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Strong Rigidity of Q-Rank 1 Lattices

Gopal Prasad (Princeton)

Introduction and Statement of Main Result

A discrete subgroup I' of a locally compact topological group G is
said to be a lattice in G if the homogeneous space G/I" carries a finite
G-invariant measure. A lattice I in G is said to be uniform (or co-compact)
if G/T" is compact; otherwise it is said to be non-uniform. A lattice I' in a
linear semi-simple group is said to be irreducible if no subgroup of I" of
finite index is a direct product of two infinite normal subgroups. Let G
be a linear analytic semi-simple group which has trivial center and no
compact factors, given a lattice A in G it is known that G decomposes
into a direct product ITG;, such that for all i, G, is a normal analytic
subgroup of G; A;=AN G, is an irreducible lattice in G; and I14; is a
subgroup of A of finite index. Furthermore, if G=]]G; is any decom-

jed
position of G into a direct product of normal analjytic subgroups with
p;; G— G, denoting the natural projection and if I is an irreducible
lattice in G, then the restriction of p; to I' is an injective homomorphism for
all jeJ (cf. [12, Cor. 5.237).

Let I' be an irreducible lattice in a linear analytic semi-simple group
G which has trivial center and no compact factors. I' is called strongly
rigid if given a lattice I in a semi-simple analytic group G', G’ having
trivial center and no compact factors, any isomorphism® 6: I' 1T
extends to an analytic isomorphism of G onto G'. Strong rigidity has been
proved by G.D. Mostow for irreducible uniform lattices in semi-simple
groups which are not locally isomorphic to SL(2,R) and has been
announced by G.A. Margolis and M.S. Raghunathan for non-uniform
lattices in semi-simple groups which have no rank 1 factors. The purpose
of this paper is to complete their results so as to apply to arbitrary
irreducible lattices in semi-simple groups.

In order to state our main theorem we need to introduce a definition.

Let G be a linear analytic semi-simple group with trivial center and no
compact factors. We call an irreducible non-uniform lattice I (in G) a
Q-rank 1 lattice if it has the following two properties

! Note that according to [10, Prop. 3.6], I is uniform if and only if I is uniform.
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256 G. Prasad

(R1) Given a nontrivial unipotent element of I there exists a unique
maximal unipotent subgroup of I which contains it.

(S2) For any maximal unipotent subgroup ¢ of I, the commutator
subgroup [, &] of @ is central in &.

(In §1 we show that if G has a R-rank 1 factor then every irreducible
non-uniform lattice in G is a Q-rank 1 lattice (cf. Lemma 1.1). Also
(cf. Lemma 1.4) if G is a connected semi-simple linear algebraic group
defined over the field Q of rational numbers and of Q-rank 1 and G=Gg,
the identity component of the real points of G, and if I' = Gy, is an irre-
ducible non-uniform lattice in G, then n(I) is a Q-rank 1 lattice in G
where n: G — G/G,=G is the natural projection and G, is the maximum
compact normal subgroup of G.)

We can now state the main theorem of this paper.

Theorem A. Let G be a linear analytic semi-simple group with no
compact factors and trivial center. Assume that G is not isomorphic to
SL(2,R)/+1,. Then any Q-rank 1 lattice in G is strongly rigid.

In view of Lemmas 1.1 and 1.4 this theorem supplements the recent
results2 of G. A. Margolis and M.S. Raghunathan on strong rigidity of
non-uniform lattices in semi-simple analytic groups. In fact the results
of Mostow, Margolis and Raghunathan together with Theorem A
provide the following

Theorem B. Let G (resp. G') be a semi-simple analytic group and I
(resp. I'' ) be an irreducible lattice in G (resp. G'). Assume that G, G’ have
trivial centers and no compact factors and G is not locally isomorphic to
SL(2,R). Then any isomorphism 6. I —T" extends to an analytic iso-
morphism of G onto G

Our proof of Theorem A reduces to verifying that the hypothesis of
the main theorem (stated below) of Mostow [9] are satisfied for Q-rank 1
lattices. One of the central notions underlying Mostow’s procedure is
what he calls a pseudo-isometry ¢: X — X' between two metric spaces X,
X' that is, a map ¢ for which there exist positive real numbers k and b
such that

d(e(x), p()<Skd(x,y) forall x,yeX
and
dlp(x), o(y)2k 'd(x,y) whenever d(x, y)2b.

Mostow’s Theorem (cf. [9]). Let I, I’ be lattices in G, G’ respectively
(G, G as in the preceding theorem) and let 0: I' - I" be an isomorphism
of I" onto T'. Let X, X' be the symmetric riemannian spaces associated
with G, G’ respectively. Assume that there exist pseudo-isometries p: X — X’

2 To appear.
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and ¢': X' — X such that for all xe X, x'e€ X' and y (resp. ') in a suitable
subgroup of I (resp. I'") of finite index

PxN=px)8(y)
and
@' (XY)=0'(x) 071 (7).
Then 6 extends to an analytic isomorphism of G onto G'.

Thus to prove Theorem A it suffices to establish (cf. §1.7 and Lemma 1.8)
the following

Theorem C. Let G and G’ be linear analytic semi-simple groups which
have trivial centers and no compact factors. Let K (resp. K') be a maximal
compact subgroup of G (resp. G') and let X =K~G and X'=K'~ G’ be
the associated symmetric riemannian spaces with the reimannian structure
induced from the Killing form on the Lie algebra g and g of G and G’
respectively. Let I' (resp. I'') be an irreducible non-uniform lattice in G
(resp. G'). Assume that both I" and I'’ are net® (and so in particular torsion
free), G is not locally isomorphic to SL(2, R) and further that I' is a Q-rank
1 lattice. Let 8: ' —I" be an isomorphism. Then there exists a pseudo-

i t
isometry ot Xor X'
such that

o(xy)=@(x)0() forall xeX and yel.

We shall achieve the demonstration of Theorem C in §4.

It is a pleasure to thank Professor Mostow who suggested that I look into strong
rigidity of non-uniform lattices and with whom 1 had useful conversations related to the
problem.

§ 0. Preliminaris

In the sequel we let Z denote the ring of rational integers. Q (resp. R,
resp. C) will denote the field of rational (resp. real, resp. complex) numbers.
Let G be a linear semi-simple real analytic group with Lie algebra g. Let
g="Ff+p be a Cartan decomposition of g. It is well known that maximal
abelian subspaces of p are conjugate under K (where K is the analytic
subgroup of G corresponding to the subalgebra f of g) and that every
element of p is semi-simple and has all the eigenvalues real. By definition
R-rank of G is the dimension of a maximal abelian subspace of p.

If G is a linear semi-simple algebraic group defined over a field k, then
the dimension of a maximal k-split torus T is by definition the k-rank of G.
It is known that when k=R then the R-rank of an algebraic group G
defined over R is the same as the R-rank (defined above in terms of Lie

3 See § 1.7 for the definition of net subgroups.
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algebra) of the identity component of the group Gg of R-rational points
in G.

If G is a real analytic semi-simple group with trivial center, then G
can be realized as the topological identity component of the real points
of a suitable connected algebraic group G defined over R. We call a
subgroup P of G parabolic if P=P n G where P is a parabolic subgroup
of G defined over R. It is known that any parabolic subgroup of G is
connected in the Zariski topology, also since the identity component H$
of real points Hg of an algebraic group H defined over R is of finite index
in Hy [8] it follows that if P is a parabolic subgroup of G then P/P° is
finite.

In the following Ad (resp. ad) denotes the adjoint representation of a
Lie group on its Lie algebra (resp. of a Lie algebra on itself). Let G be a
real analytic semi-simple subgroup of SL(n, R). We assume that G is self
adjoint i.e., if xeG then ‘xeG. Here for a matrix x, ‘x denotes its trans-
pose. It is well known that any connected linear semi-simple group can
be realized in this form (cf. Mostow [7]). The isomorphism x —‘x~!is a
Cartan involution of G. Let ¢ be the corresponding Cartan involution
of the Lie algebra g of G and let g=f+p be the Cartan decomposition
determined by o, T being the compact subalgebra. The subgroup K=
{xeG|x="x""} isa maximal compact subgroup of G, G=K - (P(n,R) " G)
where P(n,R) is the set of positive definite symmetric matrices in SL(n, R)
and P(n,R)~ G=exp p. Let acp be a Cartan subspace (i.e., a maximal
abelian subspace of p). Let a* be the dual of a. For Aca* let

g*={Xeg|[H, X]=A(H) X for Hea}

and
&={iliea*, i+0 and g*+0}.
Then
g= Y g*+g°
Aed
and
g°=g°nf+a.

We fix an (open) Weyl chamber in a. This gives rise to an ordering on
the set @ of roots. Let &+ (resp. &) be the set of positive roots (resp.
negative roots) in this ordering and let 4< @™ be the set of simple roots.
For a subset ¥ <4 we define a parabolic subgroup By of G called the
standard parabolic group associated to ¥ as follows. Let uy be the sub-
space generated by {g®|pe®™, ¢ has a component in 4—¥}; uy is a
subalgebra. Let

ay={Heala(H)=0 for ac ¥}
and let
Z(ay)={geG|AdgH=H for all Heay}.
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The Lic algebra 3¢ of Z(ay) is

w=g"+ Y o’=g°+ ) ¢"
‘P’a,, =0 ¢ =Lmya
ae¥

Let Uy be the connected (unipotent) subgroup of G corresponding to
the subalgebra 1y . Then it can be seen easily that Z (ay) normalizes Uy .
Set By =Z(ay) - Up. Then By is a parabolic subgroup of G, U is its uni-
potent radical (i.e., it is the maximal normal unipotent subgroup of By)
and Z (ay) is a reductive Levi supplement.

Since ag (< p) is stable under g, it follows that Z(ay) is stable under
the Cartan involution and hence Z(ay)=(Z(ay)n K)-(Z(ay) nexpp);
Z(ag)nexpp is diffeomorphic to a Euclidean space and Z(ay) N K is a
maximal compact subgroup of Z(ay). Since Bg=Z(ay) Uy (a semi-
direct product) and U, is unipotent it follows that Kn By =K N Z(ay)
and K n By is a maximal compact subgroup of By.

It is well known that any parabolic subgroup P of G is conjugate by
an clement of K to a unique By, ¥ = 4.

Let Y be a nonzero element of p. By u(Y) we denote the subspace of g
spanned by the eigenspaces corresponding to the positive eigenvalues of
ad Y; u{Y) is a nilpotent subalgebra. Let U(Y)} be the analytic subgroup
of G corresponding to the subalgebra u(Y). Then U(Y) is a unipotent
subgroup. Let B(Y) be the normalizer of U(Y) in G, then B(Y) is a para-
bolic subgroup of G. From the above description of parabolic subgroups
it can be deduced that

1. B{Y)=M(Y}- U(Y) (a semi-direct product} where M(Y)is the cen-
tralizer of the one parameter group expR Y in B(Y).

2. KnB(Y) is a maximal compact subgroup of B(Y) and the one
parameter group exp R Y centralizes it. L.e.,, Kn B(Y)c M(Y).

For convenience we collect below some known results which will be
used in the sequel. Proofs of all these can be found in Raghunathan [12].

0.1. Lemma (Selberg) ([12, Lemma 1.15]). Let S be a Lie group and A
alattice in S. Let H be a closed subgroup of S. If there exists a neighborhood
Q of the identity in S such that HQ H N A< H, then H N A is a lattice in H.

0.2. Lemma (Malcev) ([12, Chap. I113). Let U be a connected simply
connected nilpotent Lie group. Let Z (U) be the center and u the Lie algebra
of U. Then a discrete subgroup of U is a lattice in U if and only if U is the
minimal analytic subgroup of U containing the discrete subgroup. Let A be
a lattice in U then A is uniform and is finitely generated, Z(U)ynA is a
lattice in Z(U) and the Z span of exp~'(A) is a lattice in u. Let A" be a
lattice in a connected simply connected nilpotent Lie group U anda: A — A’
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be an isomorphism. Then there exists a unique isomorphism a: U — U’
such that a| ,=o.

0.3. Lemma (Zassenhaus, Kazdan-Margolis) ([12, Th.8.16]). Let H
be a Lie group. There exists a neighborhood Q of the identity in H such that
if A is any discrete subgroup of H,then A Q is contained in a connected
nilpotent Lie subgroup of H.

In the sequel a neighborhood @ of the identity as above will be called
a Zassenhaus neighborhood.

04. Lemma (Garland-Raghunathan [2]). Let G be a semi-simple
algebraic group defined and of rank 1 over a field k=C. Then any non-
trivial unipotent element 0 G, is contained in a unique maximal unipotent
k-subgroup of G. In particular, if G is a linear semi-simple real analytic
group of R-rank 1 then any nontrivial unipotent element 0 of G is contained
in a unique maximal unipotent subgroup of G.

0.5. Lemma (Raghunathan [12, Th.13.17). Let G be a connected
linear semi-simple analytic group with trivial center and no compact factors.
Let I' be an irreducible non-uniform lattice in G. Let @ be a maximal uni-
potent subgroup of T and let U be the minimal analytic subgroup of G con-
taining P. Then the centralizer Z(U) of U in G is contained in U.

§ 1. Q-Rank 1 Lattices

1.1. Lemma. Let G be a semi-simple linear analytic group which has a
R-rank 1 factor (i.e., G has a normal analytic subgroup G, such that R
rank G, =1). Assume that G has trivial center and no compact factors. Let
I’ = G be an irreducible non-uniform lattice. Then I'is a Q-rank 1 lattice.

Proof. Let G=G, x G, where G, is a R-rank 1 factor and G, is its
normal analytic supplement. Let p: G — G, be the canonical projection.
Let el be a nontrivial unipotent element. Let @ be a maximal unipotent
subgroup of I' containing 6 and let @ = I be a unipotent group containing
6. To check that I'" has property (R 1) it clearly suffices to show that ©® = @.
Since I' is an irreducible lattice, p|, is an isomorphism. According to
Lemma 0.4 the unipotent subgroups p(¥) and p(®) which have a non-
trivial unipotent element p(f) in common are contained in the same
maximal unipotent subgroup of G; and in particular the subgroup of
p(I') generated by p(®)u p(®) is nilpotent. Since p|; is an isomorphism
this implies that the unipotent subgroups @ and @ together generate a
nilpotent and hence a unipotent subgroup of I since @ is a maximal
unipotent subgroup this group coincides with @ and hence © < @.

To show that I" has property (S2) too we argue as follows. Let @ be a
maximal unipotent subgroup of I Again since p| is an isomorphism it
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suffices to prove that [p(®), p(®)] is central in p(P). Let g, =f,+p; be a
Cartan decomposition of the Lie algebra g, of G, and let a;<p; be a
Cartan subspace (i.e., a maximal abelian subspace of p;). Since G, has
R-rank 1, a, is one dimensional. Let g; =g; 2*+g7 *+g? -+ +g#* be the
root space decomposition of g, with respect to a,. Then as is well known,
g’ +ga?% is the Lie algebra of a maximal unipotent subgroup of G, and
any two maximal unipotent subgroups of G, are conjugate to each other.
Since g?® is central in g +g2* and [af +9a2% af +a2*]=g?* it follows
that if N, is a maximal unipotent subgroup of G, then [N, N;] is central
in N, and so a-fortiori [p,(®), p, (®)] is central in p,(®). Thus I" has
property (S2). This completes the proof of Lemma 1.1.

1.2. Lemma. Let G be a linear analytic semi-simple group with trivial
center and no compact factors. Let I be an irreducible non-uniform lattice
in G which has property (R1). Then I' has the following property

(R2) Let ¢ be a maximal unipotent subgroup of I' and U be the minimal
analytic subgroup of G containing @. Let N(U) be the normalizer of U in G
and N°(U)={geN(U)|Intg|, preserves a Haar measure on U}. Then
NO(U)T is a uniform lattice in N°(U).

The proof given below of this lemma is essentially due to M.S. Rag-
hunathan.

Proof of Lemma1.2. Let © be a nontrivial subgroup of ¢ which is
normalized by every y(eI') which normalizes @. Let V be the minimal
analytic subgroup of G containing @ and let N°(V)={ge N(V)|Intg},
preserves a Haar measure on V}, where N(V) is the normalizer of Vin G.
We shall in fact prove that N° (V)T is a uniform lattice in N°(V). First
we shall show, using Lemma 0.1, that N°(V) n T is a lattice in N°(V).

Let Q, be an open Zassenhaus neighborhood of the identity in G
(cf. Lemma 0.3) and let Q be an open symmetric neighborhood of the
identity such that Q*<Q,. We assume (as we may) that V<N where
G=K- A- N is an Iwasawa decomposition of G (K is a maximal compact
subgroup of G, N is a maximal unipotent subgroup and A4 is an analytic
diagonalizable subgroup which normalizes N). Since given any compact
subset E of N and any neighborhood w of the identity in N we can find an
aeAd such that aEa~! cw and since by Lemma 0.2, ® and hence VN T
is a uniform lattice in V, after replacing I' by a suitable conjugate we can
assume that there is a compact subset E of VA Qsuchthat E-(VnT)=V
and thus in the measure on V/V I induced by a Haar measure p on ¥
VoL (V/VAT<u(VnQ).

Let y=t, wt, be an element of N°(V) QN° (V)T with t,, t,e N°(V)
and eQ. Since p(t;(VnQ) 7)=pu(VnQ)=p(t;'(VnQ)t,) and
Vol(V/VAT)<u(VnQ) it follows that if n: V— V/V AT is the natural
projection, then the maps 7|, o gy a0d 7|31y~ gy, €an not be injective.



262 G. Prasad

From this it follows that we can find (e+) y,e VT (resp. (e) y,eVnI)
such that 17!y, t;€Q? (resp. 1, v, t; ' €Q?).) Consider now the subgroup
of I generated by y, and yy, y~!. Since

trl vy, y! ty =t ot Y2 tz_1 o™ tl_l) b

=w(t, 7, t; Do leQ*<Q,

and i y; 1, € Q%< Q,, the group generated by t; ' yy, y ! tand t7 Ly 1y
is nilpotent. Thus the unipotent elements 77,7~ ! and y, generate a nil-
potent and hence a unipotent subgroup of I' Since (cf. Property (R1)) @ is
the unique maximal unipotent subgroup (of I') containing any non-
trivial element of itself, it follows that yy,y " 'edi.e., y,€7~ &y but since
y,6VnTc®, y~!®y=0 and hence y normalizes @ and therefore it
normalizes @. Thus yeN(V). Since y normalizes the lattice © in V, we
conclude that y preserves a Haar measure on V i.e, yeN°(V). Thus we
have proved that N°(V) QN°(V)n T = N°(V). According to Lemma 0.1,
NO(V)n T is a lattice in N°(V).

Now we claim that N®(V)nTI"=N°(U) I Since & is a maximal uni-
potent subgroup of I' and @< U, UnI'=¢®. Thus every element of
NO(U)T normalizes ® and hence also @. This clearly implies that
NO(U)nTI'eN°(V)nI On the other hand if ye N°(V) I, y normalizes
the nontrivial unipotent subgroup VNI of @ and in view of property (R1)
it normalizes ¢ and thus yeN°(U)n I This shows that N°(V)nI'c
N°(U)AT and hence N°(U)nI'=N°(V)nI In view of this to prove
that N°(V)n T is uniform, it suffices to show that N°(U)nT is uniform
in N°(U).

We shall first show that the unipotent radical of N(U) is U. Let W be
the unipotent radical of N°(U). Since N°(U) T is a lattice in N®(U) by a
standard argument using a result of Auslander ([12, Th. 8.24 and
Cor. 8.28]), Borel’s density theorem and the fact that the centralizer Z(U)
of U is contained in U (Lemma 0.5) one can prove that W I is a lattice
in W. Since W 2 U and since U nI' =@ is a maximal unipotent subgroup
of I it follows that W NI =@ and hence in view of Lemma 0.2, W= U.
Now since the unipotent radical of N(U) contains U and is evidently
contained in the unipotent radical of N°(U), it follows that U is the uni-
potent radical of N(U) (this also implies that N(U) is a parabolic subgroup
of G cf. [12, Prop. 12.8(b)].)

By Lemma 0.5 the centralizer Z(U) of U is contained in U. Also since
U is the minimal analytic subgroup containing @, according to Lem-
ma 0.2, ¢ is a uniform lattice in U and the Z-span 1, of exp~'{®) is a
lattice in the Lie algebra u of U. Since the centralizer Z(U) of U in G is
contained in U it is the center of U and hence (again by Lemma 0.2)
Z(U) @ is a uniform lattice in Z (U). Consider now the natural represen-
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tation of N°(U) on u=u®zC. It induces an algebraic morphism
p: N°(UY/Z(U)— GL(4) which clearly is a monomorphism and the
image H of p is up to commensurability the real rational points of an
algebraic group H defined over R. Let a be the projection N°(U)—
N (U)/Z(U), then since Z(U)nTI'=Z(U)n® is a lattice in Z(U) and
A=N°(U)nT is a lattice in N°(U); 2(A) is a lattice in a(N°(U)) and
po(A)is a lattice in H.

Evidently pa(A)<= GL(ug), hence the Zariski closure °H of pa(A) is a
group defined over Q. Clearly "HcH and hence *H="Hn GL(1) is
commensurable with °H ~ H. Thus since po(A)(<=H) is a lattice in H,
it is a lattice in °H. Since the unipotent radical of N°(U) is U and
Z(U)c U it follows that the unipotent radical (i.e. the maximal normal
unipotent subgroup) of N®(U)/Z(U) is U/Z (U) and hence the unipotent
radical of H is precisely p(U/Z(U)). Moreover since a(®) is a lattice in
U/Z(U) it follows that poa(®) is Zariski dense in the unipotent radical
p(U/Z(U)) of H. This shows that °H contains the unipotent radical of H.
According to Borel's density theorem (see e.g. [12, Chap. V]), °H contains
also all the non-compact simple, semi-simple analytic subgroups of H.
Since HOHN°H>opa(d), H/°H~H carries a finite invariant measure,
from this it readily follows that H/°H ~ H is compact. Thus to prove that
N®(U)/N°(U)nT is compact it suffices to show that °H/pa(A) is com-
pact. Since pa(A) is a lattice in °H and is contained in °H, ="H N GL(1z)
it follows that pa(A) is a subgroup of finite index in °Hj i.e., pa(A) is an
arithmetic lattice. Since Z (U), the kernel of a, is a unipotent group and ¢
is a maximal unipotent subgroup of I' it follows that every unipotent
element of pa(A) is contained in pa(®@) < p(U/Z(U)) and hence by Gode-
ment’s criterion °H/pa(A) is compact. This completes the proof of
Lemma 1.2.

1.3. Remark. Let G be a linear analytic semi-simple group with trivial
center and no compact factors. Following Raghunathan we call an
irreducible non-uniform lattice in G a rank 1 lattice if it has properties
(R1) and (R2). In [12] Raghunathan has constructed a nice fundamental
domain for such lattices, a short description of this fundamental domain
will be given in the next section. We should note here that according to
Lemma 1.2 if a lattice has property (R1) then it necessarily has property
(R2) and hence is a rank 1 lattice.

1.4. Lemma. Let G be a connected linear semi-simple algebraic group
defined over Q and let G= G be the identity component of the R-rational
points of G and let I' = Gq be an irreducible non-uniform lattice in G. Let
G, be the maximal compact normal subgroup of G and let n: G — G/G,=G
be the natural projection. If Q-rank G=1, then F'=n(I') is a Q-rank 1
lattice in G.
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(G is a semi-simple analytic group with trivial center and hence can be
thought of as the adjoint group of its Lie algebra.)

Proof. Let G, be the normal analytic subgroup of G such that G=
G, x G, (almost direct product) and let y: G, — G be the restriction of n
to G, . Evidently n, is a surjective map whose kernel is precisely the finite
center of G,. Also since G, is compact, every unipotent element of G is
contained in G,. Now let per” be a unipotent element and let eI’ =G,
be an element which under = maps onto @ and let ¢ = ¢, - @, be the Jordan
decomposition of ¢ with ¢, (resp. ¢,) semi-simple (resp. unipotent). Then
both ¢, and ¢, are contained in Gy moreover @, being unipotent is actually
contained in G,n Gy Since n{(p)=79 is unipotent, n(¢p,) = and thus we
have shown that given a unipotent element & in I there is a (in fact unique,
since the kernel of n, is central and hence has only semi-simple elements)
unipotent element in G, N Gg which is mapped under =, onto . Now
let O be a nontrivial unipotent element of I' and @ be a unipotent sub-
group of containing 0.Let 0 Gy Gy be the unique unipotent element
such that 7, ()=6. Let U be the unique maximal unipotent Q-subgroup
of G contammg 0 (cf Lemma 04) and & =U N Gy, clearly & is contained
in G, and it is the unique maximal unipotent subgroup of G containing 6.
Since kernel no is central, 75! (@) is a nilpotent group. Let @ be the sub-
group of ny ! (@) generated by the unipotent elements in n5 () then,
©(<Gy) is a unipotent group which contains § and hence @ . It is
clear that ny(©)=0. Thus we have proved that any unipotent subgroup
of I' which contains 8 is contained in 7, (®) and hence @ =, (D) T is the
unique maximal unipotent subgroup of I containing . This establishes
property (R1) for I

To show that [®, &] is central in @, it clearly suffices to prove that
[®, ] is central in @. Since @ is contained in the unipotent Q-subgroup
U of G we will be through if we show that [U, U] is central in U. But the
latter can be proved for example by considering the root space decom-
position of the Lie algebra g of G with respect to a maximal Q-split torus
T (see the proof of Lemma 1.1 above and note that since Q-rank G=1,
T is one dimensional).

1.5. Remark. One can use Lemma 1.2 and certain observations made
in the proofs of Lemmas 1.2 and 1.4 to prove a converse of Lemma 1.4.
More precisely one can prove that (in the notations of the preceding
lemma) if the lattice ' has property (R1), then Q-rank G=1.

1.6. Remark. 1t follows from certain results announced by Margolis
and proved independently by Raghunathan that property (S2) is a
consequence of property (R1) (thus a rank 1 lattice is a Q-rank 1 lattice
and vice versa). In fact let G be a linear analytic semi-simple group which
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has trivial center and no compact factors and let I" be an irreducible non-
uniform lattice in G, if G has a R-rank 1 factor then according to Lem-
ma 1.1, I' has property (S2) so we can assume that G has no R-rank 1
factors. Then according to the results of Margolis and Raghunathan there
exists a connected semi-simple algebraic group G defined over Q such
that G is isomorphic to the identity component G§ of the group of R
rational points Gg of G and I'= Gg. Now if I'" has property (R1), by the
previous remark Q-rank G=1 and then according to Lemma 14, I' has
property (S2) too. Since the results of Margolis and Raghunathan have
not yet appeared in print we have preferred stating explicitly property
(S2) in the definition of Q-rank 1 lattices.

1.7 Definition. An element ge GL(n, C) is said to be net if the subgroup
of C* generated by the eigenvalues of g is torsion free. A subgroup of
GL(n, C) is net if its every element is net.

It is known that lattices in analytic groups are finitely generated
([12,§6.18]), thus according to [12, Th. 6.11] any lattice in a linear analytic
group admits a subgroup of finite index which is net.

1.8. Lemma. Let G (resp. G') be a linear semi-simple group with trivial
center and no compact factors. Let I be an irreducible non-uniform Q-rank 1
lattice in G. Let I be a lattice in G’ and let 6: I'— I"" be an isomorphism.
Assume that both I, I'' are net. Then I'' is also an irreducible non-uniform
Q-rank 1 lattice.

Proof. Since irreducibility of a lattice has been defined above in terms
of the group structure of the lattice it follows that I"” which is isomorphic
to the irreducible lattice I is also irreducible. Proposition 3.6 of [10]
implies that I is a non-uniform lattice. It remains to show that I"" has
properties (R1) and (S2). Let us first consider the case when G is locally
isomorphic to SL(2, R). In this case according to [11, §3] R-rank G'=
R-rank G=1 and then in view of Lemma 1.1, I"" is a Q-rank 1 lattice.

Now we assume that G is not locally isomorphic to SL(2, R) then by
[2, Th.0.12] G’ is not locally isomorphic to SL(2, R) and hence according
to [10, Th. 3.1] 6 takes unipotent elements into unipotent elements and
vice versa. This immediately implies that I'" has properties (R1) and (S 2).
This completes the proof of Lemma 1.8.

§ 2. Fundamental Domains for Rank 1 Lattices

In the proof of Theorem C we shall use the results connected with
Raghunathan’s construction (see [12, Chapter XIII]) of fundamental
domains for irreducible non-uniform lattices which have property (R1)
(and hence also (R2) in view of Lemma 1.2). In the following proposition
we collect some of his results which will be used in this paper.
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We introduce some notations first.

Notations. Let =T+ p (resp. g'=F + p’) be the Cartan decomposition
of g (resp. ) determined by the maximal compact subgroup K (resp. K').
For ceR and a nonzero element Yep (resp. Y'ep') let

A(Y)={expt Y|t<c} (resp. A(Y)={expt Y'|t<c})
and
A%(Y)={expt Y|t<c} (resp. A2(Y)={exptY'|t<c})

and we let u(Y) (resp. u(Y")) denote the subalgebra of g (resp. g') spanned
by the eigenspaces corresponding to the positive cigenvalues of adY
(resp. ad Y’). Both u(Y) and u(Y’) are nilpotent subalgebras. Let U(Y)
(resp. U(Y")) be the analytic subgroup of G (resp. G') corresponding to the
subalgebra u(Y) (resp.u(Y’)). Then U(Y) and U(Y") are unipotent sub-
groups. Let B(Y) be the normalizer of U(Y) in G and let

D, (Y)={geB(Y)|Intg|yy, preserves a Haar measure on U(Y)}.

B(Y) is a parabolic subgroup of G (cf. Preliminaries), D, (Y) is a normal
subgroup of B(Y) and it evidently contains K n B(Y) which is a maximal
compact subgroup of B(Y). Thus Ky =KnD,(Y)=KnB(Y)and Ky is a
maximal compact subgroup of D,(Y). We define B(Y’) and D,(Y’)
analogously.

2.1. Proposition. Let G be a linear semi-simple group which has no com-
pact factors and let g=1+p be a Cartan decomposition of the Lie algebra
a of G. Let I' be an irreducible non-uniform lattice which has property (R1).
Then the set of conjugacy classes of maximal unipotent subgroups of I is
finite and given a maximal unipotent subgroup ® of I there exists a Yep
such that ®=U(Y)NTI and & is a lattice in the unipotent group U(Y). Let
R <p be a finite subset such that

(@) U(Y)NI is a maximal unipotent subgroup of I' and it is a lattice
in U(Y).

(b) Any maximal unipotent subgroup of I' is conjugate (in I') to
U(Y)NT for a unique YeR.

Then we can find a constant ceR such that
() If Yy, V,eR and Y, =+ Y,, then

KA.(W) Dy () I' nKA(Y,) Di(V)I'=.
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(2) For YeR,yel';t;,t,<c;k,,k,eKandd,,d,eD,(Y)if

kyexpt, Yd, =k, expt, Yd, v,
then t;, =¢, and ye D (Y)n I

Also 3) If n: G—>K~G=X and p: X - X/I denote the canonical
projections, thenV teR the set Q=X —n(| ) KA (Y) D, (Y)TI') is compact
modulo T i.e., p(Q,) is compact. Yed

2.2. Remark. A few words on the proof of the above proposition are in
order. It has been noted in Preliminaries that B(Y)=M(Y)- U(Y) (semi-
direct product) and the reductive subgroup M(Y) is centralized by the
one parameter group expRY. Hence, if Q< B(Y) (and in particular if
Q<D (Y)) is a relatively compact subset then for any f,€R the set
{exptYgexp—tY|geQ, t<t,} is relatively compact. Note that the ex-
ponential map restricted to u(Y) is a diffeomorphism and since the Lie
algebra u(Y) of U(Y) is the sum of the eigenspaces of ad Y corresponding
to the positive eigenvalues, for any relatively compact subset @ of u(Y)
the set | ) AdexptYw is a relatively compact subset. Also since I' has

t<to
property (R1) it has property (R2) (cf. Lemma 1.2) and hence for any
YeR, D (Y)/D;(Y)T is compact. Thus we can choose a compact subset
n(Y) of D;(Y) such that n(Y)-(D,(Y)nI')=D,(Y). We can use these
observations to modify the proofs in Raghunathan [12, Chapter XIII]
to get a proof of Proposition 2.1.

2.3. Lemma. Let G, I, & be as in Proposition 2.1. Then for any teR and
Ye®R, KA(Y) D (Y} is a closed subset of G.

Proof. Since K is compact and in view of property (R2) D(Y)/D(Y)~T
is compact, to prove that KA4,(Y)D,(Y)I is closed it suffices to show
that if {exp¢; Ydy;} with t;<t,deD(Y)and y,el is a convergent sequence,
then it converges to a limit in 4,(Y) D, (Y)I If ts are bounded then the
sequence {expt;Y} is contained in a compact subset of 4,(Y) and hence
if necessary by passing to a subsequence we can assume that {expz; Ydy;}
as well as {expt; Y} are convergent and hence {dy;} and therefore also
the sequence {y;} is convergent. Clearly in this case {expt;Ydy;} con-
verges to a point in A4,(Y)D,(Y)I! So if possible, let us assume that
t;i—~—oo and {expt;Ydy} converges. As noted in Remark 2.2,
{expt;Yd exp—t; Y} is contained in a relatively compact subset of D, ()
and hence has a convergent subsequence, so we can assume (after passing
to a subsequence) that {expt; Y7} converges to AeG. Let p(%e) be an
element of U(Y) T Since U(Y) is the subgroup corresponding to the Lie
algebra u(Y) which is the sum of eigenspaces of ad Y corresponding to
the positive eigenvalues, if ¢, — — oo, {Ad(expt; Y} Z} for a fixed Zeu(Y)
converges to 0 and hence expt; Yp exp—t; Y —e.
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Thus the sequence
{(expt; Yy) (7 ' @y)(expt; Yy,) '} (={expt; Yo exp—1,Y})

converges to the identity. Hence {y;*¢7,} is a convergent sequence
converging to the identity. Since I is discrete this implies that for all large
i, 77 @7y;=e and hence ¢ =e, a contradiction. This completes the proof
of the lemma.

2.4. Remark. Let # and ceR be as in Proposition 2.1. For beR, the
canonical map
Kx AN (Y)xD(Y)>G

(k,a,d)>k-a-d for keK,acAJ(Y) and deD,(Y)

is an analytic map of maximal rank and hence by rank theorem it is an
open map. In view of Proposition 2.1 and the observation that the group
expR Y centralizes K nB(Y)(=K nD, (Y)) made in the Preliminaries, it
follows that if b < ¢ this map gives rise to a diffecomorphism,

U 42(Y) x (K A Dy (Y))~Dy (YD, (Y)nT)— X/T

Ye®

such that the image is an open co-compact subset of X/I" (i.e., it contains
complement of a compact subset of X/I'). It is also evident now that for
any b<cif

Q=X —{Jn(KA(Y)D,(Y)T),

Yed
then p(€2,) is a strong deformation retract of X/I
In the sequel &, (resp. SY) will denote the closed set
{J n(K4,(Y) D, (Y)T) (resp. the open set |} n(KA4p(Y) D, (Y)I)).
Yea

Yed

§ 3. Two Lemmas
In this section we shall prove two results of technical nature.

3.1. Lemma. Let G be a real analytic semi-simple group with trivial
center and let 9=t +p be a Cartan decomposition of the Lie algebra g of G.
Let B be a parabolic subgroup of G and U the unipotent radical of B.
Let u (resp. b) be the Lie algebra of U (resp. B). If [U, U} is central in U,
then we can find a (unique) Yep such that

(1) u=gy+g}, b=gY+g}+0}and
g=gy*+go7'+oy+oy+g3,
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where for =0, +1, +2, g} is the eigenspace of ad Y corresponding to the
eigenvalue a.

2) gt=[u,ul.

Proof. Let acp be a Cartan subspace. Let g= Y g°+¢° be the root
ped
space decomposition of the Lie algebra g with respect to a. Let us fix a

Weyl chamber in q, this gives rise to an ordering on the set @ of roots.
Let @ be the set of positive roots and 4= @* be the simple roots. Let n*
be the nilpotent subalgebra ), g°.
pedt

Let K be the analytic subgroup of G with Lie algebra f. Since any
parabolic subgroup of G is conjugate by an element of K to a standard
parabolic subgroup (cf. Preliminaries) and since p is stable under Ad K
it suffices to prove the lemma in the case when B=By, fora ¥ < 4.

Let Yea be the unique element such that «(Y)=0forae¥ and a(Y)=1
ifaed — ¥ Let N be the set of natural numbers and for me Z, let g} denote
the eigenspace of ad Y corresponding to the eigenvalue m. Then clearly

g= > 8r"+g87+ ). 6}

neN neN
U=ng=y gy
neN
b=by=g7+ ) ¢y and n*>u=) gj.
neN neN

As is well known n* is generated (as a Lie algebra) by the space ). g* and
acd

clearly Y g*=gy+gy, it follows that u= ) g} is contained in the Lie
aed neN

algebra generated by g?+gb. Now since by the hypothesis [u,u] is
central in u and since g} cu it follows (using Jacobi’s identity) that
a9 +ay+ La¥, g1 is a subalgebra. This implies that

Y gy =g} +[a},0}]
neN
so

[ab,gt1=g2 and g}=0 for n>2.

Since g7 " is dual to g} under the Killing form, it follows that g5 "=0 if
n>2. Hence
g=oy>+o7' +ay+8r+o7
b=gy+ay+oy, u=gi+g}
and
[, u]=[gy, oy1 =8}
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The uniqueness assertion of the lemma* follows from the conjugacy
of maximal R-split tori in B and the fact that a is the Lie algebra of a
maximal R-split torus in B.

In the following the real rational points of a connected reductive
algebraic group defined over R will be calied a reductive real algebraic
group. Note that a reductive real algebraic group need not be connected
but in any case it has only finitely many connected components.

The proof of our next lemma depends upon the strong rigidity of
uniform lattices (proved in Mostow [9]) and the classification of two
dimensional closed differentiable manifolds.

3.2. Lemma. Let A (resp. A') be a uniform lattice in a reductive real
algebraic group M (resp. M'). We assume that A, A" are net. Let L
(resp. L) be a maximal compact subgroup of M (resp. M') and Y=L~ M,
Y'=L~M' be the associated “symmetric spaces”. Let 0: A— A" be an
isomorphism. Then there is a C* diffeomorphism ¢: Y— Y’ such that
ey A)=0 () 0() for yeY, e A.

Proof. Let Mc GL(V) (resp. M'cGL(V’)) be a connected reductive
algebraic group defined over R such that M =Mjg (resp. M’ =Mp) and let
M=S-T, M'=S"-T' (almost direct products) where T (resp. T’} is the
maximal central torus in M (resp. M) and S=[M,M], S'=[M’,M'] are
connected normal semi-simple algebraic subgroups defined over R. If H
and H are algebraic groups defined over R and if n: H — H is a surjective
morphism defined over R, then n(Hyg) is a subgroup of Hy, of finite index.
This implies that if K is a maximal compact subgroup of Hg then Kz (Hg)
is a maximal compact subgroup =m(Hg) and the natural inclusion
n(Hg) N K~ (Hg) — K~Hy is a difffomorphism. Thus since L (resp. L)
obviously contains the maximal compact normal subgroup of M (resp. M’)
we can, after dividing out the center of S, the maximal connected normal
R-anisotropic subgroup® of S and also the R-anisotropic component
of T, assume that T is split over R, S has no R-anisotropic factors and
further S has trivial center. Thus TS={e} which implies that M is
actually direct product of T and S and Mg=M =S8z x Ty. Similarly we
can assume that T’ is split over R, §' has trivial center and no nontrivial
R-anisotropic factors and then M'=8'x T’ (direct product), Mg=M'=
Sk X Tg. Let o Sg x Ty — Sg (resp. o’: Sg x Ty — Sg) be the natural pro-
jection. Then since an algebraic morphism takes net subgroups into net
subgroups, both a(A) and o/ (A') are net.

Ty is direct product of its maximal finite subgroup F and the identity
component Tg, similarly Ty is direct product of its maximal finite sub-
4 In the sequel we shall not use uniqueness.

5 An algebraic group defined over R is said to be anisotropic over R if it has no nontrivial

R-split torus. A reductive algebraic group defined over R is anisotropic over R if and only
if the group of its R-rational points is compact in the Hausdorff topology.
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group F’ and the identity component Ty . Clearly the finite central sub-
groups Fand F’ are contained respectively in L and L. Thus dividing out
M and M’ by F and F’ respectively we can assume that we are in the
following situation. M =8g x T and M'=Sg x T’ (direct products) where
T and T’ are (connected) vector groups; S, §' are connected semi-simple
algebraic groups defined over R which have no nontrivial R-anisotropic
normal subgroups and in particular they have trivial center. (Of course
we no longer assume that M and M’ are real reductive algebraic groups.)
A (resp. A') is a uniform lattice in M (resp. M) such that if we denote the
natural projection Sg x T— Sy (resp. Sg x T'— Sg) again by a (resp. o),
then a () (resp. o (A')) is a net subgroup of Sg (resp. Sg); L (resp. L) is a
maximal compact subgroup of M (resp. M’). Since T and T’ are vector
groups, LcSg and L'<=Sg.

It easily follows from a result of Auslander (see [12, Th. 8.24]) and
Borel’s density theorem that a(A) is discrete and hence is a uniform
lattice in Sg and AT is a lattice in T. From this it is also clear that (since
S has trivial center) AnT is precisely the center of A. Similarly T'nA’
is the center of A, o’ (A’) is a uniform lattice in Sy and T'n A’ is a lattice
in T'. The isomorphism 0: A— A’ thus defines isomorphisms 8|y ,:
TrnA—-T nA and 0: A/TAA—A/T'AA". Since L~M =(L~Sy) xT,
L~M'=(L~SR)x T and the isomorphism 8\, : TNA—->T NnA" ex-
tends to a unique analytic isomorphism T— T” it suffices to prove the
result assuming that T and 7" are trivial i.e., when M =Sgand M’ =S5.

Now since A is a (uniform) lattice in S, by a well known argument
using Borel’s density theorem (cf. [12, Chap. V]) it follows that S=[]§'

iel
where Ss are connected normal algebraic subgroups of S defined over R
and A; =S’ A is an irreducible uniform lattice in Sk. As IT 4; is a uniform
lattice in Sg=[ ] Sk, it is a subgroup of A of finite index. Let A;=0(4))
iel
and let S'f be the identity component of the Zariski closure of A in S'.
Clearly S'! is an algebraic group defined over R and A;=A/NS; is a sub-
group of finite index in 4;. Let §~1(A})= A,, then A, is an irreducible uni-
form lattice in S}. Since A; is normal in the lattice 8(I14;), by Borel’s
density theorem it follows that S'? is a normal subgroup of §'. By density
arguments it also follows that JIS'*=8’ and if i+ then S'' commutes
with S’/ and so S''~S'/ is trivial. Thus §'=[] §'* (direct product). Since
iel
Sy -MA;=Sg-[]4; is a closed subgroup of Sz, SgN(1A)=A4; is a
j*i

uniform lattice in S§.

For i€l let p;: S— S’ (resp. p;: ' — §'%) be the natural projection. Let
A=[] pi(A) (resp. 4'=]] pi(A")). Obviously A=A (resp. A'<4’). Since

iel iel
for iel, p;(A) (resp. p;(A’)) is a uniform lattice in Sk (resp. Sg), 4 (resp. 4')

19 Inventiones math., Vol. 21
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is a uniform lattice in Sy (resp. Sg). It can be seen (using Borel’s density

theorem) that there exists a canonical isomorphism &: 4 — 4’ such that

0|,=0. Thus it suffices to prove the lemma assuming that A=A and

A'=4'. Since corresponding to the decomposition [ S (resp. [] Sg)
iel iel

of Sg (resp. Sg) there is a decomposition of the maximal compact subgroup
L {resp. L) and hence also of the associated symmetric spaces it follows
that we can further assume that A and hence A’ are irreducible.

Now we shall consider the two possible cases separately. First we
consider the case when Sy is locally isomorphic to SL(2, R). In this case
according to [11, §3] Si has R-rank 1 and since a uniform lattice deter-
mines the dimension of the symmetric space associated to the ambient
semi-simple Lie group (this follows from a simple cohomology argument),
dim L~ Sg=dim L~Sg=2 and hence Sy is also locally isomorphic to
SL(2,R). Now &=(L~Sg, f, L~Sg/A) (resp. &' =(L~\Sg, f, L \Sp/A")
is a locally trivial A (resp. A") bundle where B: L~Sgp— L~Sg/4
(resp. B': L' ~\Sg— L \Sg/A’) is the canonical projection. Since L~Sg
and L ~\Sj are contractible (L, L being maximal compact subgroups of
respectively Sp and Sg) it follows that these bundles are classifying
principal bundles. Now if we identify A" with A with the help of the iso-
morphism @ then from the properties of classifying bundles (see for
example [4]) it follows that there is a homotopy equivalence @,:
L~Sg/A— L'\Sg/A’ such that the bundle induced by @, from &' is iso-
morphic to the bundle ¢ (note that we have identified A" with A). Now
since L~\Sg/A and L~ Sy/A" are two dimensional closed manifolds, it
follows from the classification of such manifolds (see [1, §7] and [6])
that there is a diffeomorphism @: L~Sg/A — L ~Sp/A" which is homo-
topic to @, . Since homotopic maps induce isomorphic bundles it follows
that *(£')~ ¢ and hence there is a map ¢: L~Sg— L \Sj, such that:
@{(x)=¢(x)0(4) and the induced map L~Sg/A— L \Sg/A’" is the
diffeomorphism §. Clearly then ¢ is a diffeomorphism and in this case the
proof is complete.

Next we consider the case when Sg (and therefore Sg) is not locally
isomorphic to SL(2, R). Since® Sg/S and Sg/Sy are finite, there exists a
subgroup A, of A of finite index such that A, is contained in S and 8(A4,)
is contained in Sg’. Clearly A, (resp.0(4,)) is an irreducible uniform
lattice in S§ (resp. in Sp°). According to Mostow [9] there exists an iso-
morphism 0: S — S such that 8|4, =0|4,. Let us consider now the
groups S3 A4 and S A’, clearly these are subgroups of finite index in Sg
and Si, respectively. We define a map y: S A4 — Si0 A’ by setting ¥ (x 1)=
0(x) 8(4) for xeSY and Ae A. It can be checked that i is a well defined
isomorphism.

S For a group H we let H® denote the connected component of the identity in H.
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Since the natural inclusions (LNS$ A)~8S% 4 — L~Sg and
(LNSRAYVNSR A — LSy
are diffecomorphisms it suffices to show that there isa C* diffecomorphism
@: (LASIA)NSEA— (L NSPA)NSPZA’
such that
Pp(xA)=0(x)8(4) for xe(LNSIA)~ShA and led.

Now if LNSPA =y (LNS3A) then ¢ induces a diffeomorphism of
required type between the symmetric spaces, but in general L nSp> A’
may not be equal to (LN S%A). In any case the groups L nSg A’ and
Y (LNS$ A) are maximal compact subgroups of the group Si’ A’ which

has finitely many connected components, hence there is an element g’ in
the identity component Si° of S’ A’ such that

V(LnSEA=g (LS A)g ™!

Let us consider the inner automorphism y'+» g’y g’ ~! of the group

S A'. This induces a diffeomorphism
Po: (LASRAYVNSZA = Y(LASRA)NSL A’
such that,
oy -a)=0o(y)-g'a'g ™! for ye(LnSEA)NSZA’

and a' eSS A'.

Thus to complete the proof of the lemma it suffices to show that there
is a diffefomorphism

01 (LNASYA)~SIA— Y (LNASTA)NSL A’
such that
Po(x)=0o(x) g’ 0(A) g ~* for xe(LNSGA)SgA and Aed.

For convenience we shall denote the symmetric space (LN 8% A1)~ S A4
by Y and shall identify the group S;° A’ with 834 and the symmetric
space (LNSJA)~SZ A’ with Y with the help of the isomorphism . Let
y: {0, 1] -+ Sg’ be a differentiable curve such that y(0) is the identity and
y{1)=g'. We have a differentiable map

IxAxY—>Y
(t, A y)—y-y®OAy(™") for tel,AeA and yeY.

We can now use Theorem 4 of Koszul [5, §3 (p. 59)], in a suitably
modified form, and compactness of [0, 1] to produce a diffeomorphism
@o: Y- Y such that

Po(y A=) Y(DAy(1) "' =@o(y)-g'Ag’ ™" for yeY and Jle4

19*
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(note that we have identified S}’ A’ with §$ 4 and hence A’ with A). This
completes the proof of Lemma 3.2.

§ 4. Proof of Theorem C

In this section we shall use the notations introduced in §2. Let Z(<p)
and ceR be as in Proposition 2.1. For Ye® since @y=U(Y)nTI is a
maximal unipotent subgroup of I' and since I' is a Q-rank 1 lattice,
[®y, Py] is central in @, and hence [U(Y), U(Y)] is central in U(Y).
Also since B(Y) is a parabolic subgroup with unipotent radical U(Y) we
can assume, in view of Lemma 3.1, that £ is so chosen that for every Ye #
(in the notations of Lemma 3.1)

u(Y)=gy+¢7, b(Y)=g)+gi+0}

and [u(Y), u(Y)]=q.

Since G and therefore G’ is not locally isomorphic to SL(2, R) and
since I, I'" are net according to {10, Theorem 3.1] the isomorphism 6
takes unipotent elements into unipotent elements and vice-versa. Thus
for any Ye 4, 6(®,) is a maximal unipotent subgroup of I and hence in
view of Proposition 2.1 and Lemma 3.1, there exists a Y'ep’ such that
0(dy)= U(Y)mF’ d5y ; @y is a lattice in U(Y’) and u(Y) gy +a¥,
b(Y) =g}’ + g} +ai?. Thus we get a finite subset %’ of p’ and a bijection
A — R'. In the sequel image of any YeZ under this bijection will be
denoted by Y'.

Clearly any maximal unipotent subgroup of I’ is conjugate (in ")
to U(Y')nI" for a unique Y'e#'. Hence according to Proposition 2.1,
there exists a constant ¢’eR such that if Y/, Y,;e# and Y;+ Y, then

KAA(Y)D(Y) 'K AAY) Dy () =
and for Y'e®,yel'; t;,t,<¢'; ki, kheK and di, d>e D, (Y') if
ki expt, Y'd =k, expt, Y'd, ¥,

then t,=t,, yeD,(Y)nI". Also if n’: G’ > K'~G and p': X' - X'/I"
are the natural projections then for any teR the set

Q=X -n'({) KAY(Y)D,(Y)I)
Ye® .
is compact modulo I, i.e., p’'(€;) is compact.
In the sequel we shall denote

U 7 (K A?(Y) DY) (resp. | @'(K'4,(Y)) D, (Y)I))

Yed YeR'
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by '&? (resp. ‘S,). Also forany YeZ (resp. Y’ e #') K, willdenote K~ D,(Y)
(resp. Ky will denote K'nDj(Y"). As has been remarked earlier Ky
(resp. KY) is a maximal compact subgroup of D, (Y) (resp. D, (Y")).

For Ye4, let ay be the analytic isomorphism from U(Y) to U(Y")
determined by the isomorphism 8|4, : @y — &y (cf. Lemma 0.2, note that
a connected unipotent group is simply connected). For a subgroup H
ofa group M, let N,,(H) denote the normalizer of H in M. Since B(Y)nI'=
Ne(Dy) (resp.B(Y’)mF "= Np (¢’}n)) and since @y is a lattice in U(Y) it
follows that every element in Nj(Py) preserves a Haar measure on U(Y)
thus Np(®y)< D, (Y) and hence Ay = Ny(®y)=D;(Y)nI By similar con-
siderations Ay =Np (Py)=D;(Y)nI". The subgroups U(Y) A, and
U(Y’) Ay are closed subgroups of G and G’ respectively since

U(Y)nAy=®y (resp. U(Y')n Ay =Dy)

is a (uniform) lattice in U(Y) (resp. U(Y")). We define a map By: U(Y) Ay —
U(Y') Ay by setting

Pyu-)=0a,(u)-0(4) for ueU(Y) and Aed,

It can be easily checked that this is a well defined analytic isomorphism.

Now let us consider the spaces Ky~ D;(Y) and K} ~D(Y’). They
are contractible since Ky (resp. Ky) is a maximal compact subgroup of
D, (Y)(resp. D,(Y")). Weassert that (Ky ~ D, (Y), my, Ky ~ D, (Y)/U(Y) Ay)
is a locally trivial principal U(Y) Ay bundle, where

my: Ky~Di(Y)— Ky~D(Y)/U(Y) Ay

is the natural projection.

Since B(Y)=M(Y)- U(Y) (a semi-direct product, cf. Preliminaries)
and D, (Y)o U(Y),

D,(Y)=(D,(Y)nM(Y))- U(Y) (a semi-direct product).

Also recall that Ky < D, (Y)nM(Y) thus Ky~ D;(Y)— Ky~ D,(Y)/U(Y)
is a trivial principal U(Y) bundle. Since U(Y) is a normal subgroup of
D, (Y), there is a natural action of the discrete subgroup U(Y) A,/U(Y)
on the space Ky~ D, (Y)/U(Y) on the right. Since I" and hence Ay is net,
U(Y) A,/U(Y) has no nontrivial torsion element, for if AeAy projects
onto a torsion element in U(Y)A,/U(Y) then for a suitable positive
integer n, 4" is contained in the unipotent group U(Y) and hence all the
eigenvalues of A are roots of unity, since 4 is net this implies that 2 is uni-
potent and hence it is contained in U(Y) which shows that U(Y) Ay/U(Y)
has no nontrivial torsion elements. From this one easily concludes that
the action of U(Y)A,/U(Y) on Ky~ D;(Y)/U(Y) is fixed point free and
hence Ky~ D;(Y)/U(Y)— Ky~D,(Y)/U(Y) Ay is a locally trivial prin-
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cipal U(Y) Ay/U(Y) bundle and thus (Ky~D,(Y), ny, Ky Dy (Y)Y U(Y) Ay)
is a locally trivial principal U(Y) Ay bundle. Similarly for Y'e %',

(Ky Dy (Y'), 7y, Ky~ Dy (Y)U(Y') Ay)
is a locally trivial principal U(Y’) Ay bundle, where ny. is the canonical
projection
Ky ~Dy(Y) = Ky <Dy (Y)U(Y') Ay
Since Ky~ D((Y) and K} ~D{Y’) are contractible, these bundles are
classifying principal bundles. Now if we identify U(Y) Ay and U(Y') A}
with the help of the isomorphism fy, then it follows from the theory of
principal bundles (cf. [4]) that there is a map
Ky~Dy(Y)— Ky ~Dy(Y’)
which we denote again by ay such that
oy (8- )=0y(8) By(A) for 6eKy~Dy(Y) and AeU(Y)Ay. (1)

Let us consider the commutative diagram

Ky~Dy(Y)—"— Ky~ Dy(Y')

Ky~Dy(Y)/U(Y)—— K.~ Dy (Y)/U(Y")

Ky~D,(Y)U(Y) Ay — K\ ~Dy (Y U(Y') A}

where the spaces
g (Ky DY) UYU(Y) A/U(Y))
an
(Ky <Dy (YYU(YN(U(Y') Ay /U(Y")

have been identified with respectively K,~D,(Y)/U(Y)Ay and
K5 ~D,(Y')/U(Y') Ay in the canonical way, the vertical arrows are the
natural projections and &y, &y are the maps induced by ay. Since
D,(Y)/U(Y) and D,(Y")/U(Y’) are reductive real algebraic groups and
U(Y) Ay/U(Y) (resp. U(Y') Ay/U(Y")) is a uniform lattice in D,(Y)/U(Y)
(resp. D, (Y")/U(Y") and since By: U(Y) Ay— U(Y') Ay induces an iso-
morphism _
Byv: U(Y) Ay/U(Y)— U(Y') Ay/U(Y))
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it follows from Lemma 3.2 that there is a C* diffeomorphism
Py: Ky~Dy(Y)U(Y)— Ky ~Dy(Y)/U(Y')
such that for xeKy~D,(Y)/U(Y) and 1eU(Y) Ay/U(Y)
_ Py (xA)=y (x) By (4).
Let @y be the map
Ky~Dy(Y)/U(Y) Ay — Ky ~Dy(Y)U(Y') Ay,

induced by $y. Again since Ky ~D;(Y)/U(Y) and Ky. ~D((Y)/U(Y") are
contractible, the bundle

Ky~Dy(Y)/U(Y)— Ky~D(Y)/U(Y) Ay
(resp. Ky ~Dy(Y')/U(Y') = Ky ~\Dy(Y)/U(Y') Ay)
is a universal U(Y)A,/U(Y) (resp. U(Y') Ay/U(Y")) bundle. Since ay
induces a bundle map it follows (from the property of classifying bundles)

that &y is homotopic to the diffeomorphism @y. Since homotopic maps
induce isomorphic bundles it follows that the bundle

73Ky ~Dy(Y'), ty, Ky \Dy(Y)U(Y') Ay)

is isomorphic to the bundle (Ky~D;(Y), nty, Ky~D(Y)/U(Y) Ay) and
thus we get a map
@y: Ky~Dy(Y)-> Ky~ Dy(Y")
such that
Oy(0-A)=0y(0) By(4) for deKy~Dy(Y) and AeU(Y)Ay,. (2)

Further ¢y is a diffeomorphism since all the bundles under consideration
are locally trivial, differentiable and @y is a diffeomorphism.
In the sequel @y will denote the composite
Dy(Y) = Ky~Dy(Y)—"— Ky ~\Dy(Y))

where the first map is the natural projection.

Let d=min(c, ¢')—1 and let ¢, be a diffeomorphism from &, onto 'S,
defined as follows. For keK, t<d, Ye# and ueD(Y), yel let

@o(n(k-exptY-u-y)=n'(exptY’  dy(u) 0(y)

{with some abuse of notations).

It is easily seen using Proposition 2.1 and the properties of @y that ¢ isa
well defined diffeomorphism and for x in its domain of definition and yeI,

Po(xy) =90 (x) O (7).
Thus @, induces a map @y: p(Sy) — p'(Sy).
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In the following we shall identify I” with I" with the help of the iso-
morphism 8 and call a map : X — X’ I-equivariant if  (xy) = {x)y.
Since X and X' are contractible spaces, the spaces X/I" and X'/I" are
classifying spaces for principal I" bundles, it follows that the spaces X/I'
and X'/I' are homotopically equivalent and there exists a homotopy
equivalence : X/I'— X'/I" such that the I-bundle induced by y from the
bundle &' =(X", p’, X'/I") is isomorphic to the bundle {=(X, p, X/I'). For
YeZ let Ty=Ky~D,(Y)/Ay and for t<c let

&: Ty—X/T
be the map induced from the map
uporn(exptYu) for ueD(Y).

It is clear that for all t<c, €} is a homeomorphism onto its image (cf.
Remark 2.4). Since {=y*({), the I' bundle on Ty induced from ¢’ by the
map ¥ - & is isomorphic to the bundle induced from & by &}. Also since
@o induces a I-bundle isomorphism from &|, s, to &'| (e, it follows that
the bundle induced on Ty from &' by ¢, - &% is isomorphic to the bundle
induced from ¢ by &%. But since £5*! and ¢ are clearly homotopic the
Ibundles induced on Ty from ¢ by 5! and & are isomorphic. This
proves that the maps ¥ - e+ and @, - &% induce isomorphic bundles on
Ty and as X'/T" is a classifying space for I-bundles it follows that for
every Yed, @, - &% is homotopic to ¥ - e*1.

Let I be the unit interval [0, 1]. For Ye# we fix a homotopy dy:
Ty x I — X'/T" between @, - &4 and ¢ - £4*! such that the composite

Ty, — Ty x {0} XS XUr is @, &2
and the composite
Ty—Tyx {1} -2 Xr is - e+t
Let @,: X/ — X'/T" be the map defined as follows
(71',;(9,,“):‘;’ allp(e,,)=¢o

and ford=t<d+1, Ye®, ueD,(Y)
P1(p-m(expt Yu))=46y(vyu, t—d)

where vy is the natural projection Dy(Y)— Ty=Ky~D;(Y)/Ay. Using
Lemma 2.3 one can check that @, is continuous. Since p(£2,,,) is a strong
deformation retract of X/I' and since @y|,q,.,) =V it follows that @, is
homotopic to . Also since @, restricted to the open co-compact set
p(S9) is a C™ map, by standard results in differential topology it follows
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that there exists a C* map

o: X/IT-Xx'/I"
which is homotopic to @, and which coincides with @; on the open co-
compact set p(S2_,). Clearly @ is homotopic to . Thus Exy* (&)~ p*(&).
Let ¢: X — X' be a I~equivariant map lying over @. Then ¢ is a C® map.
We claim that ¢ is a pseudo-isometry. We shall prove our claim in several
steps.

In the sequel for a differentiable map y: M — N we denote by i the
map between the total spaces of the tangent bundles on M and N
induced by .

We will first show that there exists a constant a,> 0 such thatif Z isa
tangent vector to X at a point in &Y_, then

l¢Zl=a, |1Z]. )

(Here we use || | to denote the norm in the riemannian structure on
both X as well as X'. We shall use || || to denote also the norms on p and p’
determined by the Killing forms on g, g’ respectively.)

In the following we denote D,(Y)nM(Y) by M,(Y). Recall that
D(Y)=M,(Y)- U(Y) (a semi-direct product). For Ye®, D(Y)/Ay is
compact so there exists a compact subset n(Y) of M,(Y) such that
D;(Y)=n(Y)- U(Y)Ay. Since the riemannian structures on X and X'
are respectively I' and I'"' invariant (in fact they are respectively G and G’
invariant) and since

?lp@s-n=P1lp@s-n=Polpes-n

it suffices to show that there is a constant o, >0 such that for any Ye %,
if Z is a tangent vector to X at a point in n(A,‘,’_,(Y) 7(Y) U(Y)) then

@0 (2} Sz I Z]. )

Let us consider the composite ¢y of the maps

M,(Y)- U(Y)=D,(Y) Ky~Dy(Y) —"— Ky ~Dy(Y))
~(Ky ~M(Y"))- U(Y").

Given meM, (Y), we can use local sections of the locally trivial fibration
M (Y)— Ky ~M(Y") and the fact that, ¢y(6-A)=¢y(6)Py(A) for
AeU(Y), to find a relatively compact open neighborhood w,, of m in
M (Y) and a map ¥, w,,- U(Y)— D;(Y") such that

1. The composite o, U(Y)~%—"'>D1(Y/)—>K’y,\D1(Y’) is the re-
striction of @y to w,, - U(Y).

2. ¥, 0 D=V, 0) By(D)=¥.,,() - ay(d) for dew, - U(Y), AeU(Y)
(recall that Bylyy,=ay). And
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3. ¥, (w,) is a relatively compact subset of D;(Y"). Let

Vr.om: Ad-1(Y): @y U(Y) > A_1(Y')- Dy(Y))
be the map

exptY-drsexptY'y, (8) for dew, - U(Y) and t<d-1

For me M, (Y) let w? be an open neighborhood of m such that the closure
@2 of w? is contained in w,,. Since Z is finite and #(Y) is compact and
therefore can be covered by finitely many wg’s, to prove (4) it suffices to
show that given a w2 there is a constant oy such that if Z is a tangent
vector to X at a point in n(AJ_,(Y)- @l - U(Y)) then

@o @Dl =5 1Z]. &)

For a fixed Ye# consider the eigenspace decomposition g=g5 %+
a7y ' +a%+a} +g? of g with respect to ad Y. Since Yep, g3=g3nf®galnp
and by our choice of Y, u(Y)=g}+g2, [u(Y),u(¥)}=g} and the Lie
algebra of B(Y) (resp. M(Y)) is g9 + gy +07 (resp. g}). Let {Z'}; ;<. bea
basis of u(Y) such that each Z'is either in g} or in g2 and {3(Z' — 6 Z")}, < <n
(¢ is the Cartan involution) is an ortho-normal set with respect to the
Killing form. Clearly every element in g9 is orthogonal to Z‘— o Z! for
i=n.Let {Y’},_,beanorthonormal basis of g3 n p such that Y°=Y/| Y.

In the following we shall identify the Lie algebra g (resp. g) with the
tangent space to G (resp. G') at the identity and for an element Zeg
(resp. Z’'eg@’) and a point geG (resp. g'eG') we let Z, (resp. Z;) denote the
value of the right invariant vector field on G (resp. G') determined by Z
(resp. Z') at g (resp. g'). Now it can be easily seen that for t<d—1, dew,
and ueU(Y)

l[JY,m,,.(YexplY-d'u)‘: Y¢y_wm<exp:Y~6~u)
for Z in the Lie algebra of M, (Y) we get

¥y, omZexper 5. =(Ad expt Y'f(Z, 8))y,, o (€XDIY -3 1)
where f(Z, §) is the element in the Lie algebra of D,(Y’) such that

(f (Z’ 5))wwm(a) = l//wm (Za)-
Finally for Z'eu(Y)

l[lY,mm(ZixptYJ‘u)
= (Ad (expt Y. me (5)) o'(}'(Ad (0 ! exp—tY) Zi))lhy, @ (€XDLY -5 u):

We note that since [u(Y), u(Y)]=g? and [u(Y"), u(Y")]=g}?, any Lie
algebra automorphism of u(Y) (resp. u(Y’)) stabilizes g; (resp. g;?) and
&y which is a Lie algebra isomorphism maps g7 onto g;>. Since Ad exp—t ¥
(resp. Ad exptY') restricted to g2 (resp.g;?) is multiplication by e~ %'
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(resp. %%) it follows that for Z'eg?

¥y, omZxpry -5-2)
=(Ad(expt Y- ¥,,,0)) 6y (Ad@ " exP—tY)ZWy) o exprr 5.0
~(Ad(expt Y’ -y, (0)- exp—tY")
-AdexptY’-ay(Ad(6"" exp—~tY)Z'),
=(Ad{expt Y’ ¢, (8)-exp—tY’)
(e dy- Ad(s\l(ehztzi)))WY.wm(exptY~6'u)
=(Ad(exptY' -, (3)-exptY’)
(dy- Add™! (Zi)))«vy,wm(exp:y bew

If Z'eg} then

Y, o (EXP1Y 13- 1)

Vv, 0 Zpir 5.
={Ad{exptY' - ¥, (8)-exp—tY'}AdexptY’
by AdOT Adexp—tY(Z))yy , (expry-s-w
=(Ad(expt Y’ ¥, (6)-exp—tY') Ad exptY’
by (€™ AT (Z Wy, o (oxpr -5
=(e"*Ad(exptY'- ¢, (8)-exp—1Y’)
{e'(ay AdST Z) + 7 By AdST! Zi)z}}wy,wm(expy 5w
=(Ad(exptY' ¥, (6) exp—tY’)
Gy AdS™' Z') + €' (By AdS T Z)2})yy o, fexpiy 5w
where
by AdS™Y(Z) = (6ty AdS ™1 Z), +(3y AdS ™ Z7),
with
@, Ad6~'Zi) egft and (ay AdS~'Z),e6y.

If Z is in the Lie algebra of M,(Y) then,

Jl!’.wm(zcxpnf e u)=(Ad expt Y'(f(Z, 6)))\”, PRS2 a1

= (Ad eth Y’ {f(Z’ 5))0 + (f(Za 6))1 + (f(Z’ 6))2}wy’wm(expr Y-6-u)
where

f@Z,0)=(f(Z,0)o +(/(Z, ) +(f(Z, ),
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with
(f(Z,0)egf for i=0,1,2.

=((f(Z, o+ (f(Z,0) +e*(f(Z, 5))2)|j/yywm(expr)'~é “u)e
Now let

CexptY-é-uz(Z rj Yj+zsizi)<cxpty-6<u)

be a tangent vector at a point in AS_(Y)-w?- U(Y) (thus t<d—1,
dew), and ueU(Y)) such that

17 expey-s-ull =1

17 Lexpiy 5ol = !lfr(; r; Yf+'z s:ZY)|
=1 Y+ Y4z -aZ)
=(§J rf+§s,~2)*

it follows that for all i and j; r;, 5;< 1.
From the commutative diagram

A9 (Y)- - U(Y) 2222 49 (V) My(Y))- U(Y)

% P

(A, (Y)- 0, - U(Y)—2ls ' (49 ,(Y')- My(Y")- U(Y")

then since

we get
Il(boﬁ'éexp!}’-é-u | = “fc’l//Y mm{(z rj YJ+E SiZl)epr-é-u} “

= P
|+ S ol

£ S0+ e 00,
+:§Z s; Ad(expt Y’ -wam(é) -exp—tY')(ay Ad6™(ZY)
+Zzysi Ad(exptY’- ¥, (3)- exp—tY)(ay Ado~1 Z),
=t
+Z_Z s;¢ Ad(exptY' -y, (5)-exp—tY')(ay Adé“Z")}H.
e,

Since w,, and ¥,, (®,,) are relatively compact subsets, @3 (< w,,) is
compact and (cf. Remark22) ) exptY’-y, (wf)-exp—tY’ is rel-

t<d-1
atively compact. Also for t<d—1 both &, e?' are bounded. Thus it
follows that for a suitable constant o,

”(ﬁof! Cexer-J-u” §d3.
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For any Z #0 considering Z/|| Z| it follows that
l¢oZl=os IZ].

This establishes (5} and therefore (4) and hence (3) too.

Now since ¢lgo : &7_; —'S]_, is a diffeomorphism, considering
its inverse, ¢ ~', we can in the same way prove that there is a constant «,
such that for a tangent vector Z' to X’ at a point in '&J_,

1
||¢>“IZ’II§a—NZ'II- (6)
1

From this one deduces that
uZi=leZ] )

for a tangent vector Z to X at any point in &J_,.

Now since €, ;=X —-&J_, is compact modulo I and since ¢ is
I-equivariant and the riemannian structures on X and X' are I' invariant,
in view of (3) it follows that there is a constant k, Za, such that if Z is a
tangent vector to X then

l¢Zl =k IIZ].

This implies that for x, yeX
d(p(x), o (V) =k: d(x, )

and in particular ¢ is uniformly continuous.

To complete the proof of Theorem C we have only to show that there
exist positive constants k and b such that

d(e(x), p(y)zk 'd(x,y) for x,yeX with d(x y)=b.

We need the following lemma.

4.1. Lemma. Let G and G’ be semi-simple linear analytic groups and let
I be a lattice in G. Let I'' be a discrete subgroup of G'and 0: I’ > I" be an
isomorphism. Let K (resp. K') be a maximal compact subgroup of G
(resp.G') and let X=K~G (resp. X'=K'~G') be the symmetric
riemannian space associated with G (resp.G' ). Let ¢o: X — X' be a uni-
Jformly continuous map such that

o(xy)=@(x)08(y) forall xeX and vyel
Then ¢ is a proper map.

Proof. Since lattices in analytic groups are finitely generated, according
to a result of Selberg, a lattice in a linear analytic group admits a subgroup
of finite index which is torsion free ([cf. 12, §6]). Thus it is enough to
prove the lemma assuming I" (and hence I"’) torsion free.
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Let C’ be a compact subset of X’. If possible let us assume that
@~ '(C" is non-compact. Then there exists a sequence {x;} c¢ (C)
which has no convergent subsequence. There are two cases to be con-
sidered.

(i) If {x,} is has a convergent subsequence modulo I, then if necessary
by passing to a subsequence we can assume that there exist y,el” such
that {x,y,} converges to xeX. Then ¢(x;)0(y,) converges to y=@(x).
Also since ¢(x))eC' there is a subsequence of @(x,) which converges.
Let n': G'—> K'~ G be the natural projection and let {g;} be a sequence
in G’ such that ¢(x;)=x;=n'(g}). Then since =’ is proper, we can after
passing to a subsequence assume that {g;} as well as {g; 0(y,)} converge.
Hence the sequence {6(y,)} converges. Since I is discrete, {0(7)};x may
is a constant sequence. Thus {y;};., is a constant sequence. But then
since {x,y,} converges to x this sequence is contained in a compact
subset of X and hence {x;} is contained in a compact subset of X, a
contradiction.

(ii)) Now let us assume that {x,} has no convergent subsequence
modulo I Let n: G— K\ G be the natural projection and let g, be such
that n(g;)=x;. Evidently {g;} has no subsequence convergent modulo I’
Hence by [12, Theorem 1.12] there exists a sequence {y;}<I such
that {g;y;g; !} converges to the identity and for no i, y;=e. Thus
d(n(e), n(g; ;87 ))—>0 which implies that d(n(g), n(g;y))—0 i.e,
d(x;, x;y,)— 0. Since ¢ is uniformly continuous this implies that

d ((P (x), @ (x; )’i)) =d (‘P (x, 0(x;) 0 (Yi)) - 0.

After passing to a subsequence if necessary, we can assume (since x;e C',
C’ is compact and since ©’ is proper) that {g;} and {g;y;} are convergent
where {g;}=G’ is a fixed sequence such that n'(g))=x] and y;=0(y)).
From this we can conclude as before that for large i, y;=y. Then
d(x}, x;y)=d(x;, x;y;)— 0. This implies that if {x]} converges to y then
d(y,y y)=01i.e, y =y y. Since isotropy subgroup of any point in X" is
compact, this implies that y is a torsion element and since I is torsion
free y' =identity. Thus for large i, y; and therefore y; are the identities in
respective groups. This again is a contradiction.

We now complete the proof of Theorem C. We first observe that
there exists a real number e<d—1 such that ¢! (S2)c &?. This follows
from the fact that Q,_, is compact modulo I, so ¢(Q,_,) is compact
modulo I'" and hence for e sufficiently small, ¢(Q2,_,)n'S2=0. Now
since §lyeg_,=Po We actually get that 9 1(8%) = &2 and ¢ restricted
to &2 is a diffeomorphism.

Let a be a positive real number fixed once and for all. For a subset E
of a metric space M we denote by T,(E) the set {xeM|d(E, x)<a}. Since
Pt X' X'/I" is a distance reducing map it follows that p'(T,(Q,)<
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T.(p'(Q.). As X'/T" is a complete riemannian manifold (cf. [3, Prop. 10.6
and Th. 103 in Chapter 1]) and p'(£2,) is compact, T,(p'(%2,)) and hence
p’(T;(Q;)) are compact. Now since p’ is a covering map it can be shown
that there exist a positive real number a<a and a compact subset C, of
T,(£2,) such that any closed ball of diameter <u contained in T,(£2,) can
be brought in C,, by an element of I". Let s=diam¢ ~!(C,) then in view
of Lemma 4.1, s is finite. Clearly if B’ is a ball of diameter <« contained
in T,(€2) then diam¢~'(B)<s. We now claim that there exists a real
number r such that if B<X' is a closed ball of diameter <« then
diamo~1(B)<r. To see this we argue as follows. If B'n Q.+ then
since a=« it follows that B'=T,(Q,) and then diame '(B)<s. If
B nQ,=¢, then since X'=Q,u'S.%, B'<'S? Now since a ball is
geodesically convex, ¢ ™! (&%)« &2 and ¢ is a diffeomorphism restricted
to &2; we can easily conclude from the inequality (7) that

diam (¢~ ' (B))So/a;.

Thus if r=max(a/a,, s) then clearly, for any ball B'c X' of diameter <g,
diam (¢ ~*(B)) <r which proves our claim.

Let k,=r/a. For x, ye X with d(¢(x), ¢(y)) <ma there is a path in X
of length less than mr joining x to y. Given now x and y in X with
d(x, y)=r we can choose n=1 so that

na<d(p(x), o(y)<(n+1)a,
then

+1 r n+1
A y) <+ =" naS Tk dlp (<), 0 ()

<2k, d(e(x), @ (y)-
Set k=max(k,,2k,) and b=r, then

d(x,))Skd(p(x),@(y) for x,yeX with d(x,y)=b
and
d(p(x), )=k d(x,y)
Thus ¢ is a pseudo-isometry. This completes the proof of Theorem C.

4.2. Remark. 1t is well known that lattices in SL(2, R)/+1, are not
strongly rigid in general. In fact since a non-uniform, torsion free lattice
in SL(2, R)/+1, is (non-abelian and) free, its group of outer automor-
phisms is infinite. This, as can be seen easily, implies that such a lattice
can not be strongly rigid. Also since two compact riemann surfaces of the
same genus and with isomorphic fundamental groups need not be
analytically equivalent it follows that in general even a uniform lattice in
SL(2,R)/ 1, may not be strongly rigid (cf. [9, §1]).
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