
are the natural projections then for any t e R  the set 

t2 ' ,=X' - rc ' (  U K'A~ r') 
y'~,~' 

is compact modulo F', i.e., p'(O't) is compact. 
In the sequel we shall denote 

U n'(K'A~ F') (resp. U n'(K'At(Y')DI(Y')F')) 
y" ~.~" y '  ~ ,~ '  
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by ,~o (resp. '~t). Also for any Y e ~  (resp. Y'e ~ ' )  Kr will denote K c~ D l (Y) 
(resp. K~,, will denote K'c~D'I(Y')). As has been remarked earlier Kr 
(resp. K~,) is a maximal compact subgroup of D1 (Y) (resp. Dl(Y')). 

For Ye~,  let ctr be the analytic isomorphism from U(Y) to U(Y') 
determined by the isomorphism 0[~:  ~r  ~ ~,, (cf. Lemma 0.2, note that 
a connected unipotent group is simply connected). For a subgroup H 
of a group M, let NM (H) denote the normalizer of H in M. Since B(Y) c~ F = 
Nr(C~y) (resp. B(Y')c~F'=Nr,(~'r,)) and since q~r is a lattice in U(Y) it 
follows that every element in Nr(~r) preserves a Haar measure on U(Y) 
thus Nr ( ~ r ) c  D1 (Y) and hence A r = Nr(~r)= DI(Y)c~E By similar con- 
siderations A'r,=Nr,(Cb'r,)=Dl(Y')c~F'. The subgroups U(Y) A r and 
U(Y') A'r. are closed subgroups of G and G' respectively since 

U(Y)c~Ar=~ r (resp. U(Y')c~A'r,=~'r) 

is a (uniform) lattice in U(Y) (resp. U(Y')). We define a map fir: U(Y)Ay~  
U(Y')A'r by setting 

flr(u.2)=ctr(u).O(2 ) for ueU(Y) and 2~Ar 

It can be easily checked that this is a well defined analytic isomorphism. 

Now let us consider the spaces K r'-. D1 (Y) and K~, "-, D1 (Y'). They 
are contractible since Kr (resp. K'r,) is a maximal compact subgroup of 
D~ (Y)(resp. D1 (Y')). We assert that (Kr \ D~ ( Y), ~r, Kr \ DI ( Y)/ U ( Y) Ar) 
is a locally trivial principal U(Y)Ar bundle, where 

nr: Kr\DI(Y)---~ Ky \DI (Y ) /U(Y)Ar  

is the natural projection. 
Since B(Y)=M(Y) .  U(Y) (a semi-direct product, cf. Preliminaries) 

and Di (Y)~ U(Y), 

DI(Y)=(DI(Y)c~M(Y)). U(Y) (a semi-direct product). 

Also recall that K r c D 1 (Y) c~ M(Y) thus Ky \ D1 (Y) ~ Kr \ D1 (Y)/U(Y) 
is a trivial principal U(Y) bundle. Since U(Y) is a normal subgroup of 
D~ (Y), there is a natural action of the discrete subgroup U(Y)Ar/U(Y) 
on the space Kr',.DI(Y)/U(Y) on the right. Since F and hence Ar is net, 
U(Y)Ar/U(Y) has no nontrivial torsion element, for if 2eAr  projects 
onto a torsion element in U(Y)Ar/U(Y) then for a suitable positive 
integer n, 2 n is contained in the unipotent group U(Y) and hence all the 
eigenvalues of 2 are roots of unity, since 2 is net this implies that 2 is uni- 
potent and hence it is contained in U(Y) which shows that U(Y)Ar/U(Y) 
has no nontrivial torsion elements. From this one easily concludes that 
the action of U(Y)Ar/U(Y) on K y \ DI (Y)/U(Y) is fixed point free and 
hence Kr \ DI ( Y)/U ( Y) ~ Kr \ D1 ( Y)/U ( Y) Ar is a locally trivial prin- 
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cipal U(Y) Ar/U(Y) bundle and thus (Ky \ DI(Y), rcr, Kr D1 (Y)/U(Y) A r) 
is a locally trivial principal U(Y)Ar bundle. Similarly for Y ' ~ ' ,  

(K'w \ 01 (Y'), nr,, K'r, \ 01 (Y')/U(Y') A'~,) 

is a locally trivial principal U(Y')A'y, bundle, where n r, is the canonical 
projection 

K'y, ".. D, (Y') -* K'r, ". D1 (Y')/U (Y') A'r,. 

Since Ky \ D1 (Y) and K'r, ". D1 (Y') are contractible, these bundles are 
classifying principal bundles. Now if we identify U(Y)Ay and U(Y')A'r, 
with the help of the isomorphism/~r, then it follows from the theory of 
principal bundles (cf. [4]) that there is a map 

Ky \DI(Y)---~ K'r, \ D I ( Y '  ) 

which we denote again by air such that 

ar(6.~)=cty(6)flr(2) for 6 e K y \ D I ( Y )  and 2~U(Y)Ay.  (1) 

Let us consider the commutative diagram 

K y \ D t ( Y )  ~Y , K'r,'.DI(Y') 

Ky".D,(Y)/U(Y) ~" , K'y, \DI(Y') /U(Y')  

K y \ D , ( Y ) / U ( Y ) A y  ~" , K'r,\DI(Y')/U(Y')A' Y, 

where the spaces 
(Kr ". D1 ( Y)/U ( Y))/( U ( Y) A y/U ( Y)) 

and 
(K'r, "- DI ( Y')/U ( Y'))/( U ( Y') A'~,/ U ( Y')) 

have been identified with respectively K r \ D I ( Y ) / U ( Y ) A y  and 
K'y, \ DI(Y')/U(Y')A'r in the canonical way, the vertical arrows are the 
natural projections and ~r, ~tr are the maps induced by at .  Since 
DI(Y)/U(Y) and DI(Y')/U(Y') are reductive real algebraic groups and 
U(Y) A r/U(Y) (resp. U(Y') A'y,/U(Y')) is a uniform lattice in DI (Y)/U(Y) 
(resp. DI(Y')/U(Y')) and since fly: U ( Y ) A y ~  U(Y')A'y, induces an iso- 
morphism 

~r: U(Y)Ar/U(Y)---~ U(Y')A'r,/U(Y') 
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it follows from Lemma 3.2 that there is a C ~ diffeomorphism 

~r:  Kr ".DI(Y)/U(Y)-* K'r, ".DI(Y')/U(Y') 

such that for x e K r \ D d Y ) / U ( Y )  and 2eU(Y)Ar/U(Y)  

~ ( x ~ ) = ~ r ( x )  fl~(~). 
Let ~r  be the map 

Kr "- D, ( Y)/U(Y) Ar -+ K'r, ". D1 (Y')/U(Y') A'r, 

induced by Cp r. Again since Kr  "- Ol (Y)/U(Y) and K'r \ 01 (Y')/U (Y') are 
contractible, the bundle 

Kr \ D1 (YffU (Y) --~ Kr ". D1 (YffU(Y) A r 

(resp. K'r, \DI(Y') /U(Y')  ---~ K'r \DI(Y') /U(Y')  A'r,) 

is a universal U(Y)Ar/U(Y ) (resp. U(Y')A'r,/U(Y')) bundle. Since ~r 
induces a bundle map it follows (from the property of classifying bundles) 
that ~t r is homotopic to the diffeomorphism ~r.  Since homotopic maps 
induce isomorphic bundles it follows that the bundle 

= ,  , , , \Dl(y ' ) /U(Y,)A'r ,  ) ~Pr (Kr, \ DI ( Y ), lrr,, Kr, 

is isomorphic to the bundle (Kr"-DI(Y), nr, Kr \DI(Y) /U(Y)Ar)  and 
thus we get a map 

~0r: Kr'..DI(Y)-+ Kr,'..DI(Y') 
such that 

r for 6 e K r \ D I ( Y )  and 2eU(Y)A~. (2) 

Further ~Pr is a diffeomorphism since all the bundles under consideration 
are locally trivial, differentiable and ~r  is a diffeomorphism. 

In the sequel ~r  will denote the composite 

Dl(y)__ .Kr \Dl (y )  ~Y ,K ' r , \Dl (y '  ) 

where the first map is the natural projection. 
Let d = min(c, c ' ) -  1 and let ~Po be a diffeomorphism from ~a onto '~a 

defined as follows. For keK, t<d, Ye l l  and ueDl(Y), 7eF let 

q~o (n (k. exp t Y. u. 7) = re' (exp t Y'. c~r (u) 0 (7)) 

<with some abuse of notations>. 

It is easily seen using Proposition 2.1 and the properties of(Pr that q~o is a 
well defined diffeomorphism and for x in its domain of definition and yeF, 

~Oo (x ~) = ~Oo (x) 0(~). 

Thus tp o induces a map ~Po: P(~a)~ P'('~a). 
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In the following we shall identify F' with F with the help of the iso- 
morphism 0 and call a map q~: X ~ X' F-equivariant if ~b (x 7) = q~ (x) ~. 
Since X and X'  are contractible spaces, the spaces X/F  and X'/F are 
classifying spaces for principal F bundles, it follows that the spaces X / F  
and X' /F are homotopically equivalent and there exists a homotopy 
equivalence if: X / F ~  X ' /F  such that the F-bundle induced by t~ from the 
bundle 4' = (X', p', X'/F) is isomorphic to the bundle 4 = (X, p, X/F). For 
Y ~  let T r = K y \ D I ( Y ) / A  r and for t < c  let 

~rr: T r --~ X /F  

be the map induced from the map 

u~--~port(exptYu) for uGDt(Y ). 

It is clear that for all t<c,  et r is a homeomorphism onto its image (cf. 
Remark 2.4). Since 4 ~ ~* (r the F bundle on Tr induced from r by the 
map if- e~ is isomorphic to the bundle induced from 4 by ~,. Also since 
q~o induces a F-bundle isomorphism from 41 ~d) to 4'lp,ce~) it follows that 
the bundle induced on T r from 4' by q~o" effis isomorphic to the bundle 
induced from ~ by E~. But since e~+ 1 and e~ are clearly homotopic the 
F-bundles induced on T r from r by 4 +1 and e~ are isomorphic. This 
proves that the maps ft. edr+ 1 and Up o �9 ~ induce isomorphic bundles on 
Tr and as X' /F is a classifying space for F-bundles it follows that for 
every YG~, Upo. ~ is homotopic to ft. e~+l. 

Let I be the unit interval [0, 1]. For YG~ we fix a homotopy fir: 
T r • I --* X' /F between ~o '  ~r and t~- e~+ 1 such that the composite 

Ty ~ T~ • {O) ~ '  , X ' / F  is ~0"~ 

and the composite 

T r ~ T  r•  ~1 , X ' / F  is ~.e~ +'. 

Let Up1: X/F--* X' /F be the map defined as follows 

and for d<t<_d+ l, YG~I, uGDI(Y) 

Upl (p. rt (exp t Yu))=Jr(VrU, t - d )  

where Vr is the natural projection DI(Y)---, T r = K r \ D I ( Y ) / A y .  Using 
Lemma 2.3 one can check that ~ is continuous. Since p(~2a+~) is a strong 
deformation retract of X/F and since ~ I~o,.,~ = ~ it follows that ~ is 
homotopic to ft. Also since ~p~ restricted to the open co-compact set 
p($O) is a C ~ map, by standard results in differential topology it follows 
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that there exists a C ~ map 

~p: X/F-~ X'/F' 

which is homotopic to ~Pl and which coincides with ~1 on the open co- 
compact set p ( ~ o  1). Clearly ~ is homotopic to ~. Thus ~ ~ ~* (4') ~ ~* (4'). 
Let ~p: X--~X' be a F-equivariant map lying over ~. Then ~p is a C ~ map. 
We claim that ~p is a pseudo-isometry. We shall prove our claim in several 
steps. 

In the sequel for a differentiable map ~: M--~ N we denote by ~b the 
map between the total spaces of the tangent bundles on M and N 
induced by ~b. 

We will first show that there exists a constant ~2 > 0 such that if Z is a 
tangent vector to X at a point in ~ o  I then 

ll~Zll-<-~2 IIZLI. (3) 

(Here we use ]l II to denote the norm in the riemannian structure on 
both X as well as X'. We shall use II [[ to denote also the norms on p and p' 
determined by the Killing forms on g, g' respectively.) 

In the following we denote Dt(Y)nM(Y)  by Mr(Y). Recall that 
Dt(Y)=Mt(Y) ,  U(Y) (a semi-direct product). For Ye~,  DI(Y)/Ar is 
compact so there exists a compact subset rl(Y) of Mr(Y) such that 
DI(Y)=rI(Y). U(Y)A v. Since the riemannian structures on X and X' 
are respectively F and F' invariant (in fact they are respectively G and G' 
invariant) and since 

~[p(~_,) = ~ll.(zo_,) = ~oip(|176 

it suffices to show that there is a constant a 2 >0  such that for any Y6~, 
i fZ  is a tangent vector to X at a point in u(A~ tl(Y) U(Y)) then 

II~0(Z)ll _-<~2 IlZll. (4) 

Let us consider the composite ~r  of the maps 

Mr(Y). U(Y)=DI (Y )~  K r \ D I ( Y )  'PY ' K'v,\D1(Y') 

~ (K~,, \MI(Y'))"  U(Y'). 

Given meMx(Y), we can use local sections of the locally trivial fibration 
Mx(Y')--~K'r,'..MI(Y' ) and the fact that, Cpr(b.2)=~py(6)flr(2) for 
2eU(Y), to find a relatively compact open neighborhood co,, of m in 
M1(Y) and a map ~h~: COm" U(Y)~DI(Y ' )  such that 

1. The composite com" U(Y) ~',o~ ,Dl(y,)__~K,r,\Dx(Y, ) is the re- 
striction of ~5 r to com" U(Y). 

2. ~,~(~. ,~)= ~ ( ~ ) .  flr(,~)= ~ ( ~ ) .  ~r(,~) for ~co~. u(Y),,~ u(Y) 
(recall that fitly(r)--at). And 
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3. $o,m (tom) is a relatively compact subset of D1 (Y'). Let 

~br,,o : A~ �9 U ( Y ) - *  A~ �9 DI(Y')  
be the map 

e x p t Y . 6 ~ - . e x p t Y ' $ ~ , m ( 3  ) for 6 ~ t o m ' U ( Y )  and t < d - 1 .  

For m E M I ( Y )  let too be an open neighborhood ofm such that the closure 
to,,-~ of too is contained in tom" Since ~ is finite and t/(Y) is compact and 
therefore can be covered by finitely many to~ to prove (4) it suffices to 

o there is a constant ~3 such that if Z is a tangent show that given a tom 
vector to X at a point in ~z(A~ �9 o tom" V (Y)) then 

II~o(Z)ll <~3 IlZll. (5) 

For a fixed Y ~  consider the eigenspace decomposition g=g~-2+ 
+ o + 1 + 2  g{l gr gy g r o f g w i t h r e s p e c t t o a d Y .  SinceY~p, g O = g O n ~ g O c ~ p  

and by our choice of Y, u (Y)=g~+g~,  [u(Y) ,u(Y)]=g~ and the Lie 
algebra of B(Y)  (resp. M(Y) )  is o 1 2 fir + gr + gr (resp. go). Let {Z }1 s~_<, be a 
basis of u (Y) such that each Z ~ is either in g~, or in g~, and {�89 (Z i - a 2~)} 1 ~_ ~ <__, 
(a is the Cartan involution) is an ortho-normal set with respect to the 
Killing form. Clearly every element in go is orthogonal to Z ~-  a Z ~ for 
i<  n. Let { yi} j~ o be an orthonormal basis of go n p such that yo = y/l[ Y[I. 

In the following we shall identify the Lie algebra g (resp. g') with the 
tangent space to G (resp. G') at the identity and for an element Z eg 
(resp. Z'Eg')  and a point g~G (resp. g'eG')  we let Zg (resp. Z'g,) denote the 
value of the right invariant vector field on G (resp. G') determined by Z 
(resp. Z') at g (resp. g'). Now it can be easily seen that for t < d -  1, 6~tom 

and u ~ U ( Y )  ~br,~,,,(y~xp,r.a. ~) = y~l,,~m(exptr.6.u) 

for Z in the Lie algebra of M~ (Y) we get 

r. ~,m (Z~xp,r.,~. ,,) = (Ad exp t Y ' f ( Z ,  6)) ~, v, ,,,.(.xpt r-,~- ,,) 

where f (Z ,  6) is the element in the Lie algebra of DI(Y')  such that 

( f  (Z, 6))~o~.ta ~ = ~ , ,  (Z,). 

Finally for Z i e u ( Y )  

�9 i 

= (Ad (exp t Y' .  ~,,~, (6)) ~t r (Ad (6-1 e x p -  t Y) zi)),r,,~,.(~pt r . , .  ~). 

We note that since [u(Y), u(Y)] = g2 and [u(Y'), u(Y')] = g~,2,, any Lie 
algebra automorphism of u(Y) (resp. u(Y')) stabilizes g2 (resp. g~,,2) and 
~r which is a Lie algebra isomorphism maps g2 onto g~2. Since Ad e x p -  t Y 
(resp. AdexptY ' )  restricted to g2 (resp. g~2) is multiplication by e - 2 t  
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(resp. e 2~) it follows tha t  for Z ~ g ~  

= (Ad (exp t Y' .  ~b,~= (6)) 6t r (Ad (6-  ' exp - t Y) Zi))r r, ,~,,,exp, r,a- ~) 

= (Ad (exp t Y' .  ~ , ~  (fi). exp - t Y') 

�9 Ad  exp t  Y' �9 ay(Ad(6-* e x p - t  Y)Zi))e,r,~,,,,{,,,p,y .a-,} 

= {Ad{exp t Y' .  ~O~,,, (a) �9 e x p -  t u  

�9 (e2'&r.Ad6-*(e-2'Zi)))c,r.~,,,~xp,r.~.,,~ 

= (Ad (exp t r ' .  ffo,~ (6)- exp t Y') 

�9 (6:y. A d  6 -  ~ (Z;)))~,F, ~ , . ,~ ,  r-a-~)- 

If  Z ~ g }  then 

J,~.o,.tZ~x,,,.~..) 
= (Ad (exp t Y ' .  ~O~,~ (6). e x p -  t Y'} A d  exp t Y' 

�9 a v . Ad  6 -  l Ad  exp - t Y(Zi)),  r. o,, ~xp, r.  a. ,~ 

= (Ad (exp t Y' tpo,=(t$), exp - t Y') A d  exp t Y' 

�9 i r (e  -t  A d a - '  (Zi))), F, o,,~xpty .a..) 

= ( e - '  A d ( e x p t  Y'- r e x p -  t Y') 

�9 {e'(&y A d 6  -'1 Zi)l + e2'(gtr A d 3  - j  Z/)2} }~,r,~,~lr .~, .~ 

= (Ad(exp t Y ' ,  ~b,o~ (6). e x p -  t Y') 

�9 {(~r A d 6 - ~  Zi)x +e'(6tr A d 3  -1 Z~)2}) , r , ,~ ,~ ,F.  ~.,) 

where 

with 
&r A d 6 -  t (Z/)=(ctr  Ad  6 - I  Z~)I + (~r  A d b - t  Z~)2 

( a y A d 6 - ~ Z ~ h e ~ ,  and  (c t rAd6 -1 i ,2 

If Z is in the Lie a lgebra  of M~ (Y) then, 

~ ~.~,~ (Z~xpt r .~ . . )  = (Ad  exp t  r ' ( f ( Z ,  3))),z ~,=te~ptr-~..~ 

= (Ad exp t Y' { f ( Z ,  6))o + ( f ( Z ,  6))~ + ( f (Z ,  6))2}~, r . . . .  ~exv, r.~. ,, 

where 

f (Z, 3 } = ( / ( Z ,  3)) 0 + ( f  (Z, 6))t + ( f  (Z, 8))2 
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with 

Now let 

n(A~ ,(Y).e~m �9 U(Y)) 
we get: 

(f(Z, 3))~eg~L for i=0 ,  1, 2. 

= ((f (Z, 3))0 + e' (f(Z, 6)), + e2'(f (Z, 3))2),r. ~,~r162 r.~. ~). 

A o 0 be a tangent vector at a point in d-~(Y)'om'U(Y) (thus t<d-1 ,  
6 e o  ~ and ueU(Y)) such that 

then since 
I]~Cexp,r.~. ~[I = H~{E r~ Y J + E  ~,z')ll 

j i 

= IIZrjYJ+Z�89 [ 
i i 

= ( E  rE +E s21) ~ 
j i 

it follows that for all i and j ;  rj, s~_< 1. 
F r o m  the commutat ive  diagram 

A~ �9 U(Y) ~,r,,o,. AO_,(y,). Mt(Y'). U(Y') 

,ol , r((AO_,(y,). M,(Y'). U(Y')) 

atively compact.  
follows that for a 

[10o~ (r ~l[ = II/d ~ r , ~ { (  Z rj Y~ + Z siZi)~pr .o.~} II 

= it' r o T ~ +  Er~(f(Yi, 3))o 
j > o  

+ E rr e ' ( f (Y J, ~))~ + E rj e2t(f(Y j, ~))2 
j>O j>O 

+ ~ s~ AO (exp t r ' .  ~ ,~  (6). e x p -  t Y')(~y Ad ~ -~ (Z')) 
ZiEg~ 

+ ~ s, Ad(exp tY ' .  ~bo,. ,(6)-exp-tY)(~r Ad6  -~ Zi)l 
Z~eg~, 

+ ~ sl e' Ad (exp t Y' .  ~o,m (3). e x p -  t Y')(&r Ad ~ -~ Z i) / �9 
Zieg~, ) 

Since co m and ~kom{COm) arc relatively compact  subsets, ~o(  c COrn) is 
compact  and {cf. Remark  2.2) U exp t Y' .  ~k,~(co~ �9 e x p -  t Y' is rel- 

t < d - - 1  

Also for t < d - 1  both e t, e 2r are bounded. Thus it 
suitable constant  ~3 

II0or ~exptr.,~.ul[ <a3' 
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For  any Z + 0  considering Z/ilZIE it follows that 

II~0Zl[_-<~3 IlZll. 

This establishes (5) and therefore (4) and hence (3) too. 

~a-1 is a diffeomorphism, considering Now since cp[~g_~ : ~d ~ 1 , o 

its inverse, r we can in the same way prove that there is a constant cq 
such that for a tangent vector Z '  to X' at a point in , ~ o  1 

< 1  IlZ'll. (6) I I~- lZ ' l l  -- ~ 

From this one deduces that 
oq lIZ]] 5 IlOZll (7) 

for a tangent vector Z to X at any point in ~ o  1. 
f2 o Now since a-z = X - ~ a - 1  is compact modulo F and since r is 

F-equivariant and the riemannian structures on X and X' are F invariant, 
in view of (3) it follows that there is a constant kl ~ ~2 such that if Z is a 
tangent vector to X then 

II~Zll < k l  IlZll. 

This implies that for x, y e X  

d(~o(x), qg(y))<k, d(x, y) 

and in particular ~o is uniformly continuous. 

To complete the proof of Theorem C we have only to show that there 
exist positive constants k and b such that 

d(q~(x),q~(y))>_k-l d(x,y)  for x, y e X  with d(x ,y)>b.  

We need the following lemma. 

4.1. Lemma. Let G and G' be semi-simple linear analytic groups and let 
F be a lattice in G. Let F' be a discrete subgroup of G'and O: F---~F' be an 
isomorphism. Let K (resp. K ' )  be a maximal compact subgroup of G 
(resp. G') and let X = K \ G  (resp. X ' = K " . . G ' )  be the symmetric 
riemannian space associated with G (resp. G'). Let tp: X---~ X' be a uni- 

formly continuous map such that 

qg(xy)=qg(x)O(~ ) for all x e X  and yeE 

Then q9 is a proper map. 

Proof Since lattices in analytic groups are finitely generated, according 
to a result of Selberg, a lattice in a linear analytic group admits a subgroup 
of finite index which is torsion free ([cf. 12, w Thus it is enough to 
prove the lemma assuming F (and hence F') torsion free. 



284 G. Prasad 

Let C' be a compact subset of X'. If possible let us assume that 
~ - l ( C ' )  is non-compact. Then there exists a sequence {xl} c tP -1(C') 
which has no convergent subsequence. There are two cases to be con- 
sidered. 

(i) If {xi} ishas a convergent subsequence modulo F, then ifnecessary 
by passing to a subsequence we can assume that there exist 7i~F such 
that {XiTi} converges to x e X .  Then ~0(xi)0(7. ~ converges to y =  ~(x). 
Also since q~(xi)eC' there is a subsequence of q~(xi) which converges. 
Let n': G ' - ,  K"-.  G' be the natural projection and let {g'i} be a sequence 
in G' such that ~p(xi)=x'i=n'(~). Then since n' is proper, we can after 
passing to a subsequence assume that {g'i} as well as {g'i 0(7i)} converge. 
Hence the sequence {0(7i)} converges. Since F' is discrete, {0(7i)}i~m(~ay) 
is a constant sequence. Thus {7i}iem is a constant sequence. But then 
since {x i 7i} converges to x this sequence is contained in a compact 
subset of X and hence {xi} is contained in a compact subset of X, a 
contradiction. 

(ii) Now let us assume that {xi} has no convergent subsequence 
modulo E Let n: G - ,  K \ G be the natural projection and let gi be such 
that n(gi)=xi .  Evidently {gi} has no subsequence convergent modulo E 
Hence by [12, Theorem 1.12] there exists a sequence {Ti}cF such 
that {giTig1-1} converges to the identity and for no i, 7i=e. Thus 
d(n(e), n(gi7igi-1))~O which implies that d(n(gl) , n(g, 7i))--,0 i.e., 
d(xl, x171)~ O. Since ~o is uniformly continuous this implies that 

d (,p (x,), ,p (xl 7,)) = d (,p (x,), ~o (x,) 0 (71)) ~ 0. 

After passing to a subsequence if necessary, we can assume (since xiE C', 
C' is compact and since n' is proper) that {g'i} and {g'i 7'i} are convergent 
where {g'i}~G' is a fixed sequence such that n'(g'i)=x'i and 7'i=0(7i). 
From this we can conclude as before that for large i, 7;=7'. Then 
d (x;, x' i 7')= d (x'i, x'i 7'i)--* O. This implies that if {x~} converges to y' then 
d (y', y' 7')= 0 i.e., y '= y' 7'. Since isotropy subgroup of any point in X'  is 
compact, this implies that 7' is a torsion element and since F '  is torsion 
free 7 '=  identity. Thus for large i, 7'i and therefore 7i are the identities in 
respective groups. This again is a contradiction. 

We now complete the proof of Theorem C. We first observe that 
there exists a real number e < d -  1 such that tp -1 ( ,~o)= ~o. This follows 
from the fact that t2a_ 1 is compact modulo F, so ~o(~2a_~) is compact 
modulo F '  and hence for e sufficiently small, tp ( t2a_ l )n '~~  Now 

q~ ( ~ ) =  ~ and q~ restricted since ~tp(~o_0=~po we actually get that -~ , o o 
to ~o is a diffeomorphism. 

Let a be a positive real number fixed once and for all. For  a subset E 
of a metric space M we denote by T~(E) the set {x~MId(E, x)<a}. Since 
p': X ' ~ X ' / F '  is a distance reducing map it follows that p'(T~(t2'e))C 
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T~(p'(f2~)). As X'/F' is a complete  r iemannian  manifold (cf. [3, Prop.  10.6 
and Th. 10.3 in Chapter  I])  and p'(f2'e) is compact ,  Ta(p'(f2'e)) and hence 
p'(Ta(t2'e)) are compact .  Now since p' is a covering map  it can be shown 
that  there exist a positive real number  ot < a and a compact  subset C'~ of 
T~(O'e) such that  any closed ball of d iameter  <ct contained in T~(f2'~) can 
be brought  in C'~ by an element of F ' .  Let  s=d iamgo  -1 (C'~) then in view 
of L e m m a  4.1, s is finite. Clearly if B' is a ball  of d iameter  < ot contained 
in T~(f2'e) then diamgo -~ (B')<s. We now claim that  there exists a real 
number  r such that  if B 'cX '  is a closed ball  of d iameter  <cr then 
d iamgo-~(B ' )<r .  To see this we argue as follows. If B'c~f2'e4=~ then 
since a > ~  it follows that  B'cT~(O'e) and  then d i a m g o - l ( B ' ) < s .  If 
B'c~O'e=fJ, then since X'=f2'ew'~'~ ~ B ' ~ ' ~  ~ Now since a ball is 
geodesically convex, go-1 (, ~ o ) c  ~ o  and go is a di f feomorphism restricted 
to ~o ;  we can easily conclude from the inequali ty (7) that  

d iam (go-1 (B')) < ~t/cq. 

Thus if r = max(~/cq, s) then clearly, for any ball B' ~ X' of d iameter  < ct, 
d iam (go- 1 (B')) < r which proves our  claim. 

Let k 2 = r/ac F o r  x, y e  X with d(go (x), go (y)) < mct there is a path  in X 
of length less than mr jo in ing  x to y. Given now x and y in X with 
d(x, y)>r we can choose n >  1 so that  

then 
n~d(go(x), go (y)) < (n + 1)~t, 

n + l  r n + l  
d(x, y) < ( n +  1) r . . . .  n~_-< �9 k 2 d(go (x), go(y)) 

n ~ n 

< 2 k2 d (go (x), go (y)). 
Set k = m a x ( k t ,  2k2) and b=r, then 

d(x,y)<__kd(go(x),go(y)) for x, y eX  with d(x,y)>=b 

and  
d (go (x), go (y))_-< k d (x, y) 

Thus go is a pseudo-isometry.  This completes  the p roof  of Theorem C. 

4.2. Remark. It is well known that  lattices in SL(2, R)/+_I 2 are not  
s trongly rigid in general. In fact since a non-uniform,  torsion free lattice 
in SL(2, R)/~l  2 is (non-abel ian and) free, its g roup  of outer  au tomor -  
phisms is infinite. This, as can be seen easily, implies that  such a lattice 
can not  be strongly rigid. Also since two compact  r iemann surfaces of the 
same genus and with i somorphic  fundamenta l  groups need not  be 
analyt ical ly  equivalent  it follows that  in general  even a uniform latt ice in 
SL(2, R)/+_ 12 m a y  not  be s t rongly rigid (cf. [9, w 1]). 
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