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Abstract. Methods of theta correspondence are used to analyze local and global
Bessel models for GSp4 proving a conjecture of Gross and Prasad which describes
these models in terms of local epsilon factors in the local case, and the non-
vanishing of central critical L-value in the global case.
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1. Introduction

In this paper we use the methods of theta correspondence to prove certain local and
global conjectures of Gross and Prasad for the pair (SO(2), SO(5)) by reducing the
question to simpler pairs for which the analogous question is known. These conjectures
relate the existence of Bessel models (which are certain Fourier coefficients) to certain
local epsilon factors in the local case, and to the non-vanishing of certain central critical
L-value in the global case. Instead of SO(5) we will consider the related group GSp4

in this paper. This gives first nontrivial evidence to the conjectures of Gross-Prasad
in which the subgroup considered is neither reductive, nor unipotent. As a byproduct,
we also obtain information about the one dimensional representations of GL2(K) which
appear as a quotient in representations of GL4(k) when restricted to GL2(K) where K
is a quadratic extension of a local field k.

Among the earliest manifestations of the methods that we follow in this paper is the
work of Waldspurger on Shimura correspondence in the late 70’s relating period integral
of automorphic forms on PGL2 over tori to Fourier coefficients of automorphic forms on
the metaplectic SL2, both being related to twisted L-values at 1/2.

Let us now explain the setup more precisely. Let W be a four dimensional symplectic
vector space over a field k with a fixed basis {e1, e2, e3, e4}, and a symplectic form
〈, 〉 on W such that 〈e1, e3〉 = −〈e3, e1〉 = 1, 〈e2, e4〉 = −〈e4, e2〉 = 1, and all other
products among these basis vectors to be zero; thus the symplectic structure is given by
the following skew-symmetric matrix:

J =


0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 .

Let W1 = 〈e1, e2〉 be a maximal isotropic subspace of W . Let G = GSp(W ) denote
the symplectic similitude group of W , and P the parabolic subgroup of G consisting of
elements of G which take W1 into itself. The group P is the so-called Siegel parabolic
which has the Levi decomposition P = MN , where M ∼= GL2 × Gm is the group of
pairs (g, λ) with

(g, λ) =

(
g

λ · tg−1

)
,

and N is an abelian group which can be identified to the set of 2×2 symmetric matrices,
Sym2(k), over k. The inner-conjugation action of an element (g, λ) ∈ GL2 × Gm on
n ∈ N is given by λ−1gntg. It follows that the stabilizer in M of a non-degenerate
symmetric matrix in N can be identified to the normalizer of a Cartan subgroup of GL2.

Fix ψ0 : k → C× to be a nontrivial additive character of k. Any character of N is
of the form ψ(n) = ψ0(tr[sn]) for some s ∈ Sym2(k), and the corresponding subgroup
N(T ) = N(Ts) of GL2(k) is

N(T ) = {g ∈ GL2(k) | tgsg = det g · s},
which is considered a subgroup of GSp4(k) via the embedding

g 7→
(
g

det g · tg−1

)
.
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Let π be an irreducible admissible representation of GSp4(k). Let πψ denote the
largest quotient of π on which N operates by ψ. Clearly πψ is a representation space for
the subgroup Mψ of M which stabilizes ψ. We will consider ψ = ψ0(sn) corresponding
to a s ∈ Sym2(k) with det s 6= 0. For such ψ, Mψ is isomorphic to the normalizer
N(T ) of a Cartan subgroup T of GL2(k). The question that we study in this paper is
the structure of πψ as a module for T , called the Bessel model of π, both locally as well
as globally for representations π of GSp4(k).

We will work simultaneously with the rank 1 form of GSp4(k), to be denoted by
GSpD4 (k), and defined using a quaternion division algebra D over k as{

g ∈ GL2(D)|g
(

0 1
1 0

)
tḡ = λ ·

(
0 1
1 0

)
, λ ∈ k×

}
where for g =

(
a b
c d

)
∈ GL2(D), tḡ =

(
ā c̄
b̄ d̄

)
, and where a → ā denotes the

standard involution on D. The group GSpD4 (k) contains the Siegel parabolic whose
unipotent radical is the group of matrices(

1 n
0 1

)
where n ∈ D with n+n̄ = 0, and the Levi subgroup is isomorphic to D××k× embedded
in GSpD4 (k) as (

d 0
0 td̄−1

)
for d ∈ D×, and t ∈ k×.

Many of the results on GSp4 in this paper are obtained by using theta lifting from
GO4. We recall the structure of four dimensional quadratic spaces over a general field k
(of characteristic not 2), and of the connected component of identity of GO4, denoted
by GSO4, as follows.

(1) The isomorphism class of a quadratic space of dimension 4 and trivial discrim-
inant over a field k is given by a quaternion algebra D over k with a multiple
of its (reduced) norm form. In this case, GSO4(k) ∼= [D× ×D×]/∆k×, where
∆k× = k× is embedded in D× ×D× as (a, a−1).

(2) To a quadratic space of dimension 4 and non-trivial discriminant over a field
k, defining a quadratic extension E of k, there is associated a quaternion alge-
bra DE over E with an involution i of the second kind. The quadratic space
corresponding to DE consists of hermitian elements, i.e, {x ∈ DE|i(x) = x},
together with the norm form N : DE → E restricted to this subspace (where it
takes values in k), or a scaling of this quadratic space by an element of k×/NE×.
In this case, GSO4(k) ∼= [D×E × k×]/∆E×, where ∆E× = E× maps to k× as
N(a−1). (In the case of local fields, a quadratic space of dimension 4, and
non-trivial discriminant always has a zero, so DE

∼= M2(E).)

To summarize, for V a four dimensional quadratic space over a local field k, GSO(V ),
has the structure of one of the following groups:

(1) GSO(V s) ∼= [GL2(k)×GL2(k)]/∆k×.
(2) GSO(V a) ∼= [D× ×D×]/∆k×.
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(3) GSO(V d) ∼= [GL2(E)× k×]/∆E×,

where ∆k× = k× sits as (t, t−1) in GL2(k)×GL2(k) and in D× ×D× where D is the
unique quaternion division algebra over k, and ∆E× = E× sits inside GL2(E) × k×

via its natural embedding in GL2(E), and in k× by the inverse of the norm mapping;
we have used V s to denote the unique four dimensional split quadratic space, V a to
denote the unique anisotropic quadratic space of dimension 4, and V d is one of the two
quadratic spaces of rank 1 with discriminant algebra E, a quadratic field extension of k.

Notice that not all forms of [GL2(k)×GL2(k)]/∆k× are represented by GSO(V ) in
(1), (2), (3). Other forms of [GL2(k)×GL2(k)]/∆k× are defined using skew-hermitian
forms over D, which give rise to groups

(4) [D× ×GL2(k)]/∆k×.
(5) [D×E × k×]/∆E×, where E is a quadratic extension of k, and DE the unique

quaternion division algebra over E.

These groups will be used to do theta correspondence between GSpD4 (k) and GSOD
4 (k),

and will be discussed in greater detail later.

1.1. Resumé of the main results. We recall the following multiplicity 1 theorem of
Novodvorsky extended in two ways. First we consider GSp4(k) instead of his PGSp4(k),
and then we also consider rank 1 form of GSp4(k). Both of these are standard extensions
of the arguments in Novodvorsky’s paper.

Theorem 1. Let π be an irreducible admissible representation of either GSp4(k),
or GSpD4 (k) with Siegel parabolic P = MN . Let K be a quadratic separable algebra
over k, and χ a character of K×. Let ψ : N → C× be a non-degenerate character
of N centralized by K×, so that one can construct a one dimensional representation
of R = K×N which is χ on K×, and ψ on N , which will also be denoted by χ as ψ
will be kept fixed in this paper. Then

dimHomR(π, χ) ≤ 1.

Remark 1.1. If HomR(π, χ) 6= 0, then the representation π is said to have Bessel
model for the character χ of K×.

Before proceeding further, recall that the Langlands parameter of a representation π
of GSp4(k) is a representation

σπ : W ′
k → GSp4(C)

where W ′
k is the Weil-Deligne group of k which we take to be W ′

k = Wk × SL2(C).
These have been constructed in a recent paper of Gan and Takeda [G-T1] who have
also defined a notion of L-packets (of size 1 or 2) for representations of GSp4(k) which
is what we will use in this paper. Instead of working with the Langlands parameter of a
representation of GSp4(k), with values in GSp4(C), it is more convenient to work with
representations of W ′

k into GL4(C), which fix a symplectic form up to a similitude. The
following lemma, implicit in many considerations about symplectic parameters, makes
this possible.

Lemma 1.2. For any group G, the natural homomorphism GSp2n(C) ↪→ GL2n(C)×
C×, where the mapping from GSp2n(C) to C× is the similitude character, gives rise
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to an injective map from conjugacy classes of homomorphisms from G to GSp2n(C)
to conjugacy classes of homomorphisms from G to GL2n(C)× C×.

Here is our main local theorem, proving the Gross-Prasad conjecture for Bessel models
of GSp4(k):

Theorem 2. Let K be a quadratic separable algebra over a local field k of residue
characteristic not 2, such that K× ⊂ GL2(k) is contained in the centralizer of a
non-degenerate character ψ : N(k) → C×. Let χ : K× → C× be a character. Let
{π} be an irreducible, admissible generic L-packet of representations of GSp4(k)
with Langlands parameter σπ. Assume that the central character of {π} is χ|k×.
Let GSpD4 (k) be the rank 1 form of GSp4(k), and {π′} an irreducible, admissible
L-packet of representations of GSpD4 (k) with Langlands parameter σπ. (So {π′}
might be an empty set.) Then there is at most one representation π ∈ {π} with
HomK×(πψ, χ) 6= 0, and there is one if and only if ε(σπ⊗ IndkK(χ−1)) = 1. Similarly,
there is at most one representation π′ ∈ {π′} with HomK×(π′ψ, χ) 6= 0, and there is

one if and only if ε(σπ ⊗ IndkK(χ−1)) = −1. Furthermore, if {π} or {π′} consisted
of more than one element, then the parameter σπ with values in GSp4(C) becomes
a sum of two-dimensional representations σπ = σ1⊕ σ2 with detσ1 = detσ2 = χ|k×,
and one can make precise which element of the L-packet, {π} or {π′} has a Bessel
model for the character χ of K×.

Here is the global theorem we prove.

Theorem 3. Let D be a quaternion algebra over a number field F , with the adele
ring AF . Let Π1 and Π2 be two automorphic representations of D×(AF ) with the
same central characters, so that Π1 � Π2 can be considered to be an automorphic
representation on the corresponding orthogonal group GSO4(AF ) defined by the re-
duced norm on D. Let Π be the theta lift to GSp4(AF ) of Π1 � Π2 on GSO4(AF ).
Let E be a separable quadratic algebra over F , and χ a Grössencharacter on A×E
whose restriction to A×F is the central character of Π. Let ψ : N(AF )/N(F ) → C×
be a character which is normalized by A×E, and hence (χ, ψ) gives rise to a character
of R(AF ) = A×EN(AF ) which we will abuse notation to denote simply by χ as ψ is
considered fixed. Then the period integral on Π taking f ∈ Π to∫

R(F )A×F \R(AF )

f(g)χ−1(g)dg,

is not identically zero if and only if the period integrals,∫
E×A×F \A

×
E

f1(g)χ−1(g)dg,

and ∫
E×A×F \A

×
E

f2(g)χ−1(g)dg

on Π1 and Π2 respectively are not identically zero; in particular, by Waldspurger, if
the period integral on R(F )A×F\R(AF ) of functions in Π is not identically zero, then

L(
1

2
, BCE(Π1)⊗ χ−1) 6= 0,
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and

L(
1

2
, BCE(Π2)⊗ χ−1) 6= 0,

where BCE denotes the base change to GL2(E) of an automorphic form on GL2(F ).
Further, for automorphic representations Π1 and Π2 on GL2(AF ), if L(1

2
, BCE(Π1)⊗

χ−1) 6= 0, and L(1
2
, BCE(Π2) ⊗ χ−1) 6= 0, Waldspurger’s theorem gives quaternion

algebras D1 and D2 over F , and an automorphic representation of (D×1 ×D×2 )/∆Gm

such that the corresponding period integrals on E×A×F\A
×
E are nonzero. Given D1

and D2, quaternion algebras over the number field F , let D1 ⊗D2
∼= M2(D). Tak-

ing the tensor product of canonical involutions on D1 and D2, we get an involu-
tion on M2(D) with fixed subspace of dimension 10, and hence there is a skew-
hermitian form on a 2 dimensional vector space over D such that the corresponding
GSOD

4 (k) = [D×1 ×D×2 ]/∆Gm. Define GSpD4 (k) using this D, and construct a repre-
sentation of GSpD4 (AF ) via theta lifting. Then for this automorphic representation,
say Π̃ on GSpD4 (k), the corresponding period integral of functions f in Π̃,∫

R(F )A×F \R(AF )

f(g)χ−1(g)dg,

is not identically zero (in particular Π̃ is not zero).

Remark 1.3. There is a considerable amount of Geometric Algebra especially using
exceptional isomorphisms of low rank groups in this paper (such as SO4(k) being
related to GL2(k) × GL2(k), SO(5) being related to PGSp(4), or SO(6) to SL(4),
the structure of their inner forms which usually has different constructions for the
two groups involved, and the relation of their subgroups under this isomorphism).
This fits rather nicely to yield exactly what is needed for the similitude groups being
considered (such as GSO(2), which is much preferred over SO(2)).

Remark 1.4. It may be noted that besides its intrinsic interest, as Bessel models
are usually nonzero for some choice of χ : K× → C×, they can be used in developing
the theory of L-functions for GSp4(k) as in the early work of Novodvorsky and
Piatetski-Shapiro, extending considerably the scope of the theory of L-functions
based on genericity hypothesis. See [F] and [Pi-S] for modern treatments of this
idea.

One can bootstrap our results and techniques to deduce a theorem about the restric-
tion of a representation of GL4(k) to the subgroup GL2(K) where K is a quadratic
algebra over k, which we state now.

Theorem 4. Let π be an irreducible, admissible, generic representation of GL4(k)
with central character ωπ. If π can be transferred to a representation of GL2(D), let
π′ be the corresponding representation of GL2(D). Let χ be a character of K× such
that χ2|k× = ωπ. Then if the character χ ◦ det of GL2(K) appears as a quotient in
π, or π′, restricted to GL2(K),

(1) The Langlands parameter of π takes values in GSp4(C) with similitude factor
χ|k×.

(2) The epsilon factor ε(π ⊗ IndkK(χ−1)) = 1.
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Conversely, assume that π is an irreducible, generic representation of GL4(k) such
that:

(1) The Langlands parameter of π takes values in GSp4(C) with similitude factor
χ|k×.

(2) The epsilon factor ε(π ⊗ IndkK(χ−1)) = 1.

From (1), it follows by the work of Gan-Takeda that there exists an L-packet
{πGSp} on GSp4(k) whose theta/Langlands lift to GL4(k) is π. (By lemma 1, given
π and χ, the L-packet {πGSp} is unique.) If π′ 6= 0, and the L-packet {πGSp} has 2
elements, then exactly one of π or π′ has a quotient on which GL2(K) operates by χ
unless π = τ × τ for a discrete series representation τ of GL2(k) in which case both
π and π′ have a quotient on which GL2(K) operates by χ for any character χ of K×

such that ωτ = χ|k×. If π′ 6= 0, and the L-packet {πGSp} has only one element, then
both π and π′ have a quotient on which GL2(K) operates by χ ◦ det.

Similarly, assume that π can be transferred to a representation π′′ of D× where D
is a quartic division algebra over k, and that K is a quadratic field extension of k
embedded inside D, and that the centralizer of K inside D is BK for the quaternion
division algebra BK over K. Then a character χ of K× thought of as a character
of B×K appears in π′′ restricted to B×K if and only if

(1) The Langlands parameter of π takes values in GSp4(C) with similitude factor
χ|k×.

(2) The epsilon factor ε(π ⊗ IndkK(χ−1)) = −1.

This theorem is proved in Section 11, where we formulate a general conjecture.
We construct an example to show that the question of the non-triviality of the corre-

sponding global period integral is not merely one about L-values, and local conditions;
this is given in Section 14; it should be contrasted with the case of Bessel periods, or the
general Gross-Prasad conjectures, where local conditions, together with non-vanishing
of a central critical L-value dictates the period integral to be nonzero.

Acknowledgement : The first author thanks the Institute for Advanced Study,
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gratefully acknowledges receiving support through grants to the Institute by the Friends
of the Institute, and the von Neumann Fund, and the Clay foundation as well as the
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at various stages and would like to dedicate this work to him.

2. Bessel models for principal series representations

The aim of this section is to calculate the twisted Jacquet functor πψ for a principal
series representation π of GSp4(k) with respect to a non-degenerate character ψ : N →
C× given by a symmetric matrix A ∈ M2(k) as ψ(X) = ψ0(tr(AX)) for X ∈ N =
Sym2(k).
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We note that πψ is a module for the group

Mψ
∼= {g ∈ GL2(k)|gAtg = det g · A}

considered as a subgroup of GSp4(k) via

g 7→
(
g

det g · tg−1

)
.

which is the normalizer in GL2(k) of a certain torus K×ψ .
Recall that we are using W to denote a four dimensional symplectic vector space

over a field k with a fixed basis {e1, e2, e3, e4}, and a symplectic form 〈, 〉 on W such
that 〈e1, e3〉 = −〈e3, e1〉 = 1, 〈e2, e4〉 = −〈e4, e2〉 = 1, and all other products among
these basis vectors to be zero; thus the symplectic structure is given by the following
skew-symmetric matrix:

J =


0 0 1 0
0 0 0 1
−1 0 0 0

0 −1 0 0

 .

2.1. Siegel Parabolic. We begin with the case when π is induced from the Siegel
parabolic P from an irreducible representation ρ of the Levi subgroup M of P = MN .

As usual, let P be the Siegel parabolic stabilizing the isotropic subspace W = {e1, e2}
with M the stabilizer of the isotropic subspaces W = {e1, e2} and W ′ = {e3, e4}. The
calculation of the twisted Jacquet functor will depend on the understanding of the double
coset P\G/P with G = GSp4(k), which is the same as G\[G/P ×G/P ], or the orbit
of GSp4(k) on pairs of maximal isotropic subspaces. It is easy to see that there are
three orbits of pairs of isotropic subspaces (W1,W2):

(1) W1 = W2; in this case we take W1 = W2 = W .
(2) W1 ∩W2 = {0}; in this case we take W1 = W , and W2 = W ′.
(3) W1 ∩W2 is 1-dimensional; in this case we take W1 = W , and W2 = {e1, e4}.

As W1 is chosen to be W in all the three cases, the stabilizer in GSp4(k) of the pair
of isotropic subspaces (W1,W2) is a subgroup of P which is the following subgroup Hi

of P in the three cases:

(1) H1 = P .
(2) H2 = M .

(3) H3 containing the unipotent group

(
x y
y 0

)
∈ Sym2(k) ⊂ N .

From the Mackey theory, it follows that the representation π = indGPρ restricted to P
is obtained by gluing the following three representations:

(1) ρ.
(2) indPMρ.
(3) indPH3

ρ|H3 .

(The discriminant function δP used for normalized induction is trivial on Mψ as up to
finite index Mψ is the product of the center of G with its part in [M,M ]; hence in light
of the eventual answer, one can ignore δP in what follows.)
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We observe that since the representation ρ of M is extended to P trivially across N ,
for a non-degenerate character ψ of N , ρψ = 0 in case (i).

For case (iii), as (
a b
b c

)(
x y
y 0

)
=

(
ax+ by ay
bx+ cy by

)
,

ψ

[(
a b
b c

)(
x y
y 0

)]
= ψ0(ax+ 2by),

it follows that if the character ψ of N were to be trivial on the subgroup N ∩ H3,
a = b = 0, and hence ψ will not be a non-degenerate character. Noting that N is
a normal subgroup of P , it follows that any character of N appearing in case (iii) is
degenerate, and hence case (iii) does not contribute to the twisted Jacquet functor.

In case (ii), since P ∼= MN with N normal, we get indPMρ
∼= ρ⊗indPM1 as P -modules.

Hence, [
indPMρ

]
ψ
∼= ρ|Mψ

for any character ψ of N . Thus we find that the twisted Jacquet functor in the three
cases is as follows:

(1) 0.
(2) ρ|Mψ

.
(3) 0.

Therefore we have the following proposition.

Proposition 2.1. For a principal series representation π of G = GSp4(k) induced
from a representation ρ of P = MN of a Siegel parabolic, πψ ∼= ρ restricted to Mψ.

Analogously, for GSpD4 (k), we have the following.

Proposition 2.2. For a principal series representation π of G = GSpD4 (k) induced
from a representation ρ of P = MN of the unique (up to conjugacy) parabolic of
GSpD4 (k) with M ∼= D× × k×, πψ ∼= ρ restricted to Mψ.

2.2. Klingen Parabolic. We next direct our attention to the calculation of the twisted
Jacquet functor for representations induced from Klingen parabolic Q = M ′N ′ which
we take to be the stabilizer of the isotropic line {e1}. Once again, the restriction to
P of a representation π of GSp4(k) induced from a representation ρ of M ′ extended
trivially across N ′ is obtained by gluing certain representations indexed by double cosets
P\GSp4(k)/Q which is the same as the GSp4(k)-orbits of pairs (L,W ) of a one di-
mensional subspace L of V , and a two dimensional isotropic subspace W of V . There
are two orbits:

(1) L ⊂ W in which case we take L = {e1}, and W = {e1, e2}.
(2) L 6⊂ W in which case we take L = {e3}, W = {e1, e2}.

In case (i), the part of the unipotent radical N of P which is contained in the unipotent
radical N ′ of Q is the set of matrices,(

0 y
y z

)
∈ Sym2(k) ⊂ N,
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From a calculation as done in case (iii) of the principal series induced from Siegel
parabolic, it is easy to see that there are no non-degenerate characters of N trivial on(

0 y
y z

)
∈ Sym2(k) ⊂ N,

and therefore once again as N is normal in P , it follows that this double coset contributes
nothing to the twisted Jacquet functor.

In case (ii), the stabilizer of the pair (L,W ) with L = {e3}, and W = {e1, e2} is the
subgroup

H =


x11 0 0 0
x21 x22 0 x24

0 0 x33 x34

0 0 0 x44

 .

There are embeddings of H in Q = k× × GL2(k) × N ′ with image k× × B2 × 〈u〉
where B2 is the group of upper triangular matrices in GL2(k), and 〈u〉 is a 1 parameter
subgroup in N ′. In the embedding of H in P = k× ×GL2(k)×N , the one parameter
subgroup 〈u〉 goes to the upper triangular unipotent subgroup in GL2(k), the unipotent
radical of B2 goes inside N to a 1-dimensional subgroup that we denote by N0, and the
diagonal torus to the diagonal torus in GL2(k).

By Mackey theory, it follows that the restriction of π to P contains indPHρ
′ where H

can be taken to be k××B2×N0 and the representation ρ′ is the restriction of ρ to the
diagonal torus in GL2(k) extended trivially across the unipotent subgroup of B2 to all
of B2. We assume now that the representation ρ of GL2(k) is infinite dimensional, so
that (by Kirillov theory) its restriction to B2 contains the representation of B2 which is
obtained by inducing from a character of the subgroup, ZU of B2, consisting of central
and unipotent elements of B2.

As the action of K× on GL2(k)/P1 where P1 is the subgroup of B2 consisting of
elements of the form (

1 ∗
0 ∗

)
,

contains an open dense orbit, it follows that for R = K× ·N , R\P/H contains an open
dense double coset which in the case of K a field is the unique double coset. Thus the
representation indPHρ

′ restricted to R contains

indRR∩Hψ̃ = indK
×N

k×N0
ψ̃,

where ψ̃ is the character of k×N0 which is equal to the central character of π restricted
to k×, and is the restriction of the character ψ of N to N0, which can be checked to be
nontrivial on N0.

Thus its maximal quotient on which N operates by ψ is indK
×N

k×N ωψ where ω is the
central character of the representation ρ. We thus obtain the following conclusion.

Proposition 2.3. For a principal series representation π of G = GSp4(k) induced
from an infinite dimensional irreducible representation ρ of Q = M ′N ′ of a Klingen
parabolic, πψ restricted to K× = Mψ has each and every character of K× with the
same central character as that of ρ appearing with multiplicity one as a quotient.



BESSEL MODELS FOR GSp(4) 11

2.3. Degenerate principal series coming from Klingen parabolic. In this
section we modify the argument of the previous section to calculate the ψ-Bessel model,
for a non-degenerate character ψ of N , of a degenerate principal series representation
of GSp4(k) induced from a one dimensional representation ρ of the Klingen parabolic
Q = M ′N ′. The analysis of the previous section gives the ψ-Bessel model of π =

ind
GSp4(k)
Q ρ as the ψ-Bessel model of indPHρ|H where H = B2 × k× ×N0, with B2 the

lower triangular subgroup of GL2(k), and N0 the one parameter subgroup

(
0 0
0 ∗

)
.

If follows that if π has ψ-Bessel model for s =

(
a b
b c

)
∈ GL2(k), then

tr

[(
a b
b c

)(
0 0
0 ∗

)]
≡ 0, or c = 0.

This means that if π has ψ-Bessel model corresponding to the symmetric matrix s =(
a b
b c

)
, c must be zero. For such symmetric matrices, the corresponding quadratic

form is split, and hence we deduce that π has ψ-Bessel model only for K defined by a
split quadratic algebra K ∼= k ⊕ k.

Fixing now the character ψ

(
x11 x12

x12 x22

)
= ψ00(x12), of N which is trivial on N0,

and which is stabilized by the diagonal split torus T in GL2(k) embedded in GSp4(k) as

T =


t1 0 0 0
0 t2 0 0
0 0 t2 0
0 0 0 t1

 ,

it is easy to calculate the twisted Jacquet module for the character ψ of N of the induced
representation indPHρ|H with H = B2× k××N0, to conclude the following proposition.

Proposition 2.4. Let ρ be a one dimensional representation of the Klingen parabolic

Q of GSp4(k), and π = ind
GSp4(k)
Q ρ, the corresponding principal series representation.

Then π has Bessel models for a quadratic algebra K if and only if K = k⊕k, and in
which case it has exactly one dimensional space of Bessel models for the character
of K× obtained by restriction of ρ to K× which sits inside the Levi subgroup of Q.

3. Theorem 2 for irreducible principal series

Let us begin by stating the Langlands parameters of principal series representations,
and then do the relevant local epsilon factor calculations.

3.1. Siegel parabolic. Let P = MN be a Siegel parabolic with M ∼= GL2(k) ×
Gm. Let π1 � µ be an irreducible representation of M , giving rise to an irreducible
principal series representation π of GSp4(k) by parabolic induction. It is conventional
to denote this principal series representation π by π1 o µ. The Langlands parameter of
the representation π of GSp4(k) is a representation

σπ : W ′
k → GSp4(C)
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where W ′
k is the Weil-Deligne group of k which we take to be W ′

k = Wk × SL2(C).
Assuming that the Langlands parameter of the representation π1 of GL2(k) is σ1, we
have

σπ = µσ1 ⊕ (µ⊕ µ detσ1).

We note that the Langlands parameter of an irreducible principal series representation
of GSp4(k) arising from parabolic induction of a representation of the Siegel parabolic
takes values in (Levi subgroup of) the Klingen parabolic of GSp4(C). (As a check on
the Langlands parameter, one notes that twisting by a character χ : k× → C×, thought
of as a character of GSp4(k) through the similitude character, takes the principal series
representation π1 o µ to π1 o µχ, and this on Langlands parameter is supposed to be
twisting by χ.)

The central character ωπ of π is the same as the similitude character of σπ which is
µ2 detσ1. Therefore the characters χ of K× appearing in Theorem 2 have the property
that χ|k× = µ2 detσ1, and these are the only characters of K× that we will consider in
what follows.

By the standard properties of the local epsilon factors, it follows that for σπ as above,

ε(σπ ⊗ IndkK(χ−1)) = ε(µσ1 ⊗ IndkK(χ−1)) · ε(µ⊗ IndkK(χ−1)) · ε(µ detσ1 ⊗ IndkK(χ−1)).

Since χ|k× = µ2 detσ1, it follows that for V = µ ⊗ IndkK(χ−1), V ∨ ∼= µ detσ1 ⊗
IndkK(χ−1). Since for any representation V of W ′

k,

ε(V ) · ε(V ∨) = detV (−1),

it follows that,

ε(µ⊗ IndkK(χ−1)) · ε(µ detσ1 ⊗ IndkK(χ−1)) = det(µ⊗ IndkK(χ−1))(−1)

= ωK/k(−1)χ(−1).

Therefore,

ε(σπ ⊗ IndkK(χ−1)) = ε(µσ1 ⊗ IndkK(χ−1)) · ωK/k(−1)χ(−1).

Therefore it follows from the theorem of Saito and Tunnell that

ε(σπ ⊗ IndkK(χ−1)) = 1

if and only if the character χ of K× appears in the representation π1 ⊗ µ of GL2(k),
which by proposition 2.1 of the last section are exactly the characters of K× for which
π has Bessel models. (We note that K× ∼= Mψ is included in M = GL2(k) × k× in
such a way that the resulting map to k× is the norm mapping.)

Furthermore, if ε(σπ⊗IndkK(χ−1)) = −1, the representation π1 of GL2(k) is a discrete
series representation, and if π′1 is the corresponding representation of D×, then χ appears
in the representation π′1 restricted to K×. By proposition 2.2, the corresponding principal
series representation of GSpD4 (k) has Bessel model for χ, proving Theorem 2 in this case.
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3.2. Klingen parabolic. Let Q = MN be a Klingen parabolic with M ∼= k× ×
GL2(k). Let µ � π1 be an irreducible representation of M , giving rise to the principal
series representation π = µoπ1 of GSp4(k) by parabolic induction. Then the Langlands
parameter of the representation π = µo π1 of GSp4(k) is a representation

σπ : W ′
k → GSp4(C).

Assuming that the Langlands parameter of the representation π1 of GL2(k) is σ1, we
have

σπ = σ1 ⊕ µ · σ1.

(This time twisting by χ : k× → C× takes µ o π1 to µ o χπ1.) This parameter takes
values in the Siegel parabolic of GSp4(C), and for that reason it is better to write it as

σπ = σ1 ⊕ (µ detσ1) · σ∨1 .
As the central character of π is equal to µ detσ1, the characters χ of K× appearing

in Theorem 2 have the property that χ|k× = µ ·detσ1, and these are the only characters
that we will consider in what follows.

By standard properties of the local epsilon factors, for σπ as above,

ε(σπ ⊗ IndkK(χ−1)) = ε(σ1 ⊗ IndkK(χ−1)) · ε(σ1 ⊗ µ⊗ IndkK(χ−1)).

Since χ|k× = µ ·detσ1, for V = σ1⊗ IndkK(χ−1), we have V ∨ ∼= σ1⊗µ⊗ IndkK(χ−1),
and therefore,

ε(σπ ⊗ IndkK(χ−1)) = ε(σ1 ⊗ IndkK(χ−1)) · ε(σ1 ⊗ µ⊗ IndkK(χ−1))

= det(σ1 ⊗ IndkK(χ−1))(−1)

= [det(σ1)2 · det(IndkK(χ−1))2](−1)

= 1.

Therefore in this case Theorem 2 asserts that π = µ o π1 has Bessel model for all
characters χ of K× with χ|k× = µ detσ1, and this is what Proposition 2.3 proves. (Note
that the Klingen parabolic is not defined for the rank 1 form of GSp4(k), so we do not
need to consider GSpD4 (k) here unlike in the case of principal series representations
arising from the Siegel parabolic subgroup.)

4. Reducible principal series

It can be seen that if an irreducible representation of GSp4(k) belongs to a generic
L-packet, and is a sub-quotient of a principal series representation coming from the
Siegel parabolic, then it also arises from theta correspondence with a representation of
an orthogonal group in 4 variables, for which methods of theta correspondence to be
developed in later sections work. It suffices then to restrict ourselves only to irreducible
representation of GSp4(k) belonging to a generic L-packet which is a sub-quotient of a
principal series representation coming from the Klingen parabolic.

Let Q = MN be a Klingen parabolic with M ∼= k× × GL2(k). Let µ � π1 be
an irreducible representation of M , giving rise to the principal series representation
π of GSp4(k) by parabolic induction. Assume that the Langlands parameter of the
representation π1 of GL2(k) is σ1. It is known that if π1 is a discrete series representation
of GL2(k), the principal series representation π is reducible if and only if



14 DIPENDRA PRASAD AND RAMIN TAKLOO-BIGHASH

(1) µ = 1, in which case π is a direct sum of two irreducible unitary representations
of GSp4(k) which form an L-packet.

(2) (Here we assume that π1 is supercuspidal.) µ = ω| · |±1 for a nontrivial quadratic
character ω of k×, such that π1

∼= π1 ⊗ ω. We assume in what follows that
µ = ω · | · |. In this case, there are exactly two components of the principal series
representation ω| · |o | · |−1/2π1 of GSp4(k); one of the components is a discrete
series representation with parameter σπ which is

σπ = σ1 ⊗ St2,

and the parameter of the other representation is

σπ = | · |−1/2σ1 ⊕ | · |1/2 · σ1.

The similitude character (necessary to define a GSp4(C) valued parameter instead of
just GL4(C) valued parameter) of both the representations is ω · detσ1.

In case 1 above, the analysis of principal series done before tell us complete infor-
mation about Bessel models for the sum of the two representations in the L-packet so
obtained. In fact the two representations in the L-packet arise from theta lifting from
GSO(V s), and GSO(V a) where V s and V a are the two split and anisotropic quadratic
forms of dimension 4 over k, and hence complete information about Bessel models of
the individual representations in such L-packet of representations of GSp4(k) can be
obtained by the method of theta correspondence developed later.

We now turn to case (2) in which case the representation of GSp4(k) has parameter

σπ = σ1 ⊗ St2.

We calculate the epsilon factor, ε(σπ⊗IndkK(χ−1)), for this choice of σπ. By generalities
about epsilon factors,

ε(V ⊗ Stn) = ε(V )n det(−F, V I)n−1,

where V I denotes the subspace of V invariant under I. In our case, this formula gives

ε(σπ ⊗ IndkK(χ−1)) = ε(σ1 ⊗ IndkK(χ−1)⊗ St2)

= det(−F, V I)

where V = σ1 ⊗ IndkK(χ−1). If V I 6= 0, as V is self-dual, so is V I as a representation
space for the cyclic group 〈F 〉. Write V I =

∑
χi. If a character χi with χ2

i 6= 1
appears in V I , then so does χ−1

i ; together {χi, χ−1
i } do not contribute anything to

det(−F, V I). A character χi with χ2
i = 1, but χi 6= 1 also does not contribute to

det(−F, V I). Therefore det(−F, V I) = (−1)r where r is the number of copies of
the trivial representation of Wk in V . Assuming that σ1 is irreducible, it follows that
ε(σπ ⊗ IndkK(χ−1)) = −1 if and only if σ1 and IndkK(χ−1) are isomorphic.

By the calculation of the Bessel model for a principal series representation done in the
last section, we already know that the principal series representation has Bessel models
for all characters χ of K× (with the usual restriction on the central character).

Thus by the exactness of the twisted Jacquet functor, either of the following two
statements implies the other:
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(1) The generic component of the principal series representation π = Ps(ω| · |, π1)
has Bessel model for all characters of K× whose restriction to k× is the central
character of π except χ and its Galois conjugate χ̄ if σ1

∼= IndkK(χ).
(2) The other component of the principal series representation has Bessel model for

exactly the two characters χ and its Galois conjugate χ̄ of K× if σ1
∼= IndkK(χ).

We will prove the assertion (2) in §8, as an application of seesaw duality.

5. The Steinberg representation

Let B denote the standard minimal parabolic of GSp4(k), and P , Q respectively
Siegel and Klingen parabolic subgroups. Let St4 denote the Steinberg representation
of GSp4(k), as well as its Langlands parameter, which is the four dimensional irre-
ducible representation of the SL2(C) part of the Weil-Deligne group W ′

k. By construc-
tion, St4 is the alternating sum of certain representations induced from characters of
B,P,Q,GSp4(k) to GSp4(k). Ignoring the trivial representation which does not con-
tribute to the ψ-Bessel models for non-degenerate characters, Steinberg representation
can be realized as the quotient of a representation induced from an irreducible repre-
sentation of say P = MN which is a twist of the Steinberg representation of M by a
representation of GSp4(k) which is induced from a character of Q.

Proposition 5.1. Let K be a quadratic algebra, χ a character of K× which is trivial
on k×. Let ψ be a non-degenerate character of N , left invariant by K× sitting inside
M . Then the Steinberg representation of GSp4(k) has Bessel model for χ if and only
if χ is a non-trivial character of K× in case K is a field, and for all characters of
K× if K = k ⊕ k.

Proof. The proposition is clear by combining propositions 2.1 and 2.4 in all cases except
when K = k ⊕ k, and χ is the trivial character. So the rest of the proof will be for this
case only, which is subtler as it relies on an understanding of semi-simplicity of χ-Bessel
models. (The proof below works for all characters of K× in the case that K = k ⊕ k.)

From the discussion above (and taking duals), it follows that the Steinberg represen-
tation of GSp4(k) sits in an exact sequence of the form,

0→ St4 → Ps→ π → 0

where Ps is a principal series representation of GSp4(k) induced from the Siegel parabolic
from an appropriate twist of the Steinberg representation of M = GL2(k) × k×; and
π is a representation of GSp4(k) induced from a one dimensional representation of the
Klingen parabolic (in fact π is a sub-representation of such a representation with quotient
which is the one dimensional trivial representation of GSp4(k), so does not affect the
calculation of Bessel models). From an earlier observation that the discriminant δP is
trivial on K×, it does not matter which twist of the Steinberg of GL2(k) is used to
construct the principal series Ps on GSp4(k) above.

Taking the twisted Jacquet functor with respect to the character ψ of N , we get an
exact sequence of T -modules where T is the diagonal split torus in GL2(k),

0→ St4,ψ → Psψ → πψ → 0.

From the calculation of the twisted Jacquet functor of principal series representation
of GSp4(k) induced from the Siegel parabolic, as well as that of a principal series
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representation of GSp4(k) induced from a one dimensional representation of the Klingen
parabolic done in earlier sections, we get an exact sequence of T -modules,

(1) 0→ St4,ψ → St2 → C→ 0

where C is the one dimensional trivial representation of T , and St2 denotes the Steinberg
representation of PGL2(k), now thought of as a T -module.

Since the Steinberg representation of GL2(k) can be realized on the space of locally
constant functions modulo constant functions on P1(k), f → f(0) − f(∞) is a T -
equivariant map from St2 to C, giving rise to the following exact sequence to T -modules:

(2) 0→ S(k×)→ St2 → C→ 0.

As one knows that the Steinberg representation of GL2(k) has a unique quotient
on which T -operates trivially, the exact sequences (1) and (2) of T -modules must be
the same, and therefore in particular St4,ψ is isomorphic as a T -module to S(k×).
This implies that St4 has Bessel model for all characters of T which are trivial on the
scalars. �

We omit the simple check that this proposition proves Theorem 2 for the Steinberg
representation, augmented by the following much simpler proposition.

Proposition 5.2. The Steinberg representation of GSpD4 (k) has Bessel model for a
character χ of K× if and only if K is a field, and χ is the trivial character of K×.

Remark 5.3. We take the occasion here to emphasize that although the twisted
Jacquet functor πψ is exact, it need not be a semi-simple representation of K×, un-
less K is a field in which case it is forced to be semi-simple as K×/k× is compact.

6. Bessel model of the Weil representation

The aim of this section will be to calculate the twisted Jacquet functor of the Weil
representation of a dual reductive pair (G1, G2) with respect to a character ψ of the
unipotent radical N2 of a maximal parabolic P2 = M2N2 of the group G2. We carry out
the calculation of the twisted Jacquet functor only for the Siegel parabolic of a symplectic
group, so G2 = Sp(W ). Recall that for any representation π of G2, the twisted Jacquet
functor πψ is the maximal quotient of π on which N2 operates via ψ. If Mψ denotes the
maximal subgroup of M2 which takes ψ to itself under the inner-conjugation action of
M2 on N2, then πψ is a module for Mψ, and therefore in the context of a dual reductive
pair (G1, G2), for G1 ×Mψ.

We recall that in a famous work, Kudla calculated the standard Jacquet module of the
Weil representation. We carry out the calculation of the twisted Jacquet functor only for
the Siegel parabolic. Actually the simple calculation we perform in this section is known
in the literature in both the local and global contexts, see e.g. [Ro1, Ra]. However, since
we anyway will have to recall the notation and the results, we have preferred to give an
independent co-ordinate free treatment which will be convenient for our purposes.

We now recall some elementary properties of the Weil representation for this purpose.
Let W = W1⊕W∨

1 be a symplectic vector space over a local field k together with its
natural symplectic pairing. Given a quadratic space q : V → k, the Weil representation
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gives rise to a representation of O(V )× Sp(W ) on S(V ⊗W∨
1 ). In this representation,

elements of SHom(W∨
1 ,W1) = {φ ∈ Hom(W∨

1 ,W1)|φ = φ∨} ∼= Sym2W1, which can
be identified to the unipotent radical of the Siegel parabolic in Sp(W ) stabilizing the
isotropic subspace W1, operates on S(V ⊗W∨

1 ) by

(n · f)(x) = ψ((q ⊗ qn)x)f(x),

where n ∈ SHom(W∨
1 ,W1) gives rise to a quadratic form qn : W∨

1 → k, which together
with the quadratic form q : V → k, gives rise to the quadratic form q⊗qn : V ⊗W∨

1 → k.

The Weil representation associated to the dual pair (O(V ), Sp(W )) is actually a
representation of G[O(V ) × Sp(W )] where G[O(V ) × Sp(W )] is defined to be the
group of pairs (g1, g2) ∈ GO(V )×GSp(W ) such that the similitude factors for g1 and
g2 are the same. We briefly recall this, referring to [H-K] for details on this.

The exact sequence

1→ Sp(W )→ G[O(V )× Sp(W )]→ GO(V )→ 1,

has a natural splitting GO(V ) → G[O(V ) × Sp(W )] depending on a complete po-
larization W = W1 ⊕ W∨

1 of the symplectic space W in which g ∈ GO(V ) goes to
(g, µ(g)) ∈ G[O(V ) × Sp(W )] where µ(g) is the element of GSp(W ) which acts by 1
on W1 and by ν(g) on W∨

1 where ν(g) is the similitude factor of g. The Weil represen-
tation realized on S(V ⊗W∨

1 ) has the natural action of GO(V ) operating as

L(h)ϕ(x) = |ν(h)|−mn/4ϕ(h−1x),

where m = dimV, 2n = dimW, and ν(h) is the similitude factor of h. The group
GL(W1) sits naturally inside Sp(W1 ⊕W∨

1 ), and its action on S(V ⊗W∨
1 ) is given by

L(g)ϕ(x) = χV (det g)| det g|m/2ϕ(gx),

where χV is the quadratic character of k× given in terms of the Hilbert symbol as
χV (a) = (a, discV ) with discV the normalized discriminant of V .

For the element (g, λ) in GSp(W ) with g ∈ GL(W1), and λ ∈ k×, which is

(g, λ) =

(
g

λ · tg−1

)
,

the action of (g, λ)× h ∈ G[Sp(W )×O(V )] becomes:

[(g, λ)× h]ϕ(x) = χV (det g)| det g|m/2|λ|−mn/4ϕ(h−1gx). (∗)

The inner-conjugation action of (g, λ) on

(
1 n
0 1

)
, gives rise to the unipotent ma-

trix with n replaced by λ−1gntg. Therefore the stabilizer of a symmetric matrix n
in Hom(W∨

1 ,W1) consists of (g, λ) with gntg = λn. Taking determinants, we have
(det g)2 = λn. Therefore the equation (∗) for the action of (g, λ) × h ∈ G[Sp(W ) ×
O(V )] with g ∈ GO(W1) becomes:

[(g, λ)× h]ϕ(x) = χV (det g)ϕ(h−1gx). (∗∗)

Assuming further that n = dimW1 is even, and the element g ∈ GO(W1) in
fact belongs to the connected component GSO(W1) defined by det g = λn/2, then



18 DIPENDRA PRASAD AND RAMIN TAKLOO-BIGHASH

χV (det g) = χV (λ)n/2 = 1, if λ is a similitude factor for V (as can be easily seen),
simplifying the action (∗∗) to

[(g, λ)× h]ϕ(x) = ϕ(h−1gx). (∗ ∗ ∗)
The Weil representation thus gives rise to a representation of the group G[O(V ) ×

Sp(W )]; inducing this representation to GO(V ) × GSp(W ), we get, the ‘big Weil
representation’, say Ω, of GO(V ) × GSp(W ). Given an irreducible representation π
of GO(V ), there exists a representation Θ(π) of GSp(W ) of finite length, such that
Θ(π) ⊗ π is the maximal π-isotypic quotient of Ω. It is known that the representation
Θ(π) of GSp(W ) has a unique irreducible quotient θ(π). When one talks about the
theta correspondence, one means the correspondence π → θ(π); however, when one
calculates Jacquet or twisted Jacquet functor of the Weil representation, it is invariably
Θ(π) that one encounters. Thus most of the applications are restricted to the case
when one can in fact prove that Θ(π) = θ(π) which is the case for example when π is
supercuspidal.

Lemma 6.1. Let x be a vector in V ⊗W∨
1 , considered as a homomorphism x : W1 →

V , as well as the homomorphism on duals x∨ : V ∨ → W∨
1 . Then for quadratic spaces

qV : V → k, and qW : W∨
1 → k, equivalently considered through homomorphisms

qV : V → V ∨, and qW : W∨
1 → W1, the trace of the map from W1 to W1 given as

the compositum of maps,

W1
x→ V

qV→ V ∨
x∨→ W∨

1

qW→ W1,

is the same as the value of the quadratic form qV ⊗ qW on the vector x ∈ V ⊗W∨
1 ,

which is of course the same as the trace of the map from k to k, obtained as the
compositum of maps:

k
x→ V ⊗W∨

1

qV ⊗qW−→ V ∨ ⊗W1
x∨→ k.

Let SHom[W∨
1 ,W1] be the set of symmetric maps in Hom[W∨

1 ,W1], i.e., φ ∈
Hom[W∨

1 ,W1] such that φ∨ = φ. One can identify the dual of the k-vector space
SHom[W∨

1 ,W1] to SHom[W1,W
∨
1 ] via the natural pairing obtained by taking trace,

SHom[W1,W
∨
1 ]× SHom[W∨

1 ,W1]→ Hom[W1,W1]
tr→ k.

Thus characters ψ : N → C× can be identified to symmetric elements in Hom[W1,W
∨
1 ].

As the map from W1 to W1 in the above lemma is the compositum of two maps, one
from W1 to W∨

1 , and the other from W∨
1 to W1, and that the first map is nothing but

the restriction of the quadratic form on V to W1 via the map x : W1 → V , the following
corollary of the previous lemma is clear.

Corollary 6.2. The twisted Jacquet functors of the Weil representation correspond-
ing to the dual reductive pair (O(V ), Sp(W )) are nonzero exactly for the characters
of the unipotent radical of the Siegel parabolic of Sp(W ) which correspond to the
‘restriction’ of quadratic form on V to W1 via a linear map x : W1 → V .

We now note the following general lemma.

Lemma 6.3. Let X be the k-rational points of an algebraic variety defined over a
local field k. Let P be a locally compact totally disconnected group with P = MN
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for a normal subgroup N of P which we assume is a union of compact subgroups.
Assume that P operates smoothly on S(X), and that the action of P restricted to
M is given by an action of M on X. For a point x ∈ X, let `x : S(X) → C be
the linear functional given by `x(f) = f(x). Assume that for every point x ∈ X,
N operates on `x by a character ψx : N → C×, i.e., `x(n · f) = ψx(n)`x(f) for
all n ∈ N , and f ∈ S(X). Fix a character ψ : N → C×, and let Mψ denote the
subgroup of M which stabilizes the character ψ of N . The group Mψ acts on the set
of points x ∈ X such that ψx = ψ. Denote this set of points in X by Xψ which we
assume to be closed in X. Then,

S(X)ψ ∼= S(Xψ)

as Mψ-modules.

Proof. We have an exact sequence of Mψ-modules,

0→ S(X −Xψ)→ S(X)→ S(Xψ)→ 0.

Taking the ψ-twisted Jacquet functor is exact, and S(X−Xψ)ψ = 0, so the assertion
of the lemma follows. �

We apply this lemma to X = V ⊗W∨
1 , but will need to twist the geometric action of

GL(W1) on S(V ⊗W∨
1 ) by χV (det g) for an element (h, g) ∈ O(V )×O(W1).

Corollary 6.4. The twisted Jacquet functor of the Weil representation of the dual
reductive pair (O(V ), Sp(W )) for the character of the unipotent radical of the Siegel
parabolic of Sp(W ) which corresponds to a non-degenerate quadratic form on W1,
which we assume is obtained by restriction of the quadratic form on V via a linear
map x : W1 → V is the representation

χV (det g)⊗ ind
O(V )×O(W1)

O(W⊥1 )×∆O(W1)
C,

where O(W⊥
1 ) is the orthogonal group of the orthogonal complement of W1 inside

V , and ∆O(W1) represents the natural diagonal embedding of O(W1) inside O(V )×
O(W1) as V contains W1; the character χV (det g) is for the element (h, g) ∈ O(V )×
O(W1).

Proof. Observe that O(V ) × O(W1) operates on the set of homomorphisms from
W1 to V , and in fact by Witt’s theorem, this action is transitive on the set of
homomorphisms from W1 to V such that the quadratic form on V restricts to the
quadratic form on W1. The isotropy subgroup inside O(V ) × O(W1) of a fixed
embedding of W1 inside V is exactly O(W⊥

1 )×∆O(W1), proving the claim. �

The previous analysis of twisted Jacquet functor in fact gives a representation space
for G[O(V )×O(W1)] which we record as the following corollary, but before doing that
let us note the following form of Witt’s extension theorem for similitude groups.

Lemma 6.5. Suppose W1 is a nondegenerate subspace of a quadratic space V car-
rying the restricted quadratic form. Suppose φ belongs to GO(W1) such that the
similitude factor of φ arises as a similitude factor in GO(V ). Then there is an el-
ement φ′ in GO(V ) taking W1 into itself, and such that the restriction of φ′ to W1

is φ.
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Proof. Write V = W1⊕W⊥
1 . Note that λ ∈ k× is a similitude factor for the quadratic

space V if and only if V ∼= λ · V. Since λ · V ∼= λ ·W1 ⊕ λ ·W⊥
1 , if λ is a similitude

character for both V and W1, we find that W⊥
1
∼= λ ·W⊥

1 , therefore the conclusion
of the lemma. �

The group G[O(V ) × O(W1)] operates on the set of embeddings of W1 inside V
which gives rise to a particular quadratic form on W1. The action is transitive, and
by Lemma 6.5, the stabilizer of a given embedding is G[O(W⊥

1 ) × ∆O(W1)]. The
subgroup G[O(V )×SO(W1)] = G[O(V )×O(W1)]

⋂
[GO(V )×GSO(W1)] of G[O(V )×

O(W1)] also operates transitively with stabilizer a given embedding being G[O(W⊥
1 )×

∆SO(W1)]. Thus using (∗ ∗ ∗), we obtain the following corollary.

Corollary 6.6. The twisted Jacquet functor of the Weil representation of the dual
reductive pair (O(V ), Sp(W )) for the character of the unipotent radical of the Siegel
parabolic of Sp(W ) which corresponds to a non-degenerate quadratic form on W1,
which we assume is obtained by restriction of the quadratic form on V via a linear
map x : W1 → V is the representation

ind
G[O(V )×SO(W1)]

G[O(W⊥1 )×∆SO(W1)]
C,

where O(W⊥
1 ) is the orthogonal group of the orthogonal complement of W1 in-

side V , and ∆O(W1) represents the natural diagonal embedding of O(W1) inside
O(V )×O(W1) as V contains W1; the group G[O(W⊥

1 )×∆SO(W1)] is the subgroup
of G[O(W⊥

1 )× SO(W1)× SO(W1)] contained in G[O(V )× SO(W1)] consisting of
the triples (g1, g2, g3) ∈ GO(W⊥

1 )×GSO(W1)×GSO(W1)] with g2 = g3 (and the
same similitude factors for g1, g2, g3).

The previous corollary together with the formalism of the Weil representation yields
the following theorem as a simple consequence.

Theorem 5. Let π1 be an irreducible admissible representation of the group GSO(V ).
Assume that π2 = Θ(π1) is the theta lift of π1 to GSp(W ). Let ψ be a non-degenerate
character of the unipotent radical N of the Siegel parabolic P = MN of GSp(W ).
Assume that ψ corresponds to a quadratic form q on W1, a maximal isotropic sub-
space of W . Then an irreducible representation χ of GSO(W1) appears in π2,ψ as a
quotient if and only if

(1) (q,W1) can be embedded in the quadratic space V ; let W⊥
1 denote the orthog-

onal complement of W1 sitting inside V through this embedding.
(2) The representation χ∨ of G[SO(W1)×SO(W⊥

1 )] appears as a quotient in the
representation π1 of GSO(V ) restricted to G[SO(W1)× SO(W⊥

1 )], where χ∨

is obtained by pulling back the contragredient of χ under the natural map
G[SO(W1)× SO(W⊥

1 )]→ GSO(W1).

Remark 6.7. It is a consequence of this theorem that if the representation χ∨ of
G[SO(W1) × SO(W⊥

1 )] appears as a quotient in the representation π1 of GSO(V )
restricted to G[SO(W1) × SO(W⊥

1 )], then π2 = Θ(π1) is nonzero. It is one of the
standard ways by which one proves non-vanishing of local (or global) representations: by
proving the non-vanishing of a particular Fourier coefficient; for example it proves that
the theta lifting from GSO(4) to GSp(4) is always nonzero locally.
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Remark 6.8. Theorem 5 roughly states that a representation π1 of GSO(V ) has a
χ̃-period for the subgroup G[SO(W1) × SO(W⊥

1 )], where χ̃ is obtained from a repre-
sentation χ of GSO(W1) extending trivially across SO(W⊥

1 ), if and only if π2 = Θ(π1),
a representation of GSp(W1 ⊕ W∨

1 ), has χ-Bessel model for the representation χ of
GSO(W1). This theorem has a certain symmetry in π1 and π2. However, we note an
important asymmetry: one concludes from the theorem that as soon as a representation
π1 of GSO(V ) has a nonzero χ̃-period, Θ(π1) 6= 0; but it may happen that although a
representation π2 of GSp(W1 ⊕W∨

1 ) has a χ-Bessel model, Θ(π2) = 0.

Remark 6.9. The considerations of this section can be pictorially represented by the
following diagram where Mψ = O(W1), and V = W1 +W⊥

1 , and a vertical line between
representations denotes the appearance of the representation on the smaller group at
the lower end of the line in the representation of the larger group at the upper end.

π2 = Θ(π1) on Sp(W ) π1 on O(V )

χ · ψ on MψN χ× 1 on O(W1)×O(W⊥
1 ).

7. Applications

To be able to use Theorem 5, we need to understand the embedding of O(W1) inside
O(V ) more concretely. For application to Theorem 2, we need it in the case when V is
a four dimensional quadratic space, and W1 is a two dimensional subspace of it, and for
applications to Theorem 4, we need it in the case when V is a 6 dimensional quadratic
space, and W1 is a two dimensional subspace of it.

We begin with the case of a four dimensional quadratic space V of discriminant 1, so
that it can be identified to the norm form of a four dimensional central simple algebra,
say D, over k. Assume that the two dimensional non-degenerate subspace W1 of V = D
is the norm form on a two dimensional sub-algebra K of D. Write D = K⊕K · j where
j is an element of D× which normalizes K× with j2 = a ∈ k×. The group D× ×D×
operates on D by (d1, d2)X = d1Xd̄2, and gives an identification of [D× ×D×]/∆k×

with GSO(D). Observe that the map ι : (x, y) → (xy, xȳ) from K× × K× to itself
gives an isomorphism of (K××K×)/∆k× onto the subgroup G[SO(W1)×SO(W⊥

1 )] of
GSO(W1)×GSO(W⊥

1 ) consisting of pairs of elements of K× with the same similitude
factors for the two components. Since x[K ⊕ Kj]ȳ = xȳK ⊕ xyKj, the following
diagram allows one to identify (K××K×)/∆k× inside (D××D×)/∆k× as the subgroup
G[SO(K)× SO(K)] inside GSO(D) = GSO(K ⊕K)
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[K× ×K×]/∆(k×)
∼=

ttjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTT

G[SO(K)× SO(K)] (D× ×D×)/(∆k×)

Therefore a representation π1�π2 of D××D× contains the restriction of the character
(χ1, χ2) of K××K× to the subgroup G[SO(W1)×SO(W⊥

1 )] if and only if χ1χ̄2 appears
in π1 and χ1χ2 appears in π2. Taking χ2 = 1, we get the following corollary to Theorem
5.

Corollary 7.1. Let π1 � π2 be an irreducible admissible representation of [D× ×
D×]/k× ∼= GSO(V ) where V = D is a quaternion algebra over k equipped with its
reduced norm as the quadratic form. Let ψ be a character of the unipotent radical of
the Siegel parabolic of GSp(W ) which corresponds to the non-degenerate quadratic
space N : K → k where K is a quadratic sub-algebra of D. Then for the representa-
tion Θ(π1 � π2) of GSp(W ), the twisted Jacquet functor, Θψ(π1 � π2) of GSp(W ),
contains the representation χ : K× → C× if and only if χ appears in both π1 and
π2. (In particular, K is a field if D is a division algebra.)

Similarly, for the case of the rank one form SpD4 (k) of the symplectic group defined
using the quaternion division algebra D, we get the following result.

Corollary 7.2. Let π1 � π2 be a representation of [D× × GL2(k)]/k× ∼= GSOD
4 (k)

where D is a quaternion division algebra over k. Let ψ be a character of the unipotent
radical of the Siegel parabolic of GSpD4 (k) which corresponds to the non-degenerate
quadratic space N : K → k where K is a quadratic sub-algebra of D. Then for the
representation Θ(π1 � π2) of GSpD4 (k), the twisted Jacquet functor, Θψ(π1 � π2) of
GSpD4 (k), contains the representation χ : K× → C× if and only if χ appears in both
π1 and π2.

We next consider Bessel model of representations of GSp4(k) which are obtained as
theta lift from GSO(V ) where V is a quadratic space of dimension 4 with non-trivial
discriminant, in which case we recall that

GSO(V ) ∼= [GL2(E)× k×]/∆(E×),

for E a quadratic extension of k.
Let K and L be two distinct quadratic extensions of k, and let E be the third quadratic

extension of k contained in KL. Considering K and L together with their norm forms,
we have two 2-dimensional quadratic spaces, and K ⊕L is a four dimensional quadratic
space. It can be seen that GSO(K⊕L) ∼= (GL2(E)×k×)/∆E× where ∆E× ∼= E× sits
inside GL2(E) as scalar matrices, and inside k× via the inverse of the norm mapping.

The group G[SO(K) × SO(L)] is the subgroup of K× × L× consisting of pairs
(x1, x2) ∈ K× × L× with the same norm to k×.

The mapping from G[SO(K) × SO(L)] to (GL2(E) × k×)/∆E× obtained as the
composition,

G[SO(K)× SO(L)]→ GSO(K ⊕ L) ∼= (GL2(E)× k×)/∆E×
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fits in the following diagram of maps where φE denotes the natural inclusion of (KL)×

into GL2(E), and i, iK , iL are inclusions of k× in k×, K×, L× respectively, and NK and
NL are norm mappings from (KL)× to K× and L× respectively:

[(KL)× × k×]/∆(E×)
(iKNK ,iLNL)

ttiiiiiiiiiiiiiiii
(φE ,i)

**VVVVVVVVVVVVVVVVV

G[SO(K)× SO(L)] (GL2(E)× k×)/(∆E×)

As the arrow on the left can be checked to be an isomorphism, it follows from this
diagram that to check that a character of G[SO(K)×SO(L)] appears in the restriction
of a representation of GSO(K ⊕ L), it is equivalent to check that its restriction to
[(KL)× × k×]/∆E× now thought of as a subgroup of [GL2(E)× k×]/∆(E×) appears
in the corresponding representation of [GL2(E)× k×]/∆(E×). Therefore we obtain the
following theorem.

Theorem 6. Let π1 be an irreducible admissible representation of GSp4(k) ob-
tained from the theta lift of a representation π of GO4(k) such that the normalized
discriminant algebra associated to the four dimensional quadratic space is a qua-
dratic field extension E of k. Assume that in the identification of GSO4(k) with
(GL2(E)× k×)/(∆E×), the restriction of π (from GO4(k) to GSO4(k)) corresponds
to the representation π2 � µ of GL2(E) × k×. Let ψ be a non-degenerate character
of N , where N is the unipotent radical of the Siegel parabolic P = MN stabilizing
a maximal isotropic subspace W1 of the four dimensional symplectic space W , cor-
responding to a quadratic form q on W1 which defines a quadratic field extension
K 6= E. (The case K = E is easier to analyze but we do not do it here.) Then
a character χ of K× such that χ|k× is the central character of π1, appears in π1,ψ

if and only if the character χ ◦ N : (KE)×
N→ K×

χ→ C× of (KE)× appears in the
restriction of π2 to (KE)× which by the theorem of Saito and Tunnell is the case if
and only if

ωKE/E(−1)ωπ2(−1) = ε(π2 ⊗ indEKEχ
−1|KE)

= ε(π2 ⊗ ResE[indkK(χ−1)])

= ε(indkE(π2)⊗ indkK(χ−1)).

Noting the generality that ωKE/E = ωK/k◦NKE→K , we have ωKE/E(−1) = 1, and that
ωπ2(−1) = 1 as π2 is a representation of GL2(E) which extends to a representation
of (GL2(E)×k×)/(∆E×), its central character restricted to E1 is trivial, we get that

ε(indkE(π2)⊗ indkK(χ−1)) = 1

if and only if the character χ appears in the Bessel model of π as required by Theorem
2.

Remark 7.3. There is a form of this theorem for the rank 1 form GSpD4 (k) of GSp4(k)
too in which one would be considering theta lifting from an orthogonal group in 4
variables defined using D and a skew-hermitian matrix in GL2(D) whose discriminant
in k×/k×2 defines a quadratic extension E of k. In this case, the orthogonal similitude
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group turns out to be (D×E × k×)/E× with DE the unique quaternion division algebra
over E. A similar analysis as done in the previous theorem confirms the relevant parts of
Theorem 2 for such representations of GSpD4 (k). We discuss symplectic and orthogonal
groups arising out of hermitian and skew-hermitian forms over D, and the calculation of
Bessel models in this context, in some detail in section 9.

8. A seesaw argument

In the previous sections we have used theta correspondence between GSp4(k) and
GO4(k) to calculate Bessel models of certain representations of GSp4(k). This method
works well for all representations of GSp4(k) which arise as theta lift from GO4(k).
Thus, it misses out on representations of GSp4(k) which do not arise as theta lift from
GO4(k). Among the missed representations are those representations of GSp4(k) with
Langlands parameter of the form σπ ⊗ St2 for an irreducible representation σπ of Wk

which has a non-trivial self-twist (so the parameter σπ takes values in GO2(C)). In this
section, we will study Bessel model of the representations of GSp4(k) whose Langlands
parameter is of the form σπ⊗St2, by going over to GSO6(k) (a group closely related to
GL4(k)) via theta correspondence, where the representation obtained is what is called
the generalized Steinberg representation. The question of χ-Bessel model on GSp4(k)
for a character χ of K× becomes one of linear period on GL4(k) for the corresponding
character χ of the subgroup GL2(K) of GL4(k). This question on GL4(k) also seems
intractable, but what allows us to handle this case is the fact that corresponding to the
generalized Steinberg, there is the companion Speh module on GL4(k), which arises by
theta lifting from GL2(k), and a seesaw argument can be provided for GL2(K)-periods
of the Speh module, which then implies the desired result about GL2(K)-period of the
generalized Steinberg on GL4(k). In fact, there is an extra twist to the argument. We
use the dual pair (GL2(k),GO6(k)) to calculate GL2(K)-period for a representation of
GL4(k); but when we use the pair (GSp4(k),GO6(k)), we do not use the representation
of GO6(k) encountered for the pair (GL2(k),GO6(k)) but another one whose restriction
to GL4(k) ⊂ [GL4(k)× k×]/∆(k×) = GSO6(k) is the same.

The section uses many details about theta correspondence which we borrow either
from [G-T1], or from [Ro1], or directly from conversations with W-T Gan.

We begin by noting the following lemma about theta lifting between SO(4) and GL(2),
cf. [Ro1]. (Only the part of the lemma asserting that a certain theta lift from SO(4) to
GL(2) is one dimensional is what is used in the sequel; however, we have preferred to
state the more complete result.)

Lemma 8.1. For a character λ of k×, let

π1(λ) = λ(N ◦ det) � λ2,

π2(λ) = λ(N ◦ det) � ωKλ
2,

be one dimensional representations of GSO(3, 1) ∼= [GL2(K)×k×]/∆(K×) which are
invariant under the action of GO(3, 1). For the representations, π1(λ), π2(λ), exactly
one extension to GO(3, 1) participates in the theta correspondence with GL2(k)+, the
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subgroup of GL2(k) with determinant in NK×. One has,

Θ(π1(λ)) = θ(π1(λ)) = Ind(ωK | · |1/2λ, | · |−1/2λ),

Θ(π2(λ)) = θ(π2(λ)) = λ ◦ det |GL+
2 (k),

where Ind(ωK | · |1/2λ, | · |−1/2λ) denotes the restriction of the corresponding principal
series representation of GL2(k) to GL2(k)+, which we note is irreducible.

We now prove the following theorem.

Theorem 7. Let π be a supercuspidal representation of GL2(k), with central char-
acter ωπ, which has a non-trivial self-twist by a quadratic character ωK associated to
a quadratic extension K of k. Let Sp2(π) be the associated Speh module of GL4(k).
Let χ : K× → C× be a character such that χ|k× = ωπ · ωK. By abuse of notation,

let χ also denote the character χ ◦ det of GL2(K) given by GL2(K)
det→ K×

χ→ C×.
Then,

HomGL2(K)[Sp2(π), χ] 6= 0, if and only if π ∼= πχ,

where πχ is the monomial representation of GL2(k) arising from the character χ of
K×.

Proof. For K−, the vector space K on which the quadratic form (the normform) is scaled
by −1, let V = K ⊕H ⊕K−, with H the hyperbolic plane, denote the 6 dimensional
split quadratic space. The embedding G[SO(K + H) × SO(K−)] ↪→ GSO(V ) will be
abbreviated to G[SO4(k)× SO2(k)] ↪→ GSO6(k) in what follows.

The proof of the theorem will be based on the following seesaw diagram:

G+[SL2(k)× SL2(k)]
@
@
@
@
@
@
@@

�
�

�
�
�

�
��

GSO+
6 (k)

GL+
2 (k) G[SO4(k)× SO2(k)],

where G+ denotes various similitude groups with similitude factor in NK×.
In this diagram, we take the representation π of GL2(k) (restricted to GL+

2 (k)) on the
lower left corner, whose theta lift Θ(π) to GSO+

6 (k) is, by Theorem 8.11 of [G-T1], the
restriction to GSO+

6 (k), of the representation Θ(π) = θ(π) = Sp2(π) �ωπ of GSO6(k)
under the identification

GSO6(k) = [GL4(k)× k×]/{(z, z−2) : z ∈ k×}.

Since G[SO4(k)× SO2(k)] is a subgroup of GSO4(k)×GSO2(k), one can construct
a representation of G[SO4(k) × SO2(k)] by restricting one of GSO4(k) × GSO2(k)
which we take to be (χ(N ◦ det), ωKχ

2) × χ−1 under the identification GSO4(k) ∼=
[GL2(K)× k×]/∆(K×); this is the representation on the right hand lower corner of the
diagram.
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The map,

[GL2(K)× k×]

∆(k×)
−→ [GL2(K)× k×]

∆(K×)
×K× = GSO4(k)×GSO2(k)

(X, a) −→ ((X, a), a detX) ,

is an isomorphism onto the subgroup G[SO4(k) × SO2(k)] of GSO4(k) × GSO2(k).
Using this isomorphism

[GL2(K)× k×]/{(z, z−2) : z ∈ k×} ∼= G[SO4(k)× SO2(k)]

the character (χ(N◦det), ωKχ
2)×χ−1 of GSO4(k)×GSO2(k) (restricted to G[SO4(k)×

SO2(k)]) becomes the character (χσ ◦det, χ|k× ·ωK) of [GL2(K)× k×]/{(z, z−2) : z ∈
k×}, where χσ = χ(Nx)χ−1(x).

The embedding of G[SO4(k)× SO2(k)] in GSO6(k) can be identified to the natural
embedding

[GL2(K)× k×]/{(z, z−2) : z ∈ k×} ↪→ [GL4(k)× k×]/{(z, z−2) : z ∈ k×}.
For the character (χ(N ◦ det), ωKχ

2)× χ−1 of G[SO4(k)× SO2(k)] to appear in the
representation Θ(π) = Sp2(π) � ωπ of GSO6(k), it is necessary that ωπ = χ|k×ωK ,
which we assume is the case.

Let the theta lift of the character χ−1 of GSO2(k) = K× to GL+
2 (k) be (π∨χ)+, and

let π∨χ = ind
GL2(k)

GL+
2 (k)

(π∨χ)+, an irreducible representation of GL2(k).

By Lemma 8.1, the theta lift of the character (χ(N◦det), ωKχ
2)×χ−1 of G[SO4(k)×

SO2(k)] to G[SL2(k)×SL2(k)] is the restriction of the representation χ|k× ◦det �(π∨χ)+

of GL+
2 (k) × GL+

2 (k). The restriction of the representation χ|k× ◦ det �(π∨χ)+ of

GL+
2 (k)×GL+

2 (k) to the diagonal GL+
2 (k) is a component of πχ that we denote by π+

χ .
The proof of the theorem now follows by the seesaw identity after using the following
form of the Frobenius reciprocity:

HomGL2(k)[πχ, π] = HomGL+
2 (k)[π

+
χ , π].

�

We will use the previous theorem to deduce a corollary about Bessel models. But
before we can do that, we must note the following result about theta correspondence
between GSp4(k) and GSO6(k) which is due to [G-T1], Theorem 8.4. (Only the part of
the lemma asserting that a certain theta lift from SO(6) to GSp(4) is the non-generic
component of a reducible principal series of GSp(4) is what is used in the sequel; however,
we have preferred to state the more complete result.)

Lemma 8.2. Let π be a supercuspidal representation of GL2(k) which has a non-
trivial self-twist by a quadratic character ωK. Let Sp2(π) be the associated Speh
module, and St2(π) the generalized Steinberg representation of GL4(k). For the rep-
resentations Sp2(π) �ωKωπ and St2(π) �ωKωπ of GSO(6) = [GL4(k)× k×]/∆(k×),
we have Θ(Sp2(π) � ωKωπ) = θ(Sp2(π) � ωKωπ), the non-generic component of the
reducible principal series representation of GSp4(k) induced from the Klingen para-
bolic Q = MN with M = k× × GL2(k), the representation ωK | · | � | · |−1/2π , and
Θ(St2(π)�ωKωπ) = θ(St2(π)�ωKωπ), the generic component of the same principal
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series. Further, Θ(Sp2(π) � ωπ) = θ(Sp2(π) � ωπ), the irreducible principal series
representation | · |� | · |−1/2π .

The next corollary is a consequence of Theorem 7, combined with Lemma 8.2, and
Theorem 5 according to which the existence of a χ-invariant linear form for the subgroup
GL2(K) of GL4(k) is the same as the existence of χ-Bessel model for the representation
of GSp4(k) which is the theta lift of the representation π�µ of GSO6(k) = [GL4(k)×
k×]/∆(k×) in which µ = χ|k× as we discuss in greater detail in section 11.

Corollary 8.3. Let π be an irreducible supercuspidal representation of GL2(k) with
central character ωπ which has a nontrivial self-twist by a quadratic character ωK
associated to a quadratic extension K of k. Let Sp2(π) be the irreducible non-generic
component of the principal series representation of GSp4(k) induced from the Klin-
gen parabolic with Levi k× × GL2(k) the representation ωK · | · | � | · |−1/2π. The
irreducible representation Sp2(π) of GSp4(k) with Langlands parameter σπ⊗(| · |1/2⊕
| · |−1/2) has Bessel models for exactly those characters χ of K× for which πχ ∼= π.

Since we know that the principal series representation of GSp4(k) induced from a
representation λ � π of k× × GL2(k), a Levi subgroup of the Klingen parabolic, has
χ-Bessel model for every character χ of K×, which is unique, we know that when such
a principal series has two irreducible sub-quotients, the two sub-quotients have Bessel
models for complementary characters. We thus obtain the following corollary.

Corollary 8.4. The generic representation of GSp4(k) with parameter σπ⊗St2 has
a Bessel model for a character χ of K× if and only if

σπ 6∼= IndkKχ.

This is exactly the conclusion required by Theorem 2 for representations of GSp4(k)
with Langlands parameter σπ ⊗ St2 as discussed in 4.

Remark 8.5. Representations of GSp4(k) with Langlands parameter σπ ⊗ St2 have
Bessel models for all characters of K× except the two characters χ for which σπ ∼=
IndkKχ. Theorem 2 in this case requires that these two missing characters appear in
the Bessel model of the corresponding representation of the rank 1 form GSpD4 (k) of
GSp4(k). Indeed, considerations of this section will prove this too for which instead of
the 6 dimensional split quadratic space over k, we will use the unique anisotropic skew-
hermitian space of dimension 3 over the quaternion division algebra (see next section
for a description of this), and the representation of the isometry group coming from
theta correspondence with the isometry group of the hermitian space of dimension 1
(the similitude group being D×). We leave the details to the interested reader.

9. Dual pairs involving division algebras

In this section we briefly recall the formalism of dual reductive pairs which involve
quaternion division algebra; the final goal of this section will be to state the analogue of
theorem 5 in this context.

Let D be a quaternion division algebra with its canonical involution x → x̄. Using
this involution, right D-modules can be identified to left D-modules.

Let V be a right D-module, and H : V × V → D a ε-hermitian form on V which is
D-linear in the second variable, so that
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(1) H(v1d1, v2d2) = d̄1H(v1, v2)d2.

(2) H(v1, v2) = εH(v2, v1). (This forces ε to be ±1.)

If ε = 1 (resp., ε = −1), an ε-hermitian form is called hermitian (resp., skew-
hermitian).

Let V1 be a right D-module together with a ε1-hermitian form linear in the second
variable, and V2 a left D-module together with a ε2-hermitian form H2 which is linear
in the first variable. Then V1 ⊗D V2 is a vector space over k together with a natural
bilinear form H = H1 ⊗H2 given by

H(v1 ⊗ v2, w1 ⊗ w2) = trD/k(H1(v1, w1)H2(v2, w2)).

If ε1ε2 = −1, as will always be the case in what follows, H will be a symplectic form on
V1 ⊗D V2. In this case, the isometry group G1 of (V1, H1) to be denoted by U(V1), and
the isometry group G2 of (V2, H2) to be denoted by U(V2), form a dual reductive pair
inside Sp(V1 ⊗D V2). We let GU(V1) and GU(V2) denote the corresponding similitude
groups.

It is known that to get a form of an orthogonal group, we need to take a skew-
hermitian form, and that to get a form of the symplectic group, we need to take a
hermitian form. Over a non-archimedean local field k, a non-degenerate hermitian form
is uniquely determined by its dimension, whereas a non-degenerate skew-hermitian form
is uniquely determined by its dimension and its discriminant which is an element of
k×/k×2. (It is curious that over R, these assertions are interchanged: a skew-hermitian
form is unique, whereas a hermitian form is determined by its signature.)

As an example of interest for our work, for a ∈ D×, let D(a) denote the one dimen-
sional right D-module which is D itself together with the form H(d1, d2) = d̄1ad2. This
form is skew-hermitian if a + ā = 0, and hermitian if a = ā. Assuming a is such that
a + ā = 0, it can be seen that U(D(a)) = K1, and GU(D(a)) = K× where K is the
quadratic extension of k generated by a; we note in particular that U(D(a)) is a form
of SO(2), and not of O(2).

The following two examples play a role in this paper. (See for example the papers of
T. Tsukamoto as well as that of I. Satake in J. Math. Soc. Japan, vol. 13, 1961, pages
387-400, and pages 401-409 for proofs.)

Example 9.1. The orthogonal group defined by the skew-hermitian form( √
a 0

0
√
b

)
,

for a, b ∈ k× \ k×2 defines an orthogonal group in four variables which is,

(1) GSOD
4 (k) ∼= [D× × GL2(k)]/∆k× if ab ∈ k×2; here ∆k× = k× is embedded

in D× ×GL2(k) as (a, a−1).
(2) GSOD

4 (k) ∼= [D×E × k×]/∆E× if ab 6∈ k×2 and E is the quadratic extension of

k given by E = k(
√
ab), and DE is the unique quaternion division algebra

over E. Here the mapping from E× to k× is the inverse of the norm mapping.
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Example 9.2. The skew-hermitian form √a 0 0

0
√
b 0

0 0
√
ab

 ,

for a, b, ab ∈ k× \k×2, is, up to isomorphism, the unique an-isotropic skew-hermitian
form in 3 variables over D. (Notice that elements such as

√
a in D× are well defined

only up to conjugacy; but the skew-hermitian form above is, up to isomorphism,
independent of these choices in

√
a,
√
b,
√
ab.) The corresponding orthogonal group

GSOD
6 (k) is isomorphic to [D× × k×]/∆k× where D is the unique division algebra

over k with invariant 1/4, and where ∆k× = k× is naturally included in D×, and
the map from k× to k× is x→ x−2. (If D′ is the division algebra with invariant 3/4,
then D′× ∼= D×.)

Assume that H1 is a skew-hermitian form on V1, and H2 is a hermitian form on
V2. Let V2 = W2 ⊕W∨

2 be a complete polarization of V2. The Weil representation of
Sp(V1 ⊗D V2) is realized on the Schwartz space of functions on V1 ⊗D W∨

2 on which
U(V1) acts in the natural way. The polarization V2 = W2⊕W∨

2 gives rise to the parabolic
P in U(V2) stabilizing the subspace W2 with GL(W2) as the Levi subgroup, and the
additive group of skew-hermitian forms on W∨

2 as N . Thus the character group of N
can be identified to the additive group of skew-hermitian forms on W2.

With these preliminaries, we state the analogue of Theorem 5 in this context; applica-
tion of this result to theta lifting between GSpD4 (k), and GSOD

4 (k) will not be explicitly
stated.

Theorem 8. Let π1 be an irreducible admissible representation of GU(V1), and π2

that of GU(V2). Assume that π2 = Θ(π1) is the theta lift of π1 to GU(V2). Let ψ be
a non-degenerate character of the unipotent radical N of the Siegel parabolic P =
MN of GU(V2) stabilizing a maximal isotropic subspace W2 of V2. Assume that ψ
corresponds to a skew-hermitian form H on W2. Then an irreducible representation
χ of GU(W2) appears in π2,ψ as a quotient if and only if

(1) (H,W2) can be embedded in the skew hermitian space V1; let W⊥
2 denote the

orthogonal complement of W2 sitting inside V1 through this embedding.
(2) The representation χ∨ of G[U(W2) × U(W⊥

2 )] appears as a quotient in the
representation π1 of GU(V1) restricted to G[U(W2) × U(W⊥

2 )], where χ∨

is obtained by pulling back the contragredient of χ under the natural map
G[U(W2)× U(W⊥

2 )]→ GU(W2).

10. Concluding the proof of Theorem 2

We begin by observing that from what is called the Standard modules conjecture,
which is a theorem for GSp4(k), a generic representation cannot be a proper Lang-
lands quotient, i.e., either it is already tempered (up to a twist), or it is a full induced
representation.

For the full induced representation, analysis of principal series representations gives
complete information about Bessel models, and if the principal series is irreducible, proves
Theorem 2 in these cases.
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If the representation is tempered but not discrete series, then the sum of the represen-
tations in its L-packet is obtained by inducing a unitary discrete series representation of
a parabolic subgroup of GSp4(k). This unitary principal series is irreducible except if the
parabolic is the Klingen parabolic, and the representation is 1 o π for a discrete series
representation π of GL2(k). This principal series has two irreducible components which
arise as theta lifts from compact orthogonal group O(4), and split orthogonal group
O(2, 2), for which methods of theta correspondence enable one to calculate Bessel mod-
els.

All L-packets of size > 1 for GSp4(k), or in odd residue characteristic, all L-packets
containing a supercuspidal representation arise as theta lift from an orthogonal group
of a quadratic space of dimension 4, for which methods of theta correspondence give
complete information about Bessel models; we indicate the calculation of necessary
epsilon factors below.

It remains to deal with discrete series representations of GSp4(k) which are not super-
cuspidal, and which is an L-packet by itself. There are two class of such representations:

(1) Steinberg, up to a twist.
(2) Representations of GSp4(k) with parameter of the form σ ⊗ St2 where σ is

a 2-dimensional irreducible monomial representation of Wk, and St2 is the 2-
dimensional irreducible representation of SL2(C).

Both these class of representations have been individually handled in sections 5, and 7,
completing the proof of Theorem 2 in these cases.

Following Gan and Takeda in [G-T2], we now recall the Langlands parameter of repre-
sentations of GSp4(k) arising from theta correspondence with representations of GO4(k),
and then do the necessary epsilon factor calculation to verify Theorem 2 from results
proved in the previous sections for such representations.

As recalled in the introduction, for a four dimensional quadratic space V , GSO(V )
has the structure of one of the following groups:

(1) GSO(V s) ∼= [GL2(k)×GL2(k)]/∆k×.
(2) GSO(V a) ∼= [D× ×D×]/∆k×.
(3) GSO(V d) ∼= [GL2(E)× k×]/∆E×,

where ∆k× = k× sits as (t, t−1), and ∆E× = E× sits inside GL2(E)×k× via its natural
embedding in GL2(E), and in k× by the inverse of the norm mapping.

In cases (1) and (2), an irreducible representation of GSO(V ) is a tensor product τ1�τ2

of two irreducible representations τ1 and τ2 which are both irreducible representations of
GL2(k) in case (1), and of D× in case (2), and have the same central characters, and
with Langlands parameters σ1 and σ2. The Langlands parameter of the representation of
GSp(4) arising from theta correspondence from an irreducible representation of GO(V )
which restricted to GSO(V ) is τ1 � τ2 in cases (1) and (2) is,

σ1 ⊕ σ2.

In case (3), an irreducible representation of GSO(V d) corresponds to an irreducible
representation τ of GL2(E) whose central character is invariant under Gal(E/k), to-
gether with a character χ of k× such that the central character of τ can be considered
to be the character of E× obtained from the character χ of k× through the norm map-
ping. (There are two possibilities for χ which are twists of each other by ωE/k.) In
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this case, the Langlands parameter of the representation GSp4(k) arising from theta
correspondence from this representation of GO(V d) is,

IndkEσ.

where σ is the L-parameter of the representation τ of GL2(E).
(This representation with values in GL4(C) can be considered as a representation with

values in GSp4(C) in two non-conjugate ways depending on the two choices for χ; the
corresponding representations of GSp4(k) are obtained from distinct representations of
GSO(V d) ∼= [GL2(E)× k×]/∆E×, which are same when restricted to GL2(E).)

The epsilon factor ε(σ ⊗ IndkK(χ−1)) in cases (1) and (2) is simply the product of
the epsilon factors, ε(σ1⊗ IndkK(χ−1)) and ε(σ2⊗ IndkK(χ−1)) which by the theorem of
Saito and Tunnell can be easily interpreted in terms of the existence of the character χ
of K× in the representations τ1, τ2, making Theorem 2 a consequence of Corollaries 7.1
and 7.2. Similarly in case (3), Theorem 2 is equivalent to Theorem 6.

11. Theorem 4

In this section we use Theorem 5 to convert results about Bessel models for GSp4(k)
to results about χ-invariant linear forms on representations of GL4(k) restricted to
GL2(K), where χ is a character of K× thought of as a character of GL2(K) through
the determinant map. This is achieved by looking at Theorem 5 for the dual reductive
pair (Sp4(k),O6(k)) where the group O6(k) comes from a six dimensional quadratic
space over k with discriminant of the split form in dimension 6. Thus O6(k) is either
split, or is a rank 1 form of it, and GSO6(k) will be one of the following two groups:

(1) [GL4(k)× k×]/{(z, z−2) : z ∈ k×},
(2) [GL2(D)× k×]/{(z, z−2) : z ∈ k×}.

It follows from these isomorphisms that an irreducible representation of GSO6(k) corre-
sponds to a pair (π, χ) of a representation π of GL4(k) (or GL2(D)), and a character
χ of k× such that the central character ωπ of π is χ2.

We will also have to use the duality correspondence between GSpD4 (k) and GSOD
6 (k)

= GUD
3 (k) defined using a skew-hermitian form over D of discriminant −1, giving rise

to
(3) GUD

3 (k) ∼= [D× × k×]/∆k× where the mapping from ∆k× = k× to k× is
x→ x−2, and D is the unique division algebra over k of invariant 1/4.

The following theorem of Gan and Takeda [G-T2] lies at the basis of our proof of
Theorem 4; the last part of the theorem is due to Gan and Tantono [G-T3].

Theorem 9. (1) The theta correspondence between GSp4(k) and GSO6(k) gives
a correspondence between irreducible representations of GSp4(k) and GL4(k)
and also between irreducible representations of GSp4(k) and GL2(D) which
on Langlands parameters corresponds to the natural inclusion GSp4(C) ↪→
GL4(C).

(2) A representation π, resp. π′, of GL4(k), resp. GL2(D) can be lifted to
GSp4(k) if and only if the Langlands parameter of π, resp π′, lies inside
GSp4(C).

(3) If an L-packet of GSp4(k) has size 2, then exactly one of its members lifts to
GL4(k), and the other to GL2(D).
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(4) If an L-packet {π} of representations of GSp4(k) has size one, then it lifts
to a representation, say π′, of GL4(k); if the L-parameter of π′ is relevant to
GL2(D), then π also lifts to GL2(D).

(5) Let D be a division algebra of dimension 16 over k such that for the unitary
group UD

3 (k) defined by a skew-hermitian form in 3 variables over D of dis-
criminant −1, GUD

3 (k) ∼= [D××k×]/∆k× where the mapping from ∆k× = k×

to k× is x → x−2. Then the theta correspondence between GSpD4 (k) and
GUD

3 (k) gives an injection of representations of [D× × k×]/∆k× with sym-
plectic similitude parameter into irreducible representations of GSpD4 (k).

In this section, we will be looking at the embedding of the quadratic space underlying
K (with its norm form as the quadratic form) in a six dimensional quadratic space,
say K ↪→ K ⊕ aK ⊕ H, a direct sum of quadratic spaces where aK is the same
underlying vector space as K, but the quadratic form is scaled by a, and H is the two
dimensional hyperbolic plane. The embedding of quadratic spaces gives an embedding
of G[SO(K)× SO(aK ⊕H)] inside GSO(K ⊕ aK ⊕H). We remind ourselves that

GSO(aK ⊕H) ∼= [GL2(K)× k×]/K×,

where ∆K× = K× sits inside [GL2(K)×k×] as (x,Nx−1). Therefore there is a natural
embedding of G[SO(K) × SO(aK ⊕ H)] inside K× × [GL2(K) × k×]/∆K×. We
claim that under this embedding, the image of G[SO(K)× SO(aK ⊕H)] inside K× ×
[GL2(K)×k×]/∆K× can be identified to [GL2(K)×k×]/∆k× where k× sits naturally
as the scalar matrices in GL2(K), and in k× through t→ t−2. To prove this claim, note
that there is a natural map from [GL2(K) × k×]/∆k× to [GL2(K) × k×]/∆K×, and
therefore to K××[GL2(K)×k×]/∆K× in which (X, t) goes to t detX in K×. It is easy
to check that this map is injective, and its image is exactly G[SO(K)× SO(aK ⊕H)].

Using the identifications indicated above, the embedding of the group G[SO(K) ×
SO(aK⊕H)] inside GSO(K⊕aK⊕H), becomes the standard embedding of [GL2(K)×
k×]/∆k× inside [GL4(k)×k×]/{(z, z−2) : z ∈ k×}, or inside [GL2(D)×k×]/{(z, z−2) :
z ∈ k×} as the case may be, and further the natural map from G[SO(K)× SO(aK ⊕
H)] = [GL2(K) × k×]/∆k× to K× = GSO(K) appearing in Theorem 5 is nothing
but (X, t) going to t detX in K×, and thus Theorem 5 detects the appearance of one
dimensional representations of GL2(K) as a quotient of a representation of GL4(k)
which arise from theta lifting from GSp4(k).

From Theorem 9 (due to Gan and Takeda), it follows that a representation of GL4(k)
arises as a theta lift from GSp4(k) if and only if its Langlands parameter belongs to the
symplectic similitude group GSp4(C). By the remark following Theorem 5, as soon as
a character of GL2(K) appears as a quotient of a representation of GL4(k), the repre-
sentation of GL4(k) arises from theta lifting from GSp4(k), and therefore its parameter
belongs to the symplectic similitude group. Further, the existence of χ-invariant linear
form for the subgroup GL2(K) of GL4(k) is the same as the existence of χ-Bessel model
for the representation of GSp4(k) which is the theta lift of the representation π � µ of
GSO6(k) = [GL4(k) × k×]/∆(k×) in which µ = χ|k× . Having proved the theorem
about Bessel models for GSp4(k), we deduce Theorem 4 about GL4(k). For deducing
Theorem 4 about other forms of GL4(k), we will need to use theta correspondence be-
tween GSp4(k) and the rank 1 form of GO6(k) giving rise to GL2(D), as well as theta
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correspondence between GSpD4 (k) and GUD
3 (k) giving rise to D× for a division algebra

of dimension 16 over k; we omit very analogous arguments in these cases.
We note, however, that, as usual, the methods of theta correspondence give re-

sults only for those irreducible representations of GL4(k) which arise as Θ(π) with
Θ(π) = θ(π) for an irreducible representation π of GSp4(k). For ensuring this, we
will use the methods of theta correspondence only for supercuspidal representations of
GL4(k). Other representations of GL4(k) for which there is a character of GL2(K)
appearing in it as a quotient, must arise from parabolic induction of an irreducible repre-
sentation of the (2, 2) parabolic (as their parameter is in GSp4(C), so cannot arise from
parabolic induction of a supercuspidal representation of a Levi subgroup of the (3, 1) par-
abolic subgroup). If we are dealing with non-discrete series but generic representation of
GL4(k), we can assume that the representation is a full induced representation from an
irreducible representation of the (2, 2) parabolic, and analyze separately the existence of
χ-invariant linear form for the subgroup GL2(K) of GL4(k).

For the induced representation of GL4(k) arising from the (2, 2) parabolic subgroup,
Mackey theory will answer questions about restriction to a subgroup. This depends on
the understanding of the double cosets,

GL2(K)\GL4(k)/P(2,2),

which we describe now.
To describe the double cosets GL2(K)\GL4(k)/P(2,2), it will be convenient to let

V be a two dimensional vector space over K thought of as a four dimensional vector
space RkV over k so that GL2(K) as well as GL4(k) operate on RkV . With this
notation, GL2(K)\GL4(k)/P(2,2) can be identified to GL2(K)-orbits on the set of two
dimensional k-subspaces W of RkV which is easily seen to consist of two orbits, one
represented by a W which is invariant under K, and the other which is not. It follows
that the restriction to GL2(K) of a principal series representation of GL4(k) induced
from a representation π1 ⊗ π2 of GL2(k) × GL2(k) = M , which is a Levi subgroup of
the (2, 2) parabolic P(2,2) with the Levi decomposition P(2,2) = M ×N , is

(3) 0→ ind
GL2(K)
GL2(k) (π1⊗π2)→ π|GL2(K) → ind

GL2(K)
B(K) (|·|1/2K π1|K×⊗|·|−1/2

K π2|K×)→ 0,

where B(K) is the Borel subgroup of GL2(K) consisting of upper-triangular matrices

with entries in K, and | · |1/2K π1|K× ⊗ | · |−1/2
K π2|K× denotes the restriction of | · |1/2k π1⊗

| · |−1/2
k π2 to K× × K×, which is then extended trivially across the unipotent radical

of B(K), and then induced to GL2(K). (All inductions considered in this paper are
normalized induction.)

It follows that if π has a χ-invariant form for a character χ : GL2(K)
det→ K× → C×,

then either

(1) π1 ⊗ π2 has a χ|k×-invariant linear form for GL2(k), i.e., π1
∼= π∨2 ⊗ χ|k× . Or,

(2) π1 and π2 both contain the character χ of K× ↪→ GL2(k), in particular, ω1 =
ω2 = χ|k× .

In both cases, it is easy to see that the parameter of the representation π lies inside
GSp4(C) with similitude character χ|k× , and that we further have (as consequence of
the theorem due to Tunnell and Saito in case (2), and by generalities about epsilon
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factors in case (1)),

ε(π ⊗ IndkK(χ−1)) = ε(π1 ⊗ IndkK(χ−1)) · ε(π2 ⊗ IndkK(χ−1)) = 1.

If π1 and π2 both contain the character χ of K×, then it follows from the exact
sequence (3) that π carries a linear form on which GL2(K) operates via χ. We now
show that if π1

∼= π∨2 ⊗ χ|k× , but that one of π1 or π2 does not contain the character

χ, then the unique (up to scaling) linear form on ind
GL2(K)
GL2(k) (π1⊗ π2) on which GL2(K)

operates by χ extends to a linear form on π on which GL2(K) operates by χ. For this
one needs to prove that an exact sequence of the form

0→ Cχ → π′ → ind
GL2(K)
B(K) (| · |1/2K π1|K× ⊗ | · |−1/2

K π2|K×)→ 0,

is a split extension under the condition that one of π1 or π2 does not contain the

character χ. Since ind
GL2(K)
B(K) (| · |1/2K π1|K× ⊗ | · |−1/2

K π2|K×) is a direct sum of (infinitely

many) principal series representations, if we can create splittings over each principal
series representations, we will be done. Therefore, it suffices to note the following result
from [[P3], Corollary 5.9].

Lemma 11.1. Let χ be a character of K×, and χ ◦ det the corresponding character
of GL2(K). Then if V is a principal series representation of GL2(K) such that
HomGL2(K)[V, χ ◦ det] = 0, we have Ext1

GL2(K)[V, χ ◦ det] = 0.

Completing proof of Theorem 4. Notice that if the representations π1 and π2 of
GL2(k) are discrete series representations with πJL1 and πJL2 the corresponding repre-
sentations of D×, one can construct a representation πJL = πJL1 × πJL2 of GL2(D) by
parabolic induction of the representation πJL1 �πJL2 of D××D× which is a Levi subgroup
in GL2(D), and one can restrict the representation πJL from GL2(D) to GL2(K), and
get the analogous exact sequence,

0→ ind
GL2(K)

D× (πJL1 ⊗ πJL2 )→ π|GL2(K) → ind
GL2(K)
B(K) (| · |1/2K πJL1 |K× ⊗ | · |

−1/2
K πJL2 |K×)→ 0.

(4)

It follows that if π has a χ ◦ det-invariant form, then either

(1) πJL1 ⊗πJL2 has a χ|k×-invariant linear form for D×, i.e., πJL1
∼= πJL∨2 ⊗χ|k× . Or,

(2) πJL1 and πJL2 both contain the character χ, in particular, ω1 = ω2 = χ|k× .

It is clear that if condition (1) held for π1, π2, it will also hold for representations πJL1 , πJL2

of D×, and hence πJL will have a χ-invariant linear form when restricted to GL2(K).
On the other hand, if the condition (2) held for π1 and π2, it will not hold for πJL1 , πJL2 .
These conclusions together with the knowledge of L-packets for GSp4(k) completes the
proof of Theorem 4 on noting that conditions (1), (2) simultaneously hold exactly when
π1 = π2, with their central characters equal to χ|k× , in which case both π and πJL have
a χ-invariant linear form when restricted to GL2(K).

Remark 11.2. We note a curious consequence of the proof above in the case π1 = π2,
a supercuspidal representation of GL2(k), in which case both the representation π1×π1

of GL4(k), and the representation πJL1 ×πJL1 of GL2(D) have χ◦det-invariant linear form
for GL2(K) for any character χ of K×, hence both lift to GSp4(k), and the two lifts to
GSp4(k) have χ-Bessel models. Since θ(π1×π1) and θ(πJL1 ×πJL1 ) are respectively the
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generic and non-generic members of the unitary principal series representation 1 oπ1 of
GSp4(k) induced from the Klingen parabolic, only one of these two have χ-Bessel model.
It follows that either for θ(π1×π1) or for θ(πJL1 ×πJL1 ), there is a difference between Θ
and θ, i.e, there must be a nontrivial extension between the two irreducible components
of the unitary principal series representation 1 o π1 induced from the Klingen parabolic
(which are θ(π1×π1) and θ(πJL1 ×πJL1 )). Extension between irreducible components of
a reducible unitary principal series representation seems not to have been noticed earlier.

For later use, we note the following lemma which is clear from the analysis of the
principal series representation arising out of the (2, 2) parabolic.

Lemma 11.3. Let π1 and π2 be two representations of GL2(k), of the same central
characters, for k either an archimedean or a non-archimedean local field. Then
the principal series representation π1 × π2 of GL4(k) has χ-Bessel model for all
characters χ of K× which appear in both π1 and π2. Thus if π1 and π2 are principal
series representations of the same central characters, then π1×π2 has Bessel models
for all characters of K× whose restriction to k× is the central character of π1 and
π2.

We end this section by formulating the following general conjecture, which is a mod-
ified form of a conjecture in [P2].

Conjecture 1. Let A ∼= Mr(D), with D a central division algebra over k, be a cen-
tral simple algebra over a local field k of dimension 4n2, and K a quadratic separable
algebra over k which can be embedded in A. (The set of embeddings of K in A is
unique by the Skolem-Noether theorem.) Let AK be the centralizer of K in A which
is a central simple algebra over K of dimension n2. Let π be an irreducible, admis-
sible representation of A× such that the corresponding representation of GL2n(k) is
generic with central character ωπ. Let χ be a character of K× such that χn|k× = ωπ.
Let det : (AK)× → K× denote the reduced norm map. If the character χ ◦ det of
(AK)× appears as a quotient in π restricted to (AK)×, then

(1) The Langlands parameter of π takes values in GSp2n(C) with similitude fac-
tor χ|k×.

(2) The epsilon factor ε(π ⊗ IndkK(χ−1)) = (−1)rωK/k(−1)nχ(−1)n.

If π is a discrete series representation of A×, then these two conditions are nec-
essary and sufficient for the character χ ◦ det of (AK)× to appear as a quotient in
π restricted to (AK)×. If π is not a discrete series representation, then one will
need to consider not just the epsilon factor appearing in the condition (2) above, but
other epsilon factors just as in (2) built out of irreducible sub-representations in the
Langlands parameter of π which are of symplectic type with similitude factor χ|k×.

Remark 11.4. Multiplicity 1 of the trivial representation of GLn(K) inside an
irreducible admissible representation of GL2n(k) was proved by J. Guo in [G], but
the multiplicity 1 of more general characters of GLn(K), or in our context, of even
more general subgroups (AK)× of A×, seems not to have been addressed in the
literature.
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Remark 11.5. By generalities about epsilon factors (twisting by highly ramified
characters) it can be seen that given π, a Galois representation of dimension 2n,

ε(π ⊗ IndkK(χ−1)) = ωK/k(−1)nχ(−1)n,

for all but finitely characters χ of K× with χn|k× = ωπ. This makes the conjecture
fit well with the fact that irreducible representations of E× where E is a division
algebra over k of dimension 4n2 are finite dimensional; the corresponding finiteness
assertion for other odd values of r is not clear.

12. Discrete series over the reals

Our study of Bessel model for principal series representations in the p-adic case de-
pended on two crucial, although rather elementary facts.

(1) If Y is a closed subspace of a p-adic manifold X, one has an exact sequence,

0→ S(X − Y )→ S(X)→ S(Y )→ 0.

(2) Twisted Jacquet functor is exact for any character θ of N .

Both these fail for real groups in general, necessitating extra work.

12.1. Preliminaries. We begin by setting up the notation.
Let M be a real analytic manifold, N a closed sub-manifold. We have a sequence of

natural maps,

0→ C∞c (M −N)→ C∞c (M)→ C∞c (N)→ 0

which is exact except in the middle. If we denote D(M), resp D(N), resp D(M −N),
the space of distributions on M , resp N , resp. M − N , then there is a natural map
from D(M) to D(M −N), whose kernel is the space of distributions on M supported
in N , which we denote by DN(M):

0→ DN(M)→ D(M)→ D(M −N).

Given a vector field X on M , it makes sense to differentiate functions on M by X,
and hence also a distribution D on M by X, which we denote by XD; clearly if a
distribution D is supported on a closed sub-manifold N , then so is XD. Thus from
distributions D(N) thought of as distributions on M , one can create newer distributions
on M supported on N by differentiating. It is known by the work of L. Schwartz that this
way one constructs all distributions on M supported on N by iterated differentiation.
Define a filtration DdN(M) on DN(M) which consists of the space of distributions on
M , supported on N , and which are obtained from the subspace D(N) of D(M) by
differentiating by at most d vector fields on M . Observing that as D(N) is invariant
under differentiation by vector fields along N , vector fields on M which are transversal
to N need only be considered.

More precisely, let X1, · · · , Xq be vector fields on M which are transversal to N at
points of N in some neighborhood (in N) of a point of N , i.e., Tx(M) = Tx(N) ⊕
CX1 ⊕ · · · ⊕ CXq, where Tx(M) is the tangent space to M at a point x of N , and
Tx(N) is the tangent space to N . This defines a filtration on DN(M) which consists
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of the space of distributions on M , supported on N , and which are in the sum of the
image of the natural maps

⊗r{X1, · · · , Xq} ⊗ D(N) → D(M)

Xi1 ⊗ · · · ⊗Xir ⊗D → Xi1 · · ·XirD,
for r ≤ d. This filtration is the same as the filtration DdN(M) introduced earlier,
and is therefore independent of the choice of vector fields X1, · · · , Xq on M in the
neighborhood of the point of N where these are transversal.

The following lemma identifies the successive quotients of this filtration. This lemma is
a variant of lemma 2.4 of Shalika’s paper [26] which itself is essentially due to Schwartz,
but notice that unlike Shalika’s paper, we do not assume that the transversal vector fields
X1 · · · , Xq, exist globally on N , nor do we need to assume that they span a Lie algebra
of vector fields. In this lemma, we will in fact work more generally with distributions
with coefficients in a vector bundle E over M which is modeled on a Fréchet space. In
this context, let D(M,E) be the dual in the natural topology of C∞c (M,E), the space
of compactly supported C∞ sections of E over M .

Lemma 12.1. For a Fréchet vector bundle E on a manifold M , the space of distribu-
tions DN(M,E) on M supported on a closed subanifold N comes equipped with a nat-
ural filtration DdN(M,E) such that the successive quotients, DdN(M,E)/Dd−1

N (M,E)
can be identified to a certain space of distributions on N , which is D(N, Symd(TM/TN)∨⊗
E), where TM/TN is the quotient of the tangent bundle TM of M restricted to N
by the tangent bundle TN of N , and Symd(TM/TN)∨ represents the dual bundle of
the symmetric power bundle.

Remark 12.2. We will apply this lemma in the context where a Lie group G oper-
ates transitively on a manifold M , and R is a subgroup of G operating transitively
on a closed submanifold N . Let ◦ be a point on N , with stabilizer H in G. The
Lie algebra g of G gives rise to vector fields on M , and if {X1, · · · , Xq} is a set of
generators of g/(r + h) where r is the Lie algebra of R, and h that of H, then the
vector fields on M corresponding to Xi form a set of transversal vector fields to
N in a neighborhood of ◦, and TM/TN can be realized as a homogeneous vector
bundle on N corresponding to the representation g/(r + h) of the stabilizer (in R,
i.e. H ∩R) of the previously chosen point ◦ in N .

The most important result for us will be the following form of the Frobenius reciprocity,
cf. Theorem 5.3.3.1 of [Wa].

Proposition 12.3. Let V be a real analytic manifold on which a Lie group H acts
transitively with H◦ as the stabilizer of a point ◦ in V . Let E be a homogeneous vector
bundle on V given by a representation of H◦ on a (possibly infinite dimensional)
Fréchet space E◦. Let φ : H → C× be a character on H. Then if D(V,E) is the dual
in the natural topology of C∞c (V,E), the space of compactly supported C∞ sections of
E, then,

D(V,E)H,φ ∼= E∨,(H◦,φ)
◦

where E
∨,(H◦,φ)
◦ = {e ∈ E∨◦ |h · e = φ(h)e ∀h ∈ H◦}, and where E∨◦ is the space of

continuous linear forms on E◦.
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12.2. Discrete series for GSp4(R) and inner forms. First we describe the discrete
series representations of GL2(R). Let η = | · |ssgnε, ε = 0, 1, be any quasi-character of
R×. Then for any positive integer k, we have the following exact sequence of represen-
tations of GL2(R)

0 −→ δ(η, k) −→ η| · |k/2sgnk+1 × η| · |−k/2 −→ ζ(η, k) −→ 0.

The representation ζ(η, k) is finite dimensional of dimension k, and the representation
δ(η, k) is essentially square-integrable; it is discrete series if η is unitary.

We now deal with the group Sp4(R). For every pair of integers (p, t) with p > t > 0
there is a collection of four discrete series representations of Sp4(R) with the same
infinitesimal character as that of F (p, t), a finite dimensional irreducible representation
of Sp4(R) which in the standard notation has highest weight (p − 2)e1 + (q − 1)e2.
We will denote these by X(p, t), X(p,−t), X(t,−p), X(−t,−p). The representations
X(p,−t) and X(t,−p) are generic, and the representations X(p, t) and X(−t,−p) are
holomorphic and anti-holomorphic representations.

These discrete series representations appear in the principal series representations of
Sp4(R) obtained from the Siegel parabolic subgroup with GL2(R) as the Levi subgroup.
We state the following exact sequences from the paper [Mu] of Muic; in these sequences
we use the standard notation of denoting πo1 for the representation of Sp4(R) obtained
by inducing the representation π of GL2(R) which is the Levi subgroup of the Siegel
parabolic; the representation L(π o 1) denotes the Langlands quotient, and Vp denotes
the unique irreducible representation of SL2(R) of dimension p. Then we have the
following exact sequences

0→ X(p,−t)⊕X(t,−p)→ δ(| · |
p−t
2 sgnt, p+ t) o 1→ L(δ(| · |

p−t
2 sgnt, p+ t) o 1)→ 0;

0→ F (p, t)⊕ L(δ(| · |
p−t
2 sgnt, p+ t) o 1)→ | · |tsgnt o Vp → L(δ(| · |

p+t
2 sgnt, p− t) o 1)→ 0;

0→ X(p, t)⊕X(−t,−p)→ ζ(| · |
p+t
2 sgnt, p− t) o 1→ F (p, t)→ 0.

Now we have the following.

Lemma 12.4. The principal series representation χ o Vp induced from a finite
dimensional representation of the Klingen parabolic subgroup of Sp4(R) has no Bessel
models for non-degenerate characters of the unipotent radical of the Siegel parabolic
for which the corresponding centralizer in the Levi is the compact torus S1.

Proof. It is a simple consequence of the Bruhat theory that we omit. The corre-
sponding statement for non-archimedean fields was proved earlier. �

We would have liked to use this lemma to conclude that Bessel models for any com-
position factor of χ o Vp are also zero. Although one would like to believe this to be
a consequence of generalities (exactness of Bessel models), but that is not available in
the literature anywhere, lacking which we resort to the result according to which by an
appropriate choice of inducing data, any subquotient of a principal series representation
can in fact be arranged to be a quotient, proving the following.
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Lemma 12.5. Sub-quotients of the representation χ o Vp of Sp4(R) arising from
finite dimensional representations of the Klingen parabolic have no Bessel models for
non-degenerate characters of the unipotent radical of the Siegel parabolic for which
the corresponding centralizer in the Levi is the compact torus S1.

We now prove a few simple results about contragredients which allow one to turn
questions about submodules to questions about quotient modules for which conclusions
on Bessel models are easier to achieve.

Lemma 12.6. Let α ∈ GSp2n(R) be an element of similitude factor −1. Then
the automorphism of Sp2n(R) induced by the inner-conjugation action of α takes an
irreducible representation π of Sp2n(R) to its contragredient π∨.

Proof. It suffices to prove that the representations πα and π∨ have the same char-
acters. But one knows that the character Θπ∨ of π∨ is related to the character Θπ

of π by
Θπ(g−1) = Θπ∨(g).

Therefore it suffices to note that αgα−1 and g−1 are conjugate in Sp2n(R) which is
well-known. �

Corollary 12.7. An irreducible representation π of Sp4(R) has a Bessel model for

a character ψt of N ∼=
{
n =

(
a b
b c

)
|a, b, c ∈ R

}
given by ψt(n) = e2πit(a+c) if and

only if π∨ has a Bessel model for the character ψ−t.

Corollary 12.8. If 0→ π1 → π2 is an exact sequence of Sp4(R) representations of
finite length with (π∨2 )ψ = 0, then (π1)ψ−1 = 0.

These lemmas and corollaries, together with the exact sequences recalled earlier from
[Mu] relating principal series and discrete series representations, reduce the study of
Bessel models for discrete series representations of Sp4(R) to principal series represen-
tations of Sp4(R) induced from the Siegel parabolic.

The group GSp4(R) contains R× ·Sp4(R) as a subgroup of index 2, and every discrete
series representation of GSp4(R) is obtained by inducing a discrete series representation
of R× · Sp4(R) which thus can be parametrized as X(p, t; ξ) with ξ a character of R×
such that ξ|±1 is the central character of the representation X(p, t) of Sp4(R). The
action of GSp4(R) on Sp4(R) interchanges X(p, t) with X(−t,−p), and X(p,−t) with
X(t,−p).

Given (p, t) with p > t > 0, and a character ξ : R× → C×, let Π1 be the generic
representation of GSp4(R) with central character ξ, and let Π2 be the other discrete
series representation of GSp4(R) with the same infinitesimal character. Let Π3 be the
unique discrete series representation of GSpH

4 (R) with the same infinitesimal and central
character.

12.3. The result. For a given representation π, the Bessel functional is a continuous
linear functional on the space of smooth vectors V ∞π in Vπ which comes equipped with its
Fréchet topology satisfying appropriate invariance equations with respect to the Bessel
subgroup. Explicitly, let χ be a character of C× given by χ(reiθ) = χ1(r)einθ, for some
quasi-character χ1 of R×+. Given n and χ as above, we set n(χ) = n. We identify C×
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with a subgroup of GL2(R), and H×, by sending z = a + ib 7→ t(z) :=

(
a b
−b a

)
.

Define a subgroup R of GSp4(R) by setting

R =

b(z; r, s, t) :=

(
t(z)

t(z)

)
1 s r

1 r t
1

1

 ; r, s, t ∈ R, z ∈ C×

 .

We now define a character χR of R by setting

χR(b(z; r, s, t)) = χ(z)e2πi(s+t).

There is a closely related subgroup RH of GSpH
4 (R). One defines a similar character

of RH, again denoted by χR. We say a continuous functional λ on V ∞π is a χ-Bessel
functional if it satisfies

λ(π(r)v) = χR(r)λ(v),

for all v ∈ V ∞π and r ∈ R. We define χ-Bessel functionals for representations of
GSpH

4 (R) similarly.
The exact sequences contained in the following lemma reduce questions about Bessel

models for discrete series representations to similar questions for principal series repre-
sentations.

In the following, we let | · |sVn denote the n-dimensional irreducible representation of
H× = R+ × SU2(R) on which R+ operates by |x|2s.

Lemma 12.9. For the discrete series representation Π3 of GSpH
4 (R), there are exact

sequences of GSpH
4 (R) representations as follows:

0→ Π3 → (| · |
p−t
2 Vp+t) o 1→ L((| · |

p−t
2 Vp+t) o 1)→ 0,

0→ L(| · |
p−t
2 Vp+t) o 1)→ (| · |

p+t
2 Vp−t) o 1→ F (p, t)→ 0.

In the previous lemma as well as in an earlier lemma for GSp4(R), it is useful to identify
those principal series representations of a real group which contain (or by dualizing, have
quotients) finite dimensional representations. The following lemma, whose simple proof
is omitted, does exactly that.

Lemma 12.10. Let G be the real points of a reductive algebraic group defined over
R. Let P = MN be the real points of a parabolic defined over R. Let Fλ be the
finite dimensional irreducible representation of G of highest weight λ, containing the
highest weight module Vλ for M with highest weight λ. (We assume having chosen
positive system of roots for M as well as G in the usual way.) Let ρP denote half the
sum of roots in N , thought of as a character ρP : M → R×, taking positive values.
Then there is a natural inclusion,

0→ F∨λ → IndGP (V ∨λ ⊗ ρ−1
P ),

and on taking duals, a surjection

IndGP (Vλ ⊗ ρP )→ Fλ → 0.
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In the following theorem we are interested in the existence of Bessel functionals for
the representations Πi.

Theorem 10. Let χ be a character of C× as above, and let {Π1,Π2,Π3} be the
Vogan packet consisting of discrete series representations associated with a pair of
integers (p, t) with p > t > 0, in such a way that χ|R× is the same as the central
character of Π1. Then exactly one of the representations Πi, 1 ≤ i ≤ 3, has a
χ-Bessel model. More precisely

(1) Π1 has the model if and only if |n(χ)| > p+ t;
(2) Π2 has the model if and only if |n(χ)| < p− t; and
(3) Π3 has the model if and only if p− t < |n(χ)| < p+ t.

In each case the space of the functionals is one dimensional.

A few remarks are in order. The theorem is of course the Gross-Prasad conjecture
for discrete series representations of GSp4(R) though we will not check the condition
on local epsilon factors. From considerations of central characters, we note that the
parity of n(χ) is opposite that of p + t and p − t. Theorem 10 completes the work
[TB]. We recall that [TB] proved the existence of Bessel functionals using global theta
correspondence.

Proof of Theorem 10. By the lemma above, and the earlier exact sequences for
Sp4(R), we are reduced to calculating Bessel models for principal series representations
of Sp4(R), and GSpH

4 (R) induced from the Siegel parabolic, which is what we will be
doing now.

Our result will follow from the following claim:

Claim. Suppose the Π is a quotient of the Ind(π|P,G) with π an irreducible rep-
resentation of GL2(R). Then if Π has a χ-Bessel functional, there is a continuous
functional λ on V ∞π satisfying λ(π(t(z))v = χ(z)λ(v) for all v ∈ V ∞π , z ∈ C×; such
linear forms will be called Waldspurger functional.

Suppose π acts on a space Vπ. By the definition of an induced representation, a Bessel
functional on Ind(π|P,G) defines a distribution T on the space of Vπ valued Schwartz
functions on G = GSp4(R) satisfying

(1) T (LpF ) = T (π(p)−1F ), for p ∈ P
(2) T (RrF ) = θ(n)χn(t)T (F ), for r = nt ∈ R.

Consider the Bruhat decomposition of G as P × P double cosets written as

GSp4(R) = P ∪ Pw1P ∪ Pw2P,

with Pw2P the unique open cell. The element w1 can be represented by the following
matrix

w1 =


1

1
1

−1

 .

We will show that if T is nonzero, it restricted to the open cell is nonzero too,
and hence by Frobenius reciprocity, it happens only if the inducing representation π of
GL2(R) has a Waldspurger functional for the character χn.
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Step 1. First step is to show that T restricted to the open set Pw1P ∪ Pw2P is non-
zero. If it were zero, then T would be supported on P . We will show that there are no
distributions supported on P satisfying the invariance properties. In fact we do not need
the entire group P ×R; P ×N is sufficient.

Note that the tangent space to G/P at the point P can be identified to g/p as a
P -module. The bilinear pairing,

n× g/p → C
(X, Y ) → tr(adX · adY ),

is a perfect pairing of p modules. Therefore the tangent space of G/P at P can be
identified to n∨ as a P -module, in particular as an N -module. Observe that as n is
abelian, this implies that the tangent space to G/P at the point P is the 3-dimensional
trivial representation of N .

From lemma 1, it follows that in the space of distributions on G/P with values in
the vector bundle on it arising from a representation of GL2(R), those distributions
supported at the point P do not carry any Bessel distributions.
Step 2. We now consider the restriction of T to the open set Pw1P ∪Pw2P . We would
like to show that the restriction of T to Pw2P is non-zero. We show that there are no
distributions supported on Pw1P satisfying the invariance properties. Here too we just
need to use P ×R.

The orbit of P passing through w1P has dimension 2, and is a homogeneous space
for the Bessel subgroup R; this is crucial for our analysis. Denote the orbit by V . In this
case, the normal bundle Tx(G/P )/Tx(V ) is a 1 dimensional representation space for the
stabilizer R◦, a subgroup of R. We claim that the action of R◦ on Tx(G/P )/Tx(V ) is
trivial. For this, we just need to note that Tx(G/P )/Tx(V ) being 1 dimensional, the
action is given by a character µ : R◦ → R×. But R◦ is a subgroup of S1 × N , from
which it is clear that µ being algebraic must be trivial.

From lemma 1 combined with Frobenius reciprocity, it follows that in the space of
distributions on G/P − eP with values in the vector bundle on it arising from a repre-
sentation of GL2(R), those distributions supported on the submanifold Pw1P do not
carry Bessel distributions.

Thus Bessel distributions arise only through the open orbit, and arise only if the
inducing representation π of GL2(R) has a Waldspurger functional for the character χn
(by Frobenius reciprocity).

From the work of Wallach in [Wa2], it follows that indeed when a character χn appears
in π, then Bessel functional can be defined by a process of analytic continuation; in fact
Wallach considers parabolic induction only from finite dimensional representations, but
in our context extension of his argument to discrete series poses no essential difficulties.

The theorem now follows from the following elementary lemma. �

Lemma 12.11. If π is a finite dimensional irreducible representation of G =
SL2(R), or SU2(R) of dimension m, then π has characters χn of S1 ↪→ G exactly
for |n| < m, and n ≡ (m− 1) mod 2.
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13. The global correspondence for the dual pair (GSp,GO)

We now turn to the global setting. Let F be a number field and let W, 〈 . 〉 (resp.
V, ( . )) be a non-degenerate symplectic (resp. orthogonal) vector space over F with
dimFW = 2n (resp. dimFV = m). Let G = GSp(W ) and H = GO(V ). Also let
W = V ⊗W and 〈〈 . 〉〉 = ( . )⊗〈 . 〉, so that G and H form a dual reductive pair in the
similitude group GSp(W). If ν denotes the similitude character for the various groups
involved, let

R = {(g, h) ∈ G×H | ν(g) = ν(h) },
so there is a natural homomorphism i : R → Sp(W). Note that if we let G1 = Sp(W )
and H1 = O(V ), then G1 ×H1 ⊂ R.

From now on assume that m = dimFV is even, and fix a non-trivial character ψ of A =
AF trivial on F . Let W = W1 ⊕W∨

1 denote a complete polarization of the symplectic
space W . Let ω = ωψ denote the usual action of G1(A) on the Schwartz-Bruhat space
S((V ⊗W∨

1 )(A)) of (V ⊗W∨
1 )(A). For h ∈ H(A) and ϕ ∈ S((V ⊗W∨

1 )(A)), let

L(h)ϕ(x) = |ν(h)|−mn/4ϕ(h−1x).

Since (deth)2 = ν(h)m, these operators are unitary with respect to the natural pre-
Hilbert space structure on the Schwartz-Bruhat functions. Note that the actions of
G1(A) and H1(A) on S((V ⊗W∨

1 )(A)) commute, and are the usual ones associated to
the dual pair (G1, H1).

For (g, h) ∈ R(A) and ϕ ∈ S((V ⊗W∨
1 )(A)), let

θ(g, h;ϕ) =
∑

x∈(V⊗W∨1 )(F )

ω(g, h)ϕ(x).

It is then well-known that θ(g, h;ϕ) is invariant under R(F ). For ϕ ∈ S((V ⊗W∨
1 )(A))

and a cusp form f ∈ A0(H), consider the integral

θ(f ;ϕ)(g) =

∫
H1(F )\H1(A)

θ(g, h1h;ϕ)f(h1h) dh1

where h ∈ H(A) is any element such that ν(g) = ν(h) and dh1 is a Haar measure on
H1(F )\H1(A).

It is easy to check that the integral defining θ(f ;ϕ) is absolutely convergent and is
independent of the choice of h. One can also check that θ(f ;ϕ) is left-invariant under

{γ ∈ G(F ) | ν(γ) = ν(γ′), for some γ′ ∈ H(F )}.
As far as the central characters are concerned, it’s not hard to see that if the central
character of f is χ, then the central character of θ(f ;ϕ) is χ.χnV , where χV (x) =
(x, (−1)m/2 detV ) is the quadratic character associated to V , and therefore for n even,
the central character of θ(f ;ϕ) is χ.

Remark 13.1. One usually defines θ(f ;ϕ)(g) by integration on the quotientH1(F )\H1(A)
forH1 = O(V ). However, if f belongs to an automorphic representation ofGO(V )(A)
which does not remain irreducible when restricted to GSO(V )(A), then the space
of automorphic functions on GSp(W ) defined by

θ0(f ;ϕ)(g) =

∫
H1,0(F )\H1,0(A)

θ(g, h1h;ϕ)f(h1h) dh1
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with H1,0 = SO(V ), is the same space of functions as those obtained as θ(f ;ϕ)(g).
We will use this well-known observation, and use θ0 instead of θ in what follows.

13.1. Global Bessel Models. We recall the notion of Bessel model introduced by
Novodvorsky and Piatetski-Shapiro [N-PS]. For a symmetric matrix S ∈ GL2(F ), define
a subgroup T = TS of GL2(F ) by

T = {g ∈ GL2(F ) | tgSg = det g.S}.
We consider T as a subgroup of GSp4(F ) via

t 7→
(
t

det t. tt−1

)
.

Let us denote by U the subgroup of GSp4(F ) defined by

U =

{
u(X) =

(
I2 X

I2

)
|X = tX

}
.

Finally, we define a subgroup R of GSp4(F ) by R = TU.
Let ψ be a non-trivial character of F\A. For a symmetric matrix S ∈ GL2(F ), define

a character ψS on U(A) by ψS(u(X)) = ψ(tr (SX)) for X = tX ∈ M2(A); as S will be
fixed throughout, we abbreviate ψS to ψ. Let χ be a character of T (F )\T (A). Denote
by χ ⊗ ψ the character of R(A) defined by (χ ⊗ ψ)(tu) = χ(t)ψ(u) for t ∈ T (A) and
u ∈ U(A).

Let π be an automorphic cuspidal representation of GSp4(A) realized on a space Vπ
of automorphic functions. We assume that

(5) χ|A× = ωπ.

Then for ϕ ∈ Vπ, we define a function B(ϕ, g) on GSp4(A) by

(6) B(ϕ, g) =

∫
ZARF \RA

(χ⊗ ψ)(r)−1.ϕ(rg) dr.

We say that π has a global Bessel model of type (S, χ, ψ) if for some ϕ ∈ Vπ, the
function B(ϕ, g) is non-zero. In this case, the C-vector space of functions on GSp4(A)
spanned by {B(ϕ, g) |ϕ ∈ Vπ} is called the space of the global Bessel model of π. We
abbreviate B(ϕ, e) to be B(ϕ).

Let µ : W1 → V be a homomorphism of vector spaces such that the quadratic
form on V restricted to W1 via µ is the quadratic form on W1 with respect to which
the Fourier coefficients is being calculated on GSp(W ), i.e., the symmetric matrix S
in the notation above, but now we prefer to do things in a co-ordinate free way. Let
GO(W1)+ be the subgroup of GO(W1) consisting of those elements for which the
similitude factor is the similitude factor of an element of GO(V ). (It is understood that
the quadratic form on W1 arises from a µ : W1 → V which is fixed.) In our applications,
GO+(W1) = GO(W1).

A map µ : W1 → V will be identified to a (F -valued) point of V ⊗W∨
1 , also denoted

by µ, and therefore for a function f ∈ S((V ⊗W∨
1 )(A)), it makes sense to consider

f(µ), as well as L(h)f(µ) for any h ∈ [GO(V ) × GL(W1)](A). Let O(W⊥
1 ) be the

subgroup of O(V ) acting trivially on µ : W1 → V . It is a standard calculation that
in the summation defining the theta function, θ(ϕ) =

∑
µ:W1→V ϕ(µ), only those µ’s
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contribute to the Fourier coefficient we are looking at for which the quadratic form on
V restricts to the desired quadratic form on W1. Since such embeddings µ : W1 → V
are conjugate under SO(V ) with stabilizer SO(W⊥

1 ), for an automorphic form f on
GSO(V )(A), ϕ ∈ S((V ⊗W∨

1 )(A)), and χ an automorphic form on GSO(W1)(A)

Bχ,µ(θ0(f ;ϕ)) =

∫
SO(W⊥1 )(A)\SO(V )(A)

Λµ(f, χ)(h)L(h)ϕ(µ) dh,

where h ∈ SO(V )(A), and

Λµ(f, χ)(h) =

∫
A×GSO(W1)\GSO(W1)(A)

[∫
SO(W⊥1 )\SO(W⊥1 )(A)

f(δh(g)h)dδ

]
χ(g)dg

=

∫
A×G[SO(W⊥1 )×SO(W1)](F )\G[SO(W⊥1 )×SO(W1)](A)

f(δh(g)h)χ(g) dδ dg,

where h(g) ∈ GSO(V )(A) has similitude factor ν(g), preserves the embedding µ : W1 →
V , and acts as g on W1; we have (δ, g) ∈ G[SO(W⊥

1 ) × SO(W1)] ⊂ GSO(W⊥
1 ) ×

GSO(W1). For sake of explicitness, we record the following simple lemma needed for
the last equality above.

Lemma 13.2. Let G be an algebraic group over a number field F , and N a normal
subgroup, with H = N\G. Then for appropriate choice of Haar measures, the
following holds for appropriate choice of functions f on G(F )\G(A)∫

H(F )\H(A)

∫
N(F )\N(A)

f(ng)dndḡ =

∫
G(F )\G(A)

f(g)dg.

The following theorem is now immediate by standard arguments; it may be noted that
the statement of this theorem is identical to Theorem 5

Theorem 11. Let π1 be an irreducible cuspidal automorphic representation of GSO(V )(A),
and π2 that of GSp(W )(A). Assume that π2 = Θ(π1) is the theta lift of π1 to
GSp(W ). Let ψ be a non-degenerate character of the unipotent radical N of the
Siegel parabolic P = MN of GSp(W ). Assume that ψ corresponds to a quadratic
form q on W1, a maximal isotropic subspace of W . Then for a cuspidal automorphic
representation χ of GSO(W1), the period integral (on GSO(W1)A×\GSO(W1)(A))
of χ against the ψ-th Fourier coefficient of π2 is not identically zero if and only if

(1) (q,W1) can be embedded in the quadratic space V ; let W⊥
1 denote the orthog-

onal complement of W1 sitting inside V through this embedding.
(2) For χ̃ the automorphic representation on G[SO(W1) × SO(W⊥

1 )] which is
obtained by pulling back the automorphic representation χ under the natural
map G[SO(W1)×SO(W⊥

1 )]→ GSO(W1), the period integral of χ̃ against the
automorphic forms in π1 restricted to G[SO(W1)×SO(W⊥

1 )] is not identically
zero.

Just as in the local case, the following diagram allows one to identify (E××E×)/∆F×

inside (D× × D×)/∆F× as the subgroup G[SO(E) × SO(E)] inside GSO(D) =
GSO(E ⊕ E)
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[E× × E×]/∆(F×)
∼=

ttjjjjjjjjjjjjjjjj

**TTTTTTTTTTTTTTTT

G[SO(E)× SO(E)] (D× ×D×)/(∆F×).

Therefore the integral∫
A×G[SO(W⊥1 )×SO(W1)](F )\G[SO(W⊥1 )×SO(W1)](A)

f(δh(g))χ(g) dδ dg,

becomes a product of two toral integrals on E×A×F\A
×
E on which the theorem of Wald-

spurger applies, yielding Theorem 3 of the introduction. In the case where the dual pair
involves division algebras one can prove a similar theorem. The proof carries over in an
essentially verbatim manner.

Corollary 13.3. Let π1 = ⊗π1,v, and π2 = π2,v be two cuspidal automorphic repre-
sentations of GL2(AF ) with the same central character ω : A×F/F× → C×. Let K be a
quadratic field extension of F . Then there are Grössencharacters χ : A×K/K× → C×
such that χ|A×F /F× = ω, and such that

L(
1

2
, π1 ⊗ Ind(χ−1)) 6= 0, and

L(
1

2
, π2 ⊗ Ind(χ−1)) 6= 0.

Proof. : If π1 = π2, this is part of Waldspurger’s theorem. Therefore assume that
π1 6= π2. In this case, π1 � π2 gives rise to an automorphic form on GSO(2, 2) =
[GL2(F )×GL2(F )]/∆(F×). By a theorem due to B. Roberts, the theta lift Θ(π1�π2)
to GSp4(AF ) is nonzero. Assume that v is a place of F which is inert in K, so that Kv

is a quadratic field extension of Fv. Let χv : K×v → C× be a character which appears
in both π1,v and π2,v. (As π1,v and π2,v contain all but finitely many characters of
K×v with a given central character, this is possible.) Therefore, Θv(π1,v � π2,v) has
Bessel models for the character χv. It follows by a globalization theorem along the
lines of [P3] that there is a character χ : A×K/K×, with χv as the local component
at v such that Θ(π1 � π2) has a nonzero χ-Bessel period integral. Thus from the
above theorem,

L(
1

2
, π1 ⊗ Ind(χ−1)) 6= 0, and

L(
1

2
, π2 ⊗ Ind(χ−1)) 6= 0,

completing the proof of the corollary. �

Remark 13.4. As the existence of global Bessel model depends on the non-vanishing
of an L-function at the center of symmetry, one can construct examples of cuspidal
representations of GSp4(AQ) which have local Bessel models at all primes of Q, but
do not have global Bessel model. This should be contrasted with what one expects
for Whittaker models of automorphic representations of GSp4(AQ) where existence
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of local Whittaker models is supposed to be necessary and sufficient for the existence
of global Whittaker model.

14. An Example

Let Π be an automorphic cuspidal representation of GL4(AF ), K a quadratic algebra
over F , χ : A×K/K× → C×, thought of as a character on GL2(AK). If the period
integral ∫

A×FGL2(K)\GL2(AK)

f(g)χ−1(g)dg,

is not identically zero, then by Theorem 11, one knows that the theta lift of Π to
GSp4(AF ) is nonzero, and the automorphic form so obtained on GSp4(AF ) has a global
χ-Bessel model. By Theorem 13.1 of [G-T2], and the theorem due to Ginzburg, Jiang,
Rallis in [J-G-R] about Bessel models for GSp4(AF ), it follows that,

(1) L(s,Λ2(Π)⊗ χ−1|A×F ) has a pole at s = 1.

(2) L(1
2
,Π⊗ IndFKχ

−1) 6= 0.

However, we construct an example here to show that these global conditions together
with the necessary local condition,

(3) HomGL2(Kv)(Πv, χv) 6= 0,
are not adequate to ensure that the period integral∫

A×FGL2(K)\GL2(AK)

f(g)χ−1(g)dg,

is not identically zero.
In the example constructed below, if the period integral were nonzero, then the theta

lift to GSp4(AF ) would be a nonzero generic cuspidal irreducible automorphic repre-
sentation, with a χ-Bessel model. In particular for the theta lift, θ(Π) = ⊗vθ(Πv) each
of θ(Πv) will have χv-Bessel models. However, we will ensure that at some place, say
v0 of F , the representation of GL4(Fv0) is of the form τ × τ for a supercuspidal rep-
resentation τ of PGL2(Fv0) such that the character χv0 of K×v0 does not appear in the
restriction of τ to K×v0 . In that case, θ(Πv0) which is the generic member of the principal
series representation 1 o τ of GSp4(Fv0) coming from the Klingen parabolic does not
carry the character χv0 of K×v0 in its Bessel model by our calculations in earlier sections,
contradicting our assumption of nonzero period integral.

It suffices to construct an automorphic representation Π on GL4(AF ), a quadratic
field extension K of F , and a character χ : A×K/K× → C× with properties (1), (2), (3),
which has the further property that at some place, say v0 of F which remains inert in
K, Πv0 = τ × τ for a supercuspidal representation τ of PGL2(Fv0) such that

(4) HomK×v0
(τ, χv0) = 0.

Let us begin with F a totally real number field, K a totally imaginary quadratic
extension of F , v0 a place of F which is inert in K, τ a supercuspidal representation
of PGL2(Fv0), and χv0 a character of K×v0 which does not appear in τ . Let χ be
a Grössencharacter χ : A×K/K× → C× which is trivial on A×F is trivial, and whose
restriction to K×v0 is χv0 .

Let E be a quadratic extension of F which is totally real and for which the place v0

of F splits in two places v1, v2 of E. Let DE be a quaternion division algebra over E
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such that the invariants of DE are 1/2, 1/2 at the two places v1, v2 of E, and zero at
all the other finite places. We also assume that DE remains a division algebra at all the
infinite places.

By the globalization theorem of [P-S], there is an automorphic representation Λ of
AE
×\D×E(AE) with local components τJL, τJL at the two places v1, v2, unramified at

all the other non-archimedean places, and such that the period integral∫
A×E(KE)×\A×KE

f(g)χ−1
KE(g)dg,

is nonzero for some function f in the space of Λ, where χKE is the Grössencharacter
on A×KE which is obtained by taking the norm mapping to A×K and composing with χ
defined on A×K . (Note that since the character χv0 of K×v0 does not belong to τ , it
belongs to τJL.)

Note the general identity of group representations for H a subgroup of index two in
G:

Λ2
(
IndGHX

) ∼= IndGH
(
Λ2(X)

)
⊕M(X),

where M(X) is the multiplicative, or twisted tensor induction. It follows that if X is
two dimensional, and the determinant of X is trivial,

Λ2
(
IndGHX

) ∼= 1⊕ ω ⊕M(X),

where ω is the nontrivial character of G trivial on H.
As the representation Λ of D×E(AE) has trivial central character, it follows from the

above that the representation Π = IndFEΛ of GL4(AF ) (automorphic induction due
to Arthur and Clozel after going from D×E(AE) to GL2(AE) by the Jacquet-Langlands
correspondence) is symplectic in the sense that

L(s,Λ2(Π))

has a pole at s = 1. (We will also need to appeal to a theorem of D. Ramakrishnan
according to which the (Asai) representation M(X) is modular for X two dimensional.)

Because of the nonvanishing of the period integral of Λ along a torus in D×E(AE), it
follows from a theorem of Waldspurger that

L(
1

2
,Λ⊗ IndEKEχ

−1
KE) 6= 0.

By generality about L-functions, for Π = IndFEΛ,

L(s,Π⊗ IndFKχ
−1) = L(s,Λ⊗ IndEKEχ

−1
KE).

In particular,

L(
1

2
,Π⊗ IndFKχ

−1) 6= 0.

Observing that the local conditions,
(3) HomGL2(Kv)(Πv, χv) 6= 0,

are automatically satisfied at all the other places of F outside of v0 as by construction the
local representations are principal series representations where this follows from lemma
11.3; at the place v0, this condition is satisfied by the analysis of χ-invariant linear forms
for the subgroup GL2(K) of GL4(k) done for principal series representations of GL4(k)
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coming from the (2, 2) parabolic in section 11. This completes the construction of the
desired example.

Remark 14.1. The question considered in this section is closely related to the existence
of Shalika models considered recently by Jacquet-Martin [J-M], as well as Gan-Takeda
[G-T1]. We recall that Gan-Takeda have constructed a counter-example to the existence
of global Shalika periods for GL2(D) even when all the natural local and global conditions
are met. Our construction of the counter-example is very similar to that of Gan-Takeda;
however, we note that the Gan-Takeda counter-example works for GL2(D), whereas
ours actually works (for a slightly different question) for GL4(k). The counter-example
here as well as in the work of Gan-Takeda are based on exploiting the difference between
theta liftings Θ(τ × τ) and θ(τ × τ) from GO6(k) to GSp4(k). The representation
τ×τ of GL4(k) has nontrivial χ-period for the subgroup GL2(K), so the representation
Θ(τ × τ) of GSp4(k) has χ-Bessel model; but the representation θ(τ × τ) of GSp4(k)
does not have χ-Bessel model. In this example, the representation Θ(τ × τ) of GSp4(k)
is a nontrivial extension of θ(τ × τ) by θ(τJL × τJL), which are the two irreducible
components of the unitary principal series 1 o τ coming from the Klingen parabolic.
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