BESSEL MODELS FOR GSp(4)
 DIPENDRA PRASAD AND RAMIN TAKLOO-BIGHASH

To Steve Gelbart

Abstract

Methods of theta correspondence are used to analyze local and global Bessel models for GSp_{4} proving a conjecture of Gross and Prasad which describes these models in terms of local epsilon factors in the local case, and the nonvanishing of central critical L-value in the global case.

Contents

1. Introduction 2
1.1. Resumé of the main results 4
2. Bessel models for principal series representations 7
2.1. Siegel Parabolic 8
2.2. Klingen Parabolic 9
2.3. Degenerate principal series coming from Klingen parabolic 11
3. Theorem 2 for irreducible principal series 11
3.1. Siegel parabolic 11
3.2. Klingen parabolic 13
4. Reducible principal series 13
5. The Steinberg representation 15
6. Bessel model of the Weil representation 16
7. Applications 21
8. A seesaw argument 24
9. Dual pairs involving division algebras 27
10. Concluding the proof of Theorem 2 29
11. Theorem 4 31
12. Discrete series over the reals 36
12.1. Preliminaries 36
12.2. Discrete series for $\mathrm{GSp}_{4}(\mathbb{R})$ and inner forms 38
12.3. The result 39
13. The global correspondence for the dual pair (GSp, GO) 43
13.1. Global Bessel Models 44
14. An Example 47
References 49
[^0]
1. InTRODUCTION

In this paper we use the methods of theta correspondence to prove certain local and global conjectures of Gross and Prasad for the pair ($\mathrm{SO}(2), \mathrm{SO}(5)$) by reducing the question to simpler pairs for which the analogous question is known. These conjectures relate the existence of Bessel models (which are certain Fourier coefficients) to certain local epsilon factors in the local case, and to the non-vanishing of certain central critical L-value in the global case. Instead of $\mathrm{SO}(5)$ we will consider the related group GSp_{4} in this paper. This gives first nontrivial evidence to the conjectures of Gross-Prasad in which the subgroup considered is neither reductive, nor unipotent. As a byproduct, we also obtain information about the one dimensional representations of $\mathrm{GL}_{2}(K)$ which appear as a quotient in representations of $\mathrm{GL}_{4}(k)$ when restricted to $\mathrm{GL}_{2}(K)$ where K is a quadratic extension of a local field k.

Among the earliest manifestations of the methods that we follow in this paper is the work of Waldspurger on Shimura correspondence in the late 70's relating period integral of automorphic forms on PGL_{2} over tori to Fourier coefficients of automorphic forms on the metaplectic SL_{2}, both being related to twisted L-values at $1 / 2$.

Let us now explain the setup more precisely. Let W be a four dimensional symplectic vector space over a field k with a fixed basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, and a symplectic form \langle,$\rangle on W$ such that $\left\langle e_{1}, e_{3}\right\rangle=-\left\langle e_{3}, e_{1}\right\rangle=1,\left\langle e_{2}, e_{4}\right\rangle=-\left\langle e_{4}, e_{2}\right\rangle=1$, and all other products among these basis vectors to be zero; thus the symplectic structure is given by the following skew-symmetric matrix:

$$
J=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right) .
$$

Let $W_{1}=\left\langle e_{1}, e_{2}\right\rangle$ be a maximal isotropic subspace of W. Let $G=\operatorname{GSp}(W)$ denote the symplectic similitude group of W, and P the parabolic subgroup of G consisting of elements of G which take W_{1} into itself. The group P is the so-called Siegel parabolic which has the Levi decomposition $P=M N$, where $M \cong \mathrm{GL}_{2} \times \mathbb{G}_{m}$ is the group of pairs (g, λ) with

$$
(g, \lambda)=\left(\begin{array}{ll}
g & \\
& \lambda \cdot{ }^{t} g^{-1}
\end{array}\right)
$$

and N is an abelian group which can be identified to the set of 2×2 symmetric matrices, $\operatorname{Sym}_{2}(k)$, over k. The inner-conjugation action of an element $(g, \lambda) \in \mathrm{GL}_{2} \times \mathbb{G}_{m}$ on $n \in N$ is given by $\lambda^{-1} g n^{t} g$. It follows that the stabilizer in M of a non-degenerate symmetric matrix in N can be identified to the normalizer of a Cartan subgroup of GL_{2}.

Fix $\psi_{0}: k \rightarrow \mathbb{C}^{\times}$to be a nontrivial additive character of k. Any character of N is of the form $\psi(n)=\psi_{0}(\operatorname{tr}[s n])$ for some $s \in \operatorname{Sym}_{2}(k)$, and the corresponding subgroup $N(T)=N\left(T_{s}\right)$ of $\mathrm{GL}_{2}(k)$ is

$$
N(T)=\left\{\left.g \in \mathrm{GL}_{2}(k)\right|^{t} g s g=\operatorname{det} g \cdot s\right\},
$$

which is considered a subgroup of $\mathrm{GSp}_{4}(k)$ via the embedding

$$
g \mapsto\left(\begin{array}{ll}
g & \\
& \operatorname{det} g \cdot{ }^{t} g^{-1}
\end{array}\right) .
$$

Let π be an irreducible admissible representation of $\operatorname{GSp}_{4}(k)$. Let π_{ψ} denote the largest quotient of π on which N operates by ψ. Clearly π_{ψ} is a representation space for the subgroup M^{ψ} of M which stabilizes ψ. We will consider $\psi=\psi_{0}(s n)$ corresponding to a $s \in \operatorname{Sym}_{2}(k)$ with det $s \neq 0$. For such ψ, M^{ψ} is isomorphic to the normalizer $N(T)$ of a Cartan subgroup T of $\mathrm{GL}_{2}(k)$. The question that we study in this paper is the structure of π_{ψ} as a module for T, called the Bessel model of π, both locally as well as globally for representations π of $\mathrm{GSp}_{4}(k)$.

We will work simultaneously with the rank 1 form of $\mathrm{GSp}_{4}(k)$, to be denoted by $\operatorname{GSp}_{4}^{D}(k)$, and defined using a quaternion division algebra D over k as

$$
\left\{g \in \mathrm{GL}_{2}(D) \left\lvert\, g\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)^{t} \bar{g}=\lambda \cdot\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right., \lambda \in k^{\times}\right\}
$$

where for $g=\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in \mathrm{GL}_{2}(D),{ }^{t} \bar{g}=\left(\begin{array}{cc}\bar{a} & \bar{c} \\ \bar{b} & \bar{d}\end{array}\right)$, and where $a \rightarrow \bar{a}$ denotes the standard involution on D. The group $\operatorname{GSp}_{4}^{D}(k)$ contains the Siegel parabolic whose unipotent radical is the group of matrices

$$
\left(\begin{array}{ll}
1 & n \\
0 & 1
\end{array}\right)
$$

where $n \in D$ with $n+\bar{n}=0$, and the Levi subgroup is isomorphic to $D^{\times} \times k^{\times}$embedded in $\operatorname{GSp}_{4}^{D}(k)$ as

$$
\left(\begin{array}{cc}
d & 0 \\
0 & t \bar{d}^{-1}
\end{array}\right)
$$

for $d \in D^{\times}$, and $t \in k^{\times}$.
Many of the results on GSp_{4} in this paper are obtained by using theta lifting from GO_{4}. We recall the structure of four dimensional quadratic spaces over a general field k (of characteristic not 2), and of the connected component of identity of $G O_{4}$, denoted by GSO_{4}, as follows.
(1) The isomorphism class of a quadratic space of dimension 4 and trivial discriminant over a field k is given by a quaternion algebra D over k with a multiple of its (reduced) norm form. In this case, $\operatorname{GSO}_{4}(k) \cong\left[D^{\times} \times D^{\times}\right] / \Delta k^{\times}$, where $\Delta k^{\times}=k^{\times}$is embedded in $D^{\times} \times D^{\times}$as $\left(a, a^{-1}\right)$.
(2) To a quadratic space of dimension 4 and non-trivial discriminant over a field k, defining a quadratic extension E of k, there is associated a quaternion algebra D_{E} over E with an involution i of the second kind. The quadratic space corresponding to D_{E} consists of hermitian elements, i.e, $\left\{x \in D_{E} \mid i(x)=x\right\}$, together with the norm form $\mathbb{N}: D_{E} \rightarrow E$ restricted to this subspace (where it takes values in k), or a scaling of this quadratic space by an element of $k^{\times} / \mathbb{N} E^{\times}$. In this case, $\operatorname{GSO}_{4}(k) \cong\left[D_{E}^{\times} \times k^{\times}\right] / \Delta E^{\times}$, where $\Delta E^{\times}=E^{\times}$maps to k^{\times}as $\mathbb{N}\left(a^{-1}\right)$. (In the case of local fields, a quadratic space of dimension 4, and non-trivial discriminant always has a zero, so $D_{E} \cong \mathrm{M}_{2}(E)$.)
To summarize, for V a four dimensional quadratic space over a local field $k, \operatorname{GSO}(V)$, has the structure of one of the following groups:
(1) $\operatorname{GSO}\left(V^{s}\right) \cong\left[\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$.
(2) $\operatorname{GSO}\left(V^{a}\right) \cong\left[D^{\times} \times D^{\times}\right] / \Delta k^{\times}$.
(3) $\operatorname{GSO}\left(V^{d}\right) \cong\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta E^{\times}$,
where $\Delta k^{\times}=k^{\times}$sits as $\left(t, t^{-1}\right)$ in $\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)$ and in $D^{\times} \times D^{\times}$where D is the unique quaternion division algebra over k, and $\Delta E^{\times}=E^{\times}$sits inside $\mathrm{GL}_{2}(E) \times k^{\times}$ via its natural embedding in $\mathrm{GL}_{2}(E)$, and in k^{\times}by the inverse of the norm mapping; we have used V^{s} to denote the unique four dimensional split quadratic space, V^{a} to denote the unique anisotropic quadratic space of dimension 4, and V^{d} is one of the two quadratic spaces of rank 1 with discriminant algebra E, a quadratic field extension of k.

Notice that not all forms of $\left[\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$are represented by $\operatorname{GSO}(V)$ in (1), (2), (3). Other forms of $\left[\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$are defined using skew-hermitian forms over D, which give rise to groups
(4) $\left[D^{\times} \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$.
(5) $\left[D_{E}^{\times} \times k^{\times}\right] / \Delta E^{\times}$, where E is a quadratic extension of k, and D_{E} the unique quaternion division algebra over E.
These groups will be used to do theta correspondence between $\operatorname{GSp}_{4}^{D}(k)$ and $\operatorname{GSO}_{4}^{D}(k)$, and will be discussed in greater detail later.
1.1. Resumé of the main results. We recall the following multiplicity 1 theorem of Novodvorsky extended in two ways. First we consider $\mathrm{GSp}_{4}(k)$ instead of his $\mathrm{PGSp}_{4}(k)$, and then we also consider rank 1 form of $\mathrm{GSp}_{4}(k)$. Both of these are standard extensions of the arguments in Novodvorsky's paper.

Theorem 1. Let π be an irreducible admissible representation of either $\operatorname{GSp}_{4}(k)$, or $\operatorname{GSp}_{4}^{D}(k)$ with Siegel parabolic $P=M N$. Let K be a quadratic separable algebra over k, and χ a character of K^{\times}. Let $\psi: N \rightarrow \mathbb{C}^{\times}$be a non-degenerate character of N centralized by K^{\times}, so that one can construct a one dimensional representation of $R=K^{\times} N$ which is χ on K^{\times}, and ψ on N, which will also be denoted by χ as ψ will be kept fixed in this paper. Then

$$
\operatorname{dimHom}_{R}(\pi, \chi) \leq 1
$$

Remark 1.1. If $\operatorname{Hom}_{R}(\pi, \chi) \neq 0$, then the representation π is said to have Bessel model for the character χ of K^{\times}.

Before proceeding further, recall that the Langlands parameter of a representation π of $\mathrm{GSp}_{4}(k)$ is a representation

$$
\sigma_{\pi}: W_{k}^{\prime} \rightarrow \operatorname{GSp}_{4}(\mathbb{C})
$$

where W_{k}^{\prime} is the Weil-Deligne group of k which we take to be $W_{k}^{\prime}=W_{k} \times \mathrm{SL}_{2}(\mathbb{C})$. These have been constructed in a recent paper of Gan and Takeda [G-T1] who have also defined a notion of L-packets (of size 1 or 2) for representations of $\operatorname{GSp}_{4}(k)$ which is what we will use in this paper. Instead of working with the Langlands parameter of a representation of $\mathrm{GSp}_{4}(k)$, with values in $\mathrm{GSp}_{4}(\mathbb{C})$, it is more convenient to work with representations of W_{k}^{\prime} into $\mathrm{GL}_{4}(\mathbb{C})$, which fix a symplectic form up to a similitude. The following lemma, implicit in many considerations about symplectic parameters, makes this possible.

Lemma 1.2. For any group G, the natural homomorphism $\mathrm{GSp}_{2 n}(\mathbb{C}) \hookrightarrow \mathrm{GL}_{2 n}(\mathbb{C}) \times$ \mathbb{C}^{\times}, where the mapping from $\mathrm{GSp}_{2 n}(\mathbb{C})$ to \mathbb{C}^{\times}is the similitude character, gives rise
to an injective map from conjugacy classes of homomorphisms from G to $\operatorname{GSp}_{2 n}(\mathbb{C})$ to conjugacy classes of homomorphisms from G to $\mathrm{GL}_{2 n}(\mathbb{C}) \times \mathbb{C}^{\times}$.

Here is our main local theorem, proving the Gross-Prasad conjecture for Bessel models of $\mathrm{GSp}_{4}(k)$:

Theorem 2. Let K be a quadratic separable algebra over a local field k of residue characteristic not 2, such that $K^{\times} \subset \mathrm{GL}_{2}(k)$ is contained in the centralizer of a non-degenerate character $\psi: N(k) \rightarrow \mathbb{C}^{\times}$. Let $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$be a character. Let $\{\pi\}$ be an irreducible, admissible generic L-packet of representations of $\operatorname{GSp}_{4}(k)$ with Langlands parameter σ_{π}. Assume that the central character of $\{\pi\}$ is $\left.\chi\right|_{k^{x}}$. Let $\operatorname{GSp}_{4}^{D}(k)$ be the rank 1 form of $\operatorname{GSp}_{4}(k)$, and $\left\{\pi^{\prime}\right\}$ an irreducible, admissible L-packet of representations of $\operatorname{GSp}_{4}^{D}(k)$ with Langlands parameter σ_{π}. (So $\left\{\pi^{\prime}\right\}$ might be an empty set.) Then there is at most one representation $\pi \in\{\pi\}$ with $\operatorname{Hom}_{K^{\times}}\left(\pi_{\psi}, \chi\right) \neq 0$, and there is one if and only if $\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1$. Similarly, there is at most one representation $\pi^{\prime} \in\left\{\pi^{\prime}\right\}$ with $\operatorname{Hom}_{K^{\times}}\left(\pi_{\psi}^{\prime}, \chi\right) \neq 0$, and there is one if and only if $\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=-1$. Furthermore, if $\{\pi\}$ or $\left\{\pi^{\prime}\right\}$ consisted of more than one element, then the parameter σ_{π} with values in $\mathrm{GSp}_{4}(\mathbb{C})$ becomes a sum of two-dimensional representations $\sigma_{\pi}=\sigma_{1} \oplus \sigma_{2}$ with $\operatorname{det} \sigma_{1}=\operatorname{det} \sigma_{2}=\left.\chi\right|_{k \times}$, and one can make precise which element of the L-packet, $\{\pi\}$ or $\left\{\pi^{\prime}\right\}$ has a Bessel model for the character χ of K^{\times}.

Here is the global theorem we prove.
Theorem 3. Let D be a quaternion algebra over a number field F, with the adele ring \mathbb{A}_{F}. Let Π_{1} and Π_{2} be two automorphic representations of $D^{\times}\left(\mathbb{A}_{F}\right)$ with the same central characters, so that $\Pi_{1} \boxtimes \Pi_{2}$ can be considered to be an automorphic representation on the corresponding orthogonal group $\mathrm{GSO}_{4}\left(\mathbb{A}_{F}\right)$ defined by the reduced norm on D. Let Π be the theta lift to $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$ of $\Pi_{1} \boxtimes \Pi_{2}$ on $\mathrm{GSO}_{4}\left(\mathbb{A}_{F}\right)$. Let E be a separable quadratic algebra over F, and χ a Grössencharacter on \mathbb{A}_{E}^{\times} whose restriction to \mathbb{A}_{F}^{\times}is the central character of Π. Let $\psi: N\left(\mathbb{A}_{F}\right) / N(F) \rightarrow \mathbb{C}^{\times}$ be a character which is normalized by \mathbb{A}_{E}^{\times}, and hence (χ, ψ) gives rise to a character of $R\left(\mathbb{A}_{F}\right)=\mathbb{A}_{E}^{\times} N\left(\mathbb{A}_{F}\right)$ which we will abuse notation to denote simply by χ as ψ is considered fixed. Then the period integral on Π taking $f \in \Pi$ to

$$
\int_{R(F) \mathbb{A}_{F}^{\times} \backslash R\left(\mathbb{A}_{F}\right)} f(g) \chi^{-1}(g) d g
$$

is not identically zero if and only if the period integrals,

$$
\int_{E^{\times} \mathbb{A}_{F}^{\times} \backslash \mathbb{A}_{E}^{\times}} f_{1}(g) \chi^{-1}(g) d g,
$$

and

$$
\int_{E^{\times} \mathbb{A}_{F}^{\times} \backslash \mathbb{A}_{E}^{\times}} f_{2}(g) \chi^{-1}(g) d g
$$

on Π_{1} and Π_{2} respectively are not identically zero; in particular, by Waldspurger, if the period integral on $R(F) \mathbb{A}_{F}^{\times} \backslash R\left(\mathbb{A}_{F}\right)$ of functions in Π is not identically zero, then

$$
L\left(\frac{1}{2}, B C_{E}\left(\Pi_{1}\right) \otimes \chi^{-1}\right) \neq 0
$$

and

$$
L\left(\frac{1}{2}, B C_{E}\left(\Pi_{2}\right) \otimes \chi^{-1}\right) \neq 0
$$

where $B C_{E}$ denotes the base change to $\mathrm{GL}_{2}(E)$ of an automorphic form on $\mathrm{GL}_{2}(F)$.
Further, for automorphic representations Π_{1} and Π_{2} on $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$, if $L\left(\frac{1}{2}, B C_{E}\left(\Pi_{1}\right) \otimes\right.$ $\left.\chi^{-1}\right) \neq 0$, and $L\left(\frac{1}{2}, B C_{E}\left(\Pi_{2}\right) \otimes \chi^{-1}\right) \neq 0$, Waldspurger's theorem gives quaternion algebras D_{1} and D_{2} over F, and an automorphic representation of $\left(D_{1}^{\times} \times D_{2}^{\times}\right) / \Delta \mathbb{G}_{m}$ such that the corresponding period integrals on $E^{\times} \mathbb{A}_{F}^{\times} \backslash \mathbb{A}_{E}^{\times}$are nonzero. Given D_{1} and D_{2}, quaternion algebras over the number field F, let $D_{1} \otimes D_{2} \cong M_{2}(D)$. Taking the tensor product of canonical involutions on D_{1} and D_{2}, we get an involution on $M_{2}(D)$ with fixed subspace of dimension 10, and hence there is a skewhermitian form on a 2 dimensional vector space over D such that the corresponding $\operatorname{GSO}_{4}^{D}(k)=\left[D_{1}^{\times} \times D_{2}^{\times}\right] / \Delta \mathbb{G}_{m}$. Define $\operatorname{GSp}_{4}^{D}(k)$ using this D, and construct a representation of $\operatorname{GSp}_{4}^{D}\left(\mathbb{A}_{F}\right)$ via theta lifting. Then for this automorphic representation, say $\tilde{\Pi}$ on $\operatorname{GSp}_{4}^{D}(k)$, the corresponding period integral of functions f in $\tilde{\Pi}$,

$$
\int_{R(F) \mathbb{A}_{F}^{\times} \backslash R\left(\mathbb{A}_{F}\right)} f(g) \chi^{-1}(g) d g,
$$

is not identically zero (in particular $\tilde{\Pi}$ is not zero).
Remark 1.3. There is a considerable amount of Geometric Algebra especially using exceptional isomorphisms of low rank groups in this paper (such as $\mathrm{SO}_{4}(k)$ being related to $\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k), \mathrm{SO}(5)$ being related to $\mathrm{PGSp}(4)$, or $\mathrm{SO}(6)$ to $\mathrm{SL}(4)$, the structure of their inner forms which usually has different constructions for the two groups involved, and the relation of their subgroups under this isomorphism). This fits rather nicely to yield exactly what is needed for the similitude groups being considered (such as GSO(2), which is much preferred over SO(2)).

Remark 1.4. It may be noted that besides its intrinsic interest, as Bessel models are usually nonzero for some choice of $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$, they can be used in developing the theory of L-functions for $\operatorname{GSp}_{4}(k)$ as in the early work of Novodvorsky and Piatetski-Shapiro, extending considerably the scope of the theory of L-functions based on genericity hypothesis. See [F] and [Pi-S] for modern treatments of this idea.

One can bootstrap our results and techniques to deduce a theorem about the restriction of a representation of $\mathrm{GL}_{4}(k)$ to the subgroup $\mathrm{GL}_{2}(K)$ where K is a quadratic algebra over k, which we state now.

Theorem 4. Let π be an irreducible, admissible, generic representation of $\mathrm{GL}_{4}(k)$ with central character ω_{π}. If π can be transferred to a representation of $\mathrm{GL}_{2}(D)$, let π^{\prime} be the corresponding representation of $\mathrm{GL}_{2}(D)$. Let χ be a character of K^{\times}such that $\left.\chi^{2}\right|_{k^{\times}}=\omega_{\pi}$. Then if the character $\chi \circ \operatorname{det}$ of $\mathrm{GL}_{2}(K)$ appears as a quotient in π, or π^{\prime}, restricted to $\mathrm{GL}_{2}(K)$,
(1) The Langlands parameter of π takes values in $\mathrm{GSp}_{4}(\mathbb{C})$ with similitude factor $\left.\chi\right|_{k^{\times}}$.
(2) The epsilon factor $\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1$.

Conversely, assume that π is an irreducible, generic representation of $\mathrm{GL}_{4}(k)$ such that:
(1) The Langlands parameter of π takes values in $\mathrm{GSp}_{4}(\mathbb{C})$ with similitude factor $\left.\chi\right|_{k^{x}}$.
(2) The epsilon factor $\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1$.

From (1), it follows by the work of Gan-Takeda that there exists an L-packet $\left\{\pi^{\mathrm{GSp}}\right\}$ on $\mathrm{GSp}_{4}(k)$ whose theta/Langlands lift to $\mathrm{GL}_{4}(k)$ is π. (By lemma 1, given π and χ, the L-packet $\left\{\pi^{\mathrm{GSp}}\right\}$ is unique.) If $\pi^{\prime} \neq 0$, and the L-packet $\left\{\pi^{\mathrm{GSp}}\right\}$ has 2 elements, then exactly one of π or π^{\prime} has a quotient on which $\mathrm{GL}_{2}(K)$ operates by χ unless $\pi=\tau \times \tau$ for a discrete series representation τ of $\mathrm{GL}_{2}(k)$ in which case both π and π^{\prime} have a quotient on which $\mathrm{GL}_{2}(K)$ operates by χ for any character χ of K^{\times} such that $\omega_{\tau}=\left.\chi\right|_{k^{\times}}$. If $\pi^{\prime} \neq 0$, and the L-packet $\left\{\pi^{\mathrm{GSp}}\right\}$ has only one element, then both π and π^{\prime} have a quotient on which $\mathrm{GL}_{2}(K)$ operates by $\chi \circ$ det.

Similarly, assume that π can be transferred to a representation $\pi^{\prime \prime}$ of \mathcal{D}^{\times}where \mathcal{D} is a quartic division algebra over k, and that K is a quadratic field extension of k embedded inside \mathcal{D}, and that the centralizer of K inside \mathcal{D} is B_{K} for the quaternion division algebra B_{K} over K. Then a character χ of K^{\times}thought of as a character of B_{K}^{\times}appears in $\pi^{\prime \prime}$ restricted to B_{K}^{\times}if and only if
(1) The Langlands parameter of π takes values in $\mathrm{GSp}_{4}(\mathbb{C})$ with similitude factor $\left.\chi\right|_{k^{\times}}$.
(2) The epsilon factor $\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=-1$.

This theorem is proved in Section 11, where we formulate a general conjecture.
We construct an example to show that the question of the non-triviality of the corresponding global period integral is not merely one about L-values, and local conditions; this is given in Section 14; it should be contrasted with the case of Bessel periods, or the general Gross-Prasad conjectures, where local conditions, together with non-vanishing of a central critical L-value dictates the period integral to be nonzero.

Acknowledgement : The first author thanks the Institute for Advanced Study, as well as the University of California at San Diego, where this work was done, and gratefully acknowledges receiving support through grants to the Institute by the Friends of the Institute, and the von Neumann Fund, and the Clay foundation as well as the NSF for supporting his stay at the UCSD. The second author is partially supported by a Young Investigator's Award from the NSA and a grant from the NSF. We are grateful to W.T. Gan for many suggestions; in fact, his help has been invaluable. We also thank N . Wallach for his help with the archimedean theory, and M. Furusawa for some helpful comments. Both of the authors have received warm encouragement from Steve Gelbart at various stages and would like to dedicate this work to him.

2. Bessel models for principal series representations

The aim of this section is to calculate the twisted Jacquet functor π_{ψ} for a principal series representation π of $\mathrm{GSp}_{4}(k)$ with respect to a non-degenerate character $\psi: N \rightarrow$ \mathbb{C}^{\times}given by a symmetric matrix $A \in M_{2}(k)$ as $\psi(X)=\psi_{0}(\operatorname{tr}(A X))$ for $X \in N=$ $\mathrm{Sym}_{2}(k)$.

We note that π_{ψ} is a module for the group

$$
M_{\psi} \cong\left\{g \in \mathrm{GL}_{2}(k) \mid g A^{t} g=\operatorname{det} g \cdot A\right\}
$$

considered as a subgroup of $\mathrm{GSp}_{4}(k)$ via

$$
g \mapsto\left(\begin{array}{ll}
g & \\
& \operatorname{det} g \cdot{ }^{t} g^{-1}
\end{array}\right) .
$$

which is the normalizer in $\mathrm{GL}_{2}(k)$ of a certain torus K_{ψ}^{\times}.
Recall that we are using W to denote a four dimensional symplectic vector space over a field k with a fixed basis $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$, and a symplectic form \langle,$\rangle on W$ such that $\left\langle e_{1}, e_{3}\right\rangle=-\left\langle e_{3}, e_{1}\right\rangle=1,\left\langle e_{2}, e_{4}\right\rangle=-\left\langle e_{4}, e_{2}\right\rangle=1$, and all other products among these basis vectors to be zero; thus the symplectic structure is given by the following skew-symmetric matrix:

$$
J=\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

2.1. Siegel Parabolic. We begin with the case when π is induced from the Siegel parabolic P from an irreducible representation ρ of the Levi subgroup M of $P=M N$.

As usual, let P be the Siegel parabolic stabilizing the isotropic subspace $W=\left\{e_{1}, e_{2}\right\}$ with M the stabilizer of the isotropic subspaces $W=\left\{e_{1}, e_{2}\right\}$ and $W^{\prime}=\left\{e_{3}, e_{4}\right\}$. The calculation of the twisted Jacquet functor will depend on the understanding of the double coset $P \backslash G / P$ with $G=\operatorname{GSp}_{4}(k)$, which is the same as $G \backslash[G / P \times G / P]$, or the orbit of $\operatorname{GSp}_{4}(k)$ on pairs of maximal isotropic subspaces. It is easy to see that there are three orbits of pairs of isotropic subspaces $\left(W_{1}, W_{2}\right)$:
(1) $W_{1}=W_{2}$; in this case we take $W_{1}=W_{2}=W$.
(2) $W_{1} \cap W_{2}=\{0\}$; in this case we take $W_{1}=W$, and $W_{2}=W^{\prime}$.
(3) $W_{1} \cap W_{2}$ is 1-dimensional; in this case we take $W_{1}=W$, and $W_{2}=\left\{e_{1}, e_{4}\right\}$.

As W_{1} is chosen to be W in all the three cases, the stabilizer in $\operatorname{GSp}_{4}(k)$ of the pair of isotropic subspaces (W_{1}, W_{2}) is a subgroup of P which is the following subgroup H_{i} of P in the three cases:
(1) $H_{1}=P$.
(2) $H_{2}=M$.
(3) H_{3} containing the unipotent group $\left(\begin{array}{ll}x & y \\ y & 0\end{array}\right) \in \operatorname{Sym}^{2}(k) \subset N$.

From the Mackey theory, it follows that the representation $\pi=\operatorname{ind}_{P}^{G} \rho$ restricted to P is obtained by gluing the following three representations:
(1) ρ.
(2) $\operatorname{ind}_{M}^{P} \rho$.
(3) $\left.\operatorname{ind}_{H_{3}}^{P} \rho\right|_{H_{3}}$.
(The discriminant function δ_{P} used for normalized induction is trivial on M_{ψ} as up to finite index M_{ψ} is the product of the center of G with its part in $[M, M]$; hence in light of the eventual answer, one can ignore δ_{P} in what follows.)

We observe that since the representation ρ of M is extended to P trivially across N, for a non-degenerate character ψ of $N, \rho_{\psi}=0$ in case (i).

For case (iii), as

$$
\begin{aligned}
& \left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{ll}
x & y \\
y & 0
\end{array}\right)=\left(\begin{array}{ll}
a x+b y & a y \\
b x+c y & b y
\end{array}\right), \\
& \psi\left[\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{ll}
x & y \\
y & 0
\end{array}\right)\right]=\psi_{0}(a x+2 b y),
\end{aligned}
$$

it follows that if the character ψ of N were to be trivial on the subgroup $N \cap H_{3}$, $a=b=0$, and hence ψ will not be a non-degenerate character. Noting that N is a normal subgroup of P, it follows that any character of N appearing in case (iii) is degenerate, and hence case (iii) does not contribute to the twisted Jacquet functor.

In case (ii), since $P \cong M N$ with N normal, we get $\operatorname{ind}_{M}^{P} \rho \cong \rho \otimes \operatorname{ind}_{M}^{P} 1$ as P-modules. Hence,

$$
\left.\left[\operatorname{ind}_{M}^{P} \rho\right]_{\psi} \cong \rho\right|_{M_{\psi}}
$$

for any character ψ of N. Thus we find that the twisted Jacquet functor in the three cases is as follows:
(1) 0.
(2) $\left.\rho\right|_{M_{\psi}}$.
(3) 0 .

Therefore we have the following proposition.
Proposition 2.1. For a principal series representation π of $G=\operatorname{GSp}_{4}(k)$ induced from a representation ρ of $P=M N$ of a Siegel parabolic, $\pi_{\psi} \cong \rho$ restricted to M_{ψ}.

Analogously, for $\operatorname{GSp}_{4}^{D}(k)$, we have the following.
Proposition 2.2. For a principal series representation π of $G=\mathrm{GSp}_{4}^{D}(k)$ induced from a representation ρ of $P=M N$ of the unique (up to conjugacy) parabolic of $\operatorname{GSp}_{4}^{D}(k)$ with $M \cong D^{\times} \times k^{\times}, \pi_{\psi} \cong \rho$ restricted to M_{ψ}.
2.2. Klingen Parabolic. We next direct our attention to the calculation of the twisted Jacquet functor for representations induced from Klingen parabolic $Q=M^{\prime} N^{\prime}$ which we take to be the stabilizer of the isotropic line $\left\{e_{1}\right\}$. Once again, the restriction to P of a representation π of $\mathrm{GSp}_{4}(k)$ induced from a representation ρ of M^{\prime} extended trivially across N^{\prime} is obtained by gluing certain representations indexed by double cosets $P \backslash \mathrm{GSp}_{4}(k) / Q$ which is the same as the $\mathrm{GSp}_{4}(k)$-orbits of pairs (L, W) of a one dimensional subspace L of V, and a two dimensional isotropic subspace W of V. There are two orbits:
(1) $L \subset W$ in which case we take $L=\left\{e_{1}\right\}$, and $W=\left\{e_{1}, e_{2}\right\}$.
(2) $L \not \subset W$ in which case we take $L=\left\{e_{3}\right\}, W=\left\{e_{1}, e_{2}\right\}$.

In case (i), the part of the unipotent radical N of P which is contained in the unipotent radical N^{\prime} of Q is the set of matrices,

$$
\left(\begin{array}{cc}
0 & y \\
y & z
\end{array}\right) \in \operatorname{Sym}^{2}(k) \subset N,
$$

From a calculation as done in case (iii) of the principal series induced from Siegel parabolic, it is easy to see that there are no non-degenerate characters of N trivial on

$$
\left(\begin{array}{cc}
0 & y \\
y & z
\end{array}\right) \in \operatorname{Sym}^{2}(k) \subset N,
$$

and therefore once again as N is normal in P, it follows that this double coset contributes nothing to the twisted Jacquet functor.
In case (ii), the stabilizer of the pair (L, W) with $L=\left\{e_{3}\right\}$, and $W=\left\{e_{1}, e_{2}\right\}$ is the subgroup

$$
H=\left(\begin{array}{cccc}
x_{11} & 0 & 0 & 0 \\
x_{21} & x_{22} & 0 & x_{24} \\
0 & 0 & x_{33} & x_{34} \\
0 & 0 & 0 & x_{44}
\end{array}\right)
$$

There are embeddings of H in $Q=k^{\times} \times \mathrm{GL}_{2}(k) \times N^{\prime}$ with image $k^{\times} \times B_{2} \times\langle u\rangle$ where B_{2} is the group of upper triangular matrices in $\mathrm{GL}_{2}(k)$, and $\langle u\rangle$ is a 1 parameter subgroup in N^{\prime}. In the embedding of H in $P=k^{\times} \times \mathrm{GL}_{2}(k) \times N$, the one parameter subgroup $\langle u\rangle$ goes to the upper triangular unipotent subgroup in $\mathrm{GL}_{2}(k)$, the unipotent radical of B_{2} goes inside N to a 1-dimensional subgroup that we denote by N_{0}, and the diagonal torus to the diagonal torus in $\mathrm{GL}_{2}(k)$.
By Mackey theory, it follows that the restriction of π to P contains $\operatorname{ind}_{H}^{P} \rho^{\prime}$ where H can be taken to be $k^{\times} \times B_{2} \times N_{0}$ and the representation ρ^{\prime} is the restriction of ρ to the diagonal torus in $\mathrm{GL}_{2}(k)$ extended trivially across the unipotent subgroup of B_{2} to all of B_{2}. We assume now that the representation ρ of $\mathrm{GL}_{2}(k)$ is infinite dimensional, so that (by Kirillov theory) its restriction to B_{2} contains the representation of B_{2} which is obtained by inducing from a character of the subgroup, $Z U$ of B_{2}, consisting of central and unipotent elements of B_{2}.
As the action of K^{\times}on $\mathrm{GL}_{2}(k) / P_{1}$ where P_{1} is the subgroup of B_{2} consisting of elements of the form

$$
\left(\begin{array}{ll}
1 & * \\
0 & *
\end{array}\right)
$$

contains an open dense orbit, it follows that for $R=K^{\times} \cdot N, R \backslash P / H$ contains an open dense double coset which in the case of K a field is the unique double coset. Thus the representation $\operatorname{ind}_{H}^{P} \rho^{\prime}$ restricted to R contains

$$
\operatorname{ind}_{R \cap H}^{R} \tilde{\psi}=\operatorname{ind}_{k^{\times} N_{0}}^{K_{0} \times N} \tilde{\psi},
$$

where $\tilde{\psi}$ is the character of $k^{\times} N_{0}$ which is equal to the central character of π restricted to k^{\times}, and is the restriction of the character ψ of N to N_{0}, which can be checked to be nontrivial on N_{0}.

Thus its maximal quotient on which N operates by ψ is $\operatorname{ind}_{k^{\times}}^{K \times N} \omega \psi$ where ω is the central character of the representation ρ. We thus obtain the following conclusion.

Proposition 2.3. For a principal series representation π of $G=\operatorname{GSp}_{4}(k)$ induced from an infinite dimensional irreducible representation ρ of $Q=M^{\prime} N^{\prime}$ of a Klingen parabolic, π_{ψ} restricted to $K^{\times}=M_{\psi}$ has each and every character of K^{\times}with the same central character as that of ρ appearing with multiplicity one as a quotient.
2.3. Degenerate principal series coming from Klingen parabolic. In this section we modify the argument of the previous section to calculate the ψ-Bessel model, for a non-degenerate character ψ of N, of a degenerate principal series representation of $\mathrm{GSp}_{4}(k)$ induced from a one dimensional representation ρ of the Klingen parabolic $Q=M^{\prime} N^{\prime}$. The analysis of the previous section gives the ψ-Bessel model of $\pi=$ $\operatorname{ind}_{Q}^{\mathrm{GSp}_{4}(k)} \rho$ as the ψ-Bessel model of $\left.\operatorname{ind}_{H}^{P} \rho\right|_{H}$ where $H=B_{2} \times k^{\times} \times N_{0}$, with B_{2} the lower triangular subgroup of $\mathrm{GL}_{2}(k)$, and N_{0} the one parameter subgroup $\left(\begin{array}{cc}0 & 0 \\ 0 & *\end{array}\right)$. If follows that if π has ψ-Bessel model for $s=\left(\begin{array}{cc}a & b \\ b & c\end{array}\right) \in \mathrm{GL}_{2}(k)$, then

$$
\operatorname{tr}\left[\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & *
\end{array}\right)\right] \equiv 0, \text { or } c=0
$$

This means that if π has ψ-Bessel model corresponding to the symmetric matrix $s=$ $\left(\begin{array}{ll}a & b \\ b & c\end{array}\right)$, c must be zero. For such symmetric matrices, the corresponding quadratic form is split, and hence we deduce that π has ψ-Bessel model only for K defined by a split quadratic algebra $K \cong k \oplus k$.

Fixing now the character $\psi\left(\begin{array}{ll}x_{11} & x_{12} \\ x_{12} & x_{22}\end{array}\right)=\psi_{00}\left(x_{12}\right)$, of N which is trivial on N_{0}, and which is stabilized by the diagonal split torus T in $\mathrm{GL}_{2}(k)$ embedded in $\mathrm{GSp}_{4}(k)$ as

$$
T=\left(\begin{array}{cccc}
t_{1} & 0 & 0 & 0 \\
0 & t_{2} & 0 & 0 \\
0 & 0 & t_{2} & 0 \\
0 & 0 & 0 & t_{1}
\end{array}\right)
$$

it is easy to calculate the twisted Jacquet module for the character ψ of N of the induced representation $\left.\operatorname{ind}_{H}^{P} \rho\right|_{H}$ with $H=B_{2} \times k^{\times} \times N_{0}$, to conclude the following proposition.

Proposition 2.4. Let ρ be a one dimensional representation of the Klingen parabolic Q of $\operatorname{GSp}_{4}(k)$, and $\pi=\operatorname{ind}_{Q}^{\mathrm{GSp}_{4}(k)} \rho$, the corresponding principal series representation. Then π has Bessel models for a quadratic algebra K if and only if $K=k \oplus k$, and in which case it has exactly one dimensional space of Bessel models for the character of K^{\times}obtained by restriction of ρ to K^{\times}which sits inside the Levi subgroup of Q.

3. Theorem 2 for irreducible principal series

Let us begin by stating the Langlands parameters of principal series representations, and then do the relevant local epsilon factor calculations.
3.1. Siegel parabolic. Let $P=M N$ be a Siegel parabolic with $M \cong \mathrm{GL}_{2}(k) \times$ \mathbb{G}_{m}. Let $\pi_{1} \boxtimes \mu$ be an irreducible representation of M, giving rise to an irreducible principal series representation π of $\mathrm{GSp}_{4}(k)$ by parabolic induction. It is conventional to denote this principal series representation π by $\pi_{1} \rtimes \mu$. The Langlands parameter of the representation π of $\mathrm{GSp}_{4}(k)$ is a representation

$$
\sigma_{\pi}: W_{k}^{\prime} \rightarrow \operatorname{GSp}_{4}(\mathbb{C})
$$

where W_{k}^{\prime} is the Weil-Deligne group of k which we take to be $W_{k}^{\prime}=W_{k} \times \mathrm{SL}_{2}(\mathbb{C})$. Assuming that the Langlands parameter of the representation π_{1} of $\mathrm{GL}_{2}(k)$ is σ_{1}, we have

$$
\sigma_{\pi}=\mu \sigma_{1} \oplus\left(\mu \oplus \mu \operatorname{det} \sigma_{1}\right) .
$$

We note that the Langlands parameter of an irreducible principal series representation of $\mathrm{GSp}_{4}(k)$ arising from parabolic induction of a representation of the Siegel parabolic takes values in (Levi subgroup of) the Klingen parabolic of $\mathrm{GSp}_{4}(\mathbb{C})$. (As a check on the Langlands parameter, one notes that twisting by a character $\chi: k^{\times} \rightarrow \mathbb{C}^{\times}$, thought of as a character of $\mathrm{GSp}_{4}(k)$ through the similitude character, takes the principal series representation $\pi_{1} \rtimes \mu$ to $\pi_{1} \rtimes \mu \chi$, and this on Langlands parameter is supposed to be twisting by χ.)

The central character ω_{π} of π is the same as the similitude character of σ_{π} which is $\mu^{2} \operatorname{det} \sigma_{1}$. Therefore the characters χ of K^{\times}appearing in Theorem 2 have the property that $\left.\chi\right|_{k^{\times}}=\mu^{2} \operatorname{det} \sigma_{1}$, and these are the only characters of K^{\times}that we will consider in what follows.

By the standard properties of the local epsilon factors, it follows that for σ_{π} as above,

$$
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=\epsilon\left(\mu \sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\mu \operatorname{det} \sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) .
$$

Since $\left.\chi\right|_{k^{\times}}=\mu^{2} \operatorname{det} \sigma_{1}$, it follows that for $V=\mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right), V^{\vee} \cong \mu \operatorname{det} \sigma_{1} \otimes$ $\operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)$. Since for any representation V of W_{k}^{\prime},

$$
\epsilon(V) \cdot \epsilon\left(V^{\vee}\right)=\operatorname{det} V(-1),
$$

it follows that,

$$
\begin{aligned}
\epsilon\left(\mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\mu \operatorname{det} \sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) & =\operatorname{det}\left(\mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)(-1) \\
& =\omega_{K / k}(-1) \chi(-1) .
\end{aligned}
$$

Therefore,

$$
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=\epsilon\left(\mu \sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \omega_{K / k}(-1) \chi(-1) .
$$

Therefore it follows from the theorem of Saito and Tunnell that

$$
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1
$$

if and only if the character χ of K^{\times}appears in the representation $\pi_{1} \otimes \mu$ of $\mathrm{GL}_{2}(k)$, which by proposition 2.1 of the last section are exactly the characters of K^{\times}for which π has Bessel models. (We note that $K^{\times} \cong M_{\psi}$ is included in $M=\mathrm{GL}_{2}(k) \times k^{\times}$in such a way that the resulting map to k^{\times}is the norm mapping.)

Furthermore, if $\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=-1$, the representation π_{1} of $\mathrm{GL}_{2}(k)$ is a discrete series representation, and if π_{1}^{\prime} is the corresponding representation of D^{\times}, then χ appears in the representation π_{1}^{\prime} restricted to K^{\times}. By proposition 2.2, the corresponding principal series representation of $\mathrm{GSp}_{4}^{D}(k)$ has Bessel model for χ, proving Theorem 2 in this case.
3.2. Klingen parabolic. Let $Q=M N$ be a Klingen parabolic with $M \cong k^{\times} \times$ $\mathrm{GL}_{2}(k)$. Let $\mu \boxtimes \pi_{1}$ be an irreducible representation of M, giving rise to the principal series representation $\pi=\mu \rtimes \pi_{1}$ of $\mathrm{GSp}_{4}(k)$ by parabolic induction. Then the Langlands parameter of the representation $\pi=\mu \rtimes \pi_{1}$ of $\mathrm{GSp}_{4}(k)$ is a representation

$$
\sigma_{\pi}: W_{k}^{\prime} \rightarrow \mathrm{GSp}_{4}(\mathbb{C})
$$

Assuming that the Langlands parameter of the representation π_{1} of $\mathrm{GL}_{2}(k)$ is σ_{1}, we have

$$
\sigma_{\pi}=\sigma_{1} \oplus \mu \cdot \sigma_{1}
$$

(This time twisting by $\chi: k^{\times} \rightarrow \mathbb{C}^{\times}$takes $\mu \rtimes \pi_{1}$ to $\mu \rtimes \chi \pi_{1}$.) This parameter takes values in the Siegel parabolic of $\mathrm{GSp}_{4}(\mathbb{C})$, and for that reason it is better to write it as

$$
\sigma_{\pi}=\sigma_{1} \oplus\left(\mu \operatorname{det} \sigma_{1}\right) \cdot \sigma_{1}^{\vee}
$$

As the central character of π is equal to $\mu \operatorname{det} \sigma_{1}$, the characters χ of K^{\times}appearing in Theorem 2 have the property that $\left.\chi\right|_{k^{\times}}=\mu \cdot \operatorname{det} \sigma_{1}$, and these are the only characters that we will consider in what follows.

By standard properties of the local epsilon factors, for σ_{π} as above,

$$
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=\epsilon\left(\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\sigma_{1} \otimes \mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) .
$$

Since $\left.\chi\right|_{k^{\times}}=\mu \cdot \operatorname{det} \sigma_{1}$, for $V=\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)$, we have $V^{\vee} \cong \sigma_{1} \otimes \mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)$, and therefore,

$$
\begin{aligned}
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) & =\epsilon\left(\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\sigma_{1} \otimes \mu \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \\
& =\operatorname{det}\left(\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)(-1) \\
& =\left[\operatorname{det}\left(\sigma_{1}\right)^{2} \cdot \operatorname{det}\left(\operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)^{2}\right](-1) \\
& =1
\end{aligned}
$$

Therefore in this case Theorem 2 asserts that $\pi=\mu \rtimes \pi_{1}$ has Bessel model for all characters χ of K^{\times}with $\left.\chi\right|_{k^{\times}}=\mu \operatorname{det} \sigma_{1}$, and this is what Proposition 2.3 proves. (Note that the Klingen parabolic is not defined for the rank 1 form of $\operatorname{GSp}_{4}(k)$, so we do not need to consider $\operatorname{GSp}_{4}^{D}(k)$ here unlike in the case of principal series representations arising from the Siegel parabolic subgroup.)

4. Reducible principal series

It can be seen that if an irreducible representation of $\mathrm{GSp}_{4}(k)$ belongs to a generic L-packet, and is a sub-quotient of a principal series representation coming from the Siegel parabolic, then it also arises from theta correspondence with a representation of an orthogonal group in 4 variables, for which methods of theta correspondence to be developed in later sections work. It suffices then to restrict ourselves only to irreducible representation of $\mathrm{GSp}_{4}(k)$ belonging to a generic L-packet which is a sub-quotient of a principal series representation coming from the Klingen parabolic.

Let $Q=M N$ be a Klingen parabolic with $M \cong k^{\times} \times \mathrm{GL}_{2}(k)$. Let $\mu \boxtimes \pi_{1}$ be an irreducible representation of M, giving rise to the principal series representation π of $\mathrm{GSp}_{4}(k)$ by parabolic induction. Assume that the Langlands parameter of the representation π_{1} of $\mathrm{GL}_{2}(k)$ is σ_{1}. It is known that if π_{1} is a discrete series representation of $\mathrm{GL}_{2}(k)$, the principal series representation π is reducible if and only if
(1) $\mu=1$, in which case π is a direct sum of two irreducible unitary representations of $\mathrm{GSp}_{4}(k)$ which form an L-packet.
(2) (Here we assume that π_{1} is supercuspidal.) $\mu=\omega|\cdot|^{ \pm 1}$ for a nontrivial quadratic character ω of k^{\times}, such that $\pi_{1} \cong \pi_{1} \otimes \omega$. We assume in what follows that $\mu=\omega \cdot|\cdot|$. In this case, there are exactly two components of the principal series representation $\omega|\cdot| \rtimes|\cdot|^{-1 / 2} \pi_{1}$ of $\mathrm{GSp}_{4}(k)$; one of the components is a discrete series representation with parameter σ_{π} which is

$$
\sigma_{\pi}=\sigma_{1} \otimes \mathrm{St}_{2}
$$

and the parameter of the other representation is

$$
\sigma_{\pi}=|\cdot|^{-1 / 2} \sigma_{1} \oplus|\cdot|^{1 / 2} \cdot \sigma_{1} .
$$

The similitude character (necessary to define a $\mathrm{GSp}_{4}(\mathbb{C})$ valued parameter instead of just $\mathrm{GL}_{4}(\mathbb{C})$ valued parameter) of both the representations is $\omega \cdot \operatorname{det} \sigma_{1}$.

In case 1 above, the analysis of principal series done before tell us complete information about Bessel models for the sum of the two representations in the L-packet so obtained. In fact the two representations in the L-packet arise from theta lifting from $\operatorname{GSO}\left(V^{s}\right)$, and $\operatorname{GSO}\left(V^{a}\right)$ where V^{s} and V^{a} are the two split and anisotropic quadratic forms of dimension 4 over k, and hence complete information about Bessel models of the individual representations in such L-packet of representations of $\mathrm{GSp}_{4}(k)$ can be obtained by the method of theta correspondence developed later.
We now turn to case (2) in which case the representation of $\mathrm{GSp}_{4}(k)$ has parameter

$$
\sigma_{\pi}=\sigma_{1} \otimes \mathrm{St}_{2} .
$$

We calculate the epsilon factor, $\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)$, for this choice of σ_{π}. By generalities about epsilon factors,

$$
\epsilon\left(V \otimes \mathrm{St}_{n}\right)=\epsilon(V)^{n} \operatorname{det}\left(-F, V^{I}\right)^{n-1},
$$

where V^{I} denotes the subspace of V invariant under I. In our case, this formula gives

$$
\begin{aligned}
\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) & =\epsilon\left(\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right) \otimes \operatorname{St}_{2}\right) \\
& =\operatorname{det}\left(-F, V^{I}\right)
\end{aligned}
$$

where $V=\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)$. If $V^{I} \neq 0$, as V is self-dual, so is V^{I} as a representation space for the cyclic group $\langle F\rangle$. Write $V^{I}=\sum \chi_{i}$. If a character χ_{i} with $\chi_{i}^{2} \neq 1$ appears in V^{I}, then so does χ_{i}^{-1}; together $\left\{\chi_{i}, \chi_{i}^{-1}\right\}$ do not contribute anything to $\operatorname{det}\left(-F, V^{I}\right)$. A character χ_{i} with $\chi_{i}^{2}=1$, but $\chi_{i} \neq 1$ also does not contribute to $\operatorname{det}\left(-F, V^{I}\right)$. Therefore $\operatorname{det}\left(-F, V^{I}\right)=(-1)^{r}$ where r is the number of copies of the trivial representation of W_{k} in V. Assuming that σ_{1} is irreducible, it follows that $\epsilon\left(\sigma_{\pi} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=-1$ if and only if σ_{1} and $\operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)$ are isomorphic.

By the calculation of the Bessel model for a principal series representation done in the last section, we already know that the principal series representation has Bessel models for all characters χ of K^{\times}(with the usual restriction on the central character).

Thus by the exactness of the twisted Jacquet functor, either of the following two statements implies the other:
(1) The generic component of the principal series representation $\pi=\operatorname{Ps}\left(\omega|\cdot|, \pi_{1}\right)$ has Bessel model for all characters of K^{\times}whose restriction to k^{\times}is the central character of π except χ and its Galois conjugate $\bar{\chi}$ if $\sigma_{1} \cong \operatorname{Ind}_{K}^{k}(\chi)$.
(2) The other component of the principal series representation has Bessel model for exactly the two characters χ and its Galois conjugate $\bar{\chi}$ of K^{\times}if $\sigma_{1} \cong \operatorname{Ind}_{K}^{k}(\chi)$.
We will prove the assertion (2) in $\S 8$, as an application of seesaw duality.

5. The Steinberg Representation

Let B denote the standard minimal parabolic of $\mathrm{GSp}_{4}(k)$, and P, Q respectively Siegel and Klingen parabolic subgroups. Let St_{4} denote the Steinberg representation of $\operatorname{GSp}_{4}(k)$, as well as its Langlands parameter, which is the four dimensional irreducible representation of the $\mathrm{SL}_{2}(\mathbb{C})$ part of the Weil-Deligne group W_{k}^{\prime}. By construction, St_{4} is the alternating sum of certain representations induced from characters of $B, P, Q, \mathrm{GSp}_{4}(k)$ to $\mathrm{GSp}_{4}(k)$. Ignoring the trivial representation which does not contribute to the ψ-Bessel models for non-degenerate characters, Steinberg representation can be realized as the quotient of a representation induced from an irreducible representation of say $P=M N$ which is a twist of the Steinberg representation of M by a representation of $\mathrm{GSp}_{4}(k)$ which is induced from a character of Q.
Proposition 5.1. Let K be a quadratic algebra, χ a character of K^{\times}which is trivial on k^{\times}. Let ψ be a non-degenerate character of N, left invariant by K^{\times}sitting inside M. Then the Steinberg representation of $\mathrm{GSp}_{4}(k)$ has Bessel model for χ if and only if χ is a non-trivial character of K^{\times}in case K is a field, and for all characters of K^{\times}if $K=k \oplus k$.

Proof. The proposition is clear by combining propositions 2.1 and 2.4 in all cases except when $K=k \oplus k$, and χ is the trivial character. So the rest of the proof will be for this case only, which is subtler as it relies on an understanding of semi-simplicity of χ-Bessel models. (The proof below works for all characters of K^{\times}in the case that $K=k \oplus k$.)

From the discussion above (and taking duals), it follows that the Steinberg representation of $\mathrm{GSp}_{4}(k)$ sits in an exact sequence of the form,

$$
0 \rightarrow \mathrm{St}_{4} \rightarrow P s \rightarrow \pi \rightarrow 0
$$

where $P s$ is a principal series representation of $\mathrm{GSp}_{4}(k)$ induced from the Siegel parabolic from an appropriate twist of the Steinberg representation of $M=\mathrm{GL}_{2}(k) \times k^{\times}$; and π is a representation of $\mathrm{GSp}_{4}(k)$ induced from a one dimensional representation of the Klingen parabolic (in fact π is a sub-representation of such a representation with quotient which is the one dimensional trivial representation of $\mathrm{GSp}_{4}(k)$, so does not affect the calculation of Bessel models). From an earlier observation that the discriminant δ_{P} is trivial on K^{\times}, it does not matter which twist of the Steinberg of $\mathrm{GL}_{2}(k)$ is used to construct the principal series Ps on $\mathrm{GSp}_{4}(k)$ above.

Taking the twisted Jacquet functor with respect to the character ψ of N, we get an exact sequence of T-modules where T is the diagonal split torus in $\mathrm{GL}_{2}(k)$,

$$
0 \rightarrow \mathrm{St}_{4, \psi} \rightarrow P s_{\psi} \rightarrow \pi_{\psi} \rightarrow 0
$$

From the calculation of the twisted Jacquet functor of principal series representation of $\mathrm{GSp}_{4}(k)$ induced from the Siegel parabolic, as well as that of a principal series
representation of $\mathrm{GSp}_{4}(k)$ induced from a one dimensional representation of the Klingen parabolic done in earlier sections, we get an exact sequence of T-modules,

$$
\begin{equation*}
0 \rightarrow \mathrm{St}_{4, \psi} \rightarrow \mathrm{St}_{2} \rightarrow \mathbb{C} \rightarrow 0 \tag{1}
\end{equation*}
$$

where \mathbb{C} is the one dimensional trivial representation of T, and St_{2} denotes the Steinberg representation of $\mathrm{PGL}_{2}(k)$, now thought of as a T-module.
Since the Steinberg representation of $\mathrm{GL}_{2}(k)$ can be realized on the space of locally constant functions modulo constant functions on $\mathbb{P}^{1}(k), f \rightarrow f(0)-f(\infty)$ is a T equivariant map from St_{2} to \mathbb{C}, giving rise to the following exact sequence to T-modules:

$$
\begin{equation*}
0 \rightarrow \mathcal{S}\left(k^{\times}\right) \rightarrow \mathrm{St}_{2} \rightarrow \mathbb{C} \rightarrow 0 \tag{2}
\end{equation*}
$$

As one knows that the Steinberg representation of $\mathrm{GL}_{2}(k)$ has a unique quotient on which T-operates trivially, the exact sequences (1) and (2) of T-modules must be the same, and therefore in particular $\mathrm{St}_{4, \psi}$ is isomorphic as a T-module to $\mathcal{S}\left(k^{\times}\right)$. This implies that St_{4} has Bessel model for all characters of T which are trivial on the scalars.

We omit the simple check that this proposition proves Theorem 2 for the Steinberg representation, augmented by the following much simpler proposition.

Proposition 5.2. The Steinberg representation of $\mathrm{GSp}_{4}^{D}(k)$ has Bessel model for a character χ of K^{\times}if and only if K is a field, and χ is the trivial character of K^{\times}.

Remark 5.3. We take the occasion here to emphasize that although the twisted Jacquet functor π_{ψ} is exact, it need not be a semi-simple representation of K^{\times}, unless K is a field in which case it is forced to be semi-simple as K^{\times} / k^{\times}is compact.

6. Bessel model of the Weil representation

The aim of this section will be to calculate the twisted Jacquet functor of the Weil representation of a dual reductive pair $\left(G_{1}, G_{2}\right)$ with respect to a character ψ of the unipotent radical N_{2} of a maximal parabolic $P_{2}=M_{2} N_{2}$ of the group G_{2}. We carry out the calculation of the twisted Jacquet functor only for the Siegel parabolic of a symplectic group, so $G_{2}=\operatorname{Sp}(W)$. Recall that for any representation π of G_{2}, the twisted Jacquet functor π_{ψ} is the maximal quotient of π on which N_{2} operates via ψ. If M_{ψ} denotes the maximal subgroup of M_{2} which takes ψ to itself under the inner-conjugation action of M_{2} on N_{2}, then π_{ψ} is a module for M_{ψ}, and therefore in the context of a dual reductive pair $\left(G_{1}, G_{2}\right)$, for $G_{1} \times M_{\psi}$.

We recall that in a famous work, Kudla calculated the standard Jacquet module of the Weil representation. We carry out the calculation of the twisted Jacquet functor only for the Siegel parabolic. Actually the simple calculation we perform in this section is known in the literature in both the local and global contexts, see e.g. [Ro1, Ra]. However, since we anyway will have to recall the notation and the results, we have preferred to give an independent co-ordinate free treatment which will be convenient for our purposes.

We now recall some elementary properties of the Weil representation for this purpose.
Let $W=W_{1} \oplus W_{1}^{\vee}$ be a symplectic vector space over a local field k together with its natural symplectic pairing. Given a quadratic space $q: V \rightarrow k$, the Weil representation
gives rise to a representation of $\mathrm{O}(V) \times \operatorname{Sp}(W)$ on $\mathcal{S}\left(V \otimes W_{1}^{\vee}\right)$. In this representation, elements of $S \operatorname{Hom}\left(W_{1}^{\vee}, W_{1}\right)=\left\{\phi \in \operatorname{Hom}\left(W_{1}^{\vee}, W_{1}\right) \mid \phi=\phi^{\vee}\right\} \cong \operatorname{Sym}^{2} W_{1}$, which can be identified to the unipotent radical of the Siegel parabolic in $\operatorname{Sp}(W)$ stabilizing the isotropic subspace W_{1}, operates on $\mathcal{S}\left(V \otimes W_{1}^{\vee}\right)$ by

$$
(n \cdot f)(x)=\psi\left(\left(q \otimes q_{n}\right) x\right) f(x),
$$

where $n \in S \operatorname{Hom}\left(W_{1}^{\vee}, W_{1}\right)$ gives rise to a quadratic form $q_{n}: W_{1}^{\vee} \rightarrow k$, which together with the quadratic form $q: V \rightarrow k$, gives rise to the quadratic form $q \otimes q_{n}: V \otimes W_{1}^{\vee} \rightarrow k$.

The Weil representation associated to the dual pair $(\mathrm{O}(V), \mathrm{Sp}(W))$ is actually a representation of $\mathrm{G}[\mathrm{O}(V) \times \mathrm{Sp}(W)]$ where $\mathrm{G}[\mathrm{O}(V) \times \mathrm{Sp}(W)]$ is defined to be the group of pairs $\left(g_{1}, g_{2}\right) \in \mathrm{GO}(V) \times \operatorname{GSp}(W)$ such that the similitude factors for g_{1} and g_{2} are the same. We briefly recall this, referring to $[\mathrm{H}-\mathrm{K}]$ for details on this.

The exact sequence

$$
1 \rightarrow \mathrm{Sp}(W) \rightarrow \mathrm{G}[\mathrm{O}(V) \times \mathrm{Sp}(W)] \rightarrow \mathrm{GO}(V) \rightarrow 1
$$

has a natural splitting $\mathrm{GO}(V) \rightarrow \mathrm{G}[\mathrm{O}(V) \times \mathrm{Sp}(W)]$ depending on a complete polarization $W=W_{1} \oplus W_{1}^{\vee}$ of the symplectic space W in which $g \in \mathrm{GO}(V)$ goes to $(g, \mu(g)) \in \mathrm{G}[\mathrm{O}(V) \times \mathrm{Sp}(W)]$ where $\mu(g)$ is the element of $\operatorname{GSp}(W)$ which acts by 1 on W_{1} and by $\nu(g)$ on W_{1}^{\vee} where $\nu(g)$ is the similitude factor of g. The Weil representation realized on $\mathcal{S}\left(V \otimes W_{1}^{\vee}\right)$ has the natural action of $\mathrm{GO}(V)$ operating as

$$
L(h) \varphi(x)=|\nu(h)|^{-m n / 4} \varphi\left(h^{-1} x\right),
$$

where $m=\operatorname{dim} V, 2 n=\operatorname{dim} W$, and $\nu(h)$ is the similitude factor of h. The group $\mathrm{GL}\left(W_{1}\right)$ sits naturally inside $\operatorname{Sp}\left(W_{1} \oplus W_{1}^{\vee}\right)$, and its action on $\mathcal{S}\left(V \otimes W_{1}^{\vee}\right)$ is given by

$$
L(g) \varphi(x)=\chi_{V}(\operatorname{det} g)|\operatorname{det} g|^{m / 2} \varphi(g x),
$$

where χ_{V} is the quadratic character of k^{\times}given in terms of the Hilbert symbol as $\chi_{V}(a)=(a, \operatorname{disc} V)$ with $\operatorname{disc} V$ the normalized discriminant of V.

For the element (g, λ) in $\operatorname{GSp}(W)$ with $g \in \operatorname{GL}\left(W_{1}\right)$, and $\lambda \in k^{\times}$, which is

$$
(g, \lambda)=\left(\begin{array}{ll}
g & \\
& \lambda \cdot{ }^{t} g^{-1}
\end{array}\right),
$$

the action of $(g, \lambda) \times h \in \mathrm{G}[\operatorname{Sp}(W) \times \mathrm{O}(V)]$ becomes:

$$
\begin{equation*}
[(g, \lambda) \times h] \varphi(x)=\chi_{V}(\operatorname{det} g)|\operatorname{det} g|^{m / 2}|\lambda|^{-m n / 4} \varphi\left(h^{-1} g x\right) . \tag{*}
\end{equation*}
$$

The inner-conjugation action of (g, λ) on $\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right)$, gives rise to the unipotent matrix with n replaced by $\lambda^{-1} g n^{t} g$. Therefore the stabilizer of a symmetric matrix n in $\operatorname{Hom}\left(W_{1}^{\vee}, W_{1}\right)$ consists of (g, λ) with $g n^{t} g=\lambda n$. Taking determinants, we have $(\operatorname{det} g)^{2}=\lambda^{n}$. Therefore the equation $(*)$ for the action of $(g, \lambda) \times h \in \mathrm{G}[\operatorname{Sp}(W) \times$ $\mathrm{O}(V)]$ with $g \in \mathrm{GO}\left(W_{1}\right)$ becomes:

$$
\begin{equation*}
[(g, \lambda) \times h] \varphi(x)=\chi_{V}(\operatorname{det} g) \varphi\left(h^{-1} g x\right) . \tag{**}
\end{equation*}
$$

Assuming further that $n=\operatorname{dim} W_{1}$ is even, and the element $g \in \operatorname{GO}\left(W_{1}\right)$ in fact belongs to the connected component $\operatorname{GSO}\left(W_{1}\right)$ defined by $\operatorname{det} g=\lambda^{n / 2}$, then
$\chi_{V}(\operatorname{det} g)=\chi_{V}(\lambda)^{n / 2}=1$, if λ is a similitude factor for V (as can be easily seen), simplifying the action $(* *)$ to

$$
[(g, \lambda) \times h] \varphi(x)=\varphi\left(h^{-1} g x\right) . \quad(* * *)
$$

The Weil representation thus gives rise to a representation of the group $\mathrm{G}[\mathrm{O}(V) \times$ $\mathrm{Sp}(W)]$; inducing this representation to $\operatorname{GO}(V) \times \operatorname{GSp}(W)$, we get, the 'big Weil representation', say Ω, of $\mathrm{GO}(V) \times \mathrm{GSp}(W)$. Given an irreducible representation π of $\mathrm{GO}(V)$, there exists a representation $\Theta(\pi)$ of $\operatorname{GSp}(W)$ of finite length, such that $\Theta(\pi) \otimes \pi$ is the maximal π-isotypic quotient of Ω. It is known that the representation $\Theta(\pi)$ of $\operatorname{GSp}(W)$ has a unique irreducible quotient $\theta(\pi)$. When one talks about the theta correspondence, one means the correspondence $\pi \rightarrow \theta(\pi)$; however, when one calculates Jacquet or twisted Jacquet functor of the Weil representation, it is invariably $\Theta(\pi)$ that one encounters. Thus most of the applications are restricted to the case when one can in fact prove that $\Theta(\pi)=\theta(\pi)$ which is the case for example when π is supercuspidal.

Lemma 6.1. Let x be a vector in $V \otimes W_{1}^{\vee}$, considered as a homomorphism $x: W_{1} \rightarrow$ V, as well as the homomorphism on duals $x^{\vee}: V^{\vee} \rightarrow W_{1}^{\vee}$. Then for quadratic spaces $q_{V}: V \rightarrow k$, and $q_{W}: W_{1}^{\vee} \rightarrow k$, equivalently considered through homomorphisms $q_{V}: V \rightarrow V^{\vee}$, and $q_{W}: W_{1}^{\vee} \rightarrow W_{1}$, the trace of the map from W_{1} to W_{1} given as the compositum of maps,

$$
W_{1} \xrightarrow{x} V \xrightarrow{q_{V}} V^{\vee} \xrightarrow{x^{\vee}} W_{1}^{\vee} \xrightarrow{q_{W}} W_{1},
$$

is the same as the value of the quadratic form $q_{V} \otimes q_{W}$ on the vector $x \in V \otimes W_{1}^{\vee}$, which is of course the same as the trace of the map from k to k, obtained as the compositum of maps:

$$
k \xrightarrow{x} V \otimes W_{1}^{\vee} \xrightarrow{q_{V} \otimes q_{W}} V^{\vee} \otimes W_{1} \xrightarrow{x^{\vee}} k .
$$

Let $S \operatorname{Hom}\left[W_{1}^{\vee}, W_{1}\right]$ be the set of symmetric maps in $\operatorname{Hom}\left[W_{1}^{\vee}, W_{1}\right]$, i.e., $\phi \in$ $\operatorname{Hom}\left[W_{1}^{\vee}, W_{1}\right]$ such that $\phi^{\vee}=\phi$. One can identify the dual of the k-vector space $S \operatorname{Hom}\left[W_{1}^{\vee}, W_{1}\right]$ to $S \operatorname{Hom}\left[W_{1}, W_{1}^{\vee}\right]$ via the natural pairing obtained by taking trace,

$$
S \operatorname{Hom}\left[W_{1}, W_{1}^{\vee}\right] \times S \operatorname{Hom}\left[W_{1}^{\vee}, W_{1}\right] \rightarrow \operatorname{Hom}\left[W_{1}, W_{1}\right] \xrightarrow{t r} k .
$$

Thus characters $\psi: N \rightarrow \mathbb{C}^{\times}$can be identified to symmetric elements in $\operatorname{Hom}\left[W_{1}, W_{1}^{\vee}\right]$. As the map from W_{1} to W_{1} in the above lemma is the compositum of two maps, one from W_{1} to W_{1}^{\vee}, and the other from W_{1}^{\vee} to W_{1}, and that the first map is nothing but the restriction of the quadratic form on V to W_{1} via the map $x: W_{1} \rightarrow V$, the following corollary of the previous lemma is clear.

Corollary 6.2. The twisted Jacquet functors of the Weil representation corresponding to the dual reductive pair $(\mathrm{O}(V), \mathrm{Sp}(W))$ are nonzero exactly for the characters of the unipotent radical of the Siegel parabolic of $\mathrm{Sp}(W)$ which correspond to the 'restriction' of quadratic form on V to W_{1} via a linear map $x: W_{1} \rightarrow V$.

We now note the following general lemma.
Lemma 6.3. Let X be the k-rational points of an algebraic variety defined over a local field k. Let P be a locally compact totally disconnected group with $P=M N$
for a normal subgroup N of P which we assume is a union of compact subgroups. Assume that P operates smoothly on $\mathcal{S}(X)$, and that the action of P restricted to M is given by an action of M on X. For a point $x \in X$, let $\ell_{x}: \mathcal{S}(X) \rightarrow \mathbb{C}$ be the linear functional given by $\ell_{x}(f)=f(x)$. Assume that for every point $x \in X$, N operates on ℓ_{x} by a character $\psi_{x}: N \rightarrow \mathbb{C}^{\times}$, i.e., $\ell_{x}(n \cdot f)=\psi_{x}(n) \ell_{x}(f)$ for all $n \in N$, and $f \in \mathcal{S}(X)$. Fix a character $\psi: N \rightarrow \mathbb{C}^{\times}$, and let M_{ψ} denote the subgroup of M which stabilizes the character ψ of N. The group M_{ψ} acts on the set of points $x \in X$ such that $\psi_{x}=\psi$. Denote this set of points in X by X_{ψ} which we assume to be closed in X. Then,

$$
\mathcal{S}(X)_{\psi} \cong \mathcal{S}\left(X_{\psi}\right)
$$

as M_{ψ}-modules.
Proof. We have an exact sequence of M_{ψ}-modules,

$$
0 \rightarrow \mathcal{S}\left(X-X_{\psi}\right) \rightarrow \mathcal{S}(X) \rightarrow \mathcal{S}\left(X_{\psi}\right) \rightarrow 0
$$

Taking the ψ-twisted Jacquet functor is exact, and $\mathcal{S}\left(X-X_{\psi}\right)_{\psi}=0$, so the assertion of the lemma follows.

We apply this lemma to $X=V \otimes W_{1}^{\vee}$, but will need to twist the geometric action of $\mathrm{GL}\left(W_{1}\right)$ on $\mathcal{S}\left(V \otimes W_{1}^{\vee}\right)$ by $\chi_{V}(\operatorname{det} g)$ for an element $(h, g) \in \mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)$.
Corollary 6.4. The twisted Jacquet functor of the Weil representation of the dual reductive pair $(\mathrm{O}(V), \mathrm{Sp}(W))$ for the character of the unipotent radical of the Siegel parabolic of $\operatorname{Sp}(W)$ which corresponds to a non-degenerate quadratic form on W_{1}, which we assume is obtained by restriction of the quadratic form on V via a linear map $x: W_{1} \rightarrow V$ is the representation

$$
\chi_{V}(\operatorname{det} g) \otimes \operatorname{ind}_{\mathrm{O}\left(W_{1}^{\perp}\right) \times \Delta \mathrm{O}\left(W_{1}\right)}^{\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)} \mathbb{C},
$$

where $O\left(W_{1}^{\perp}\right)$ is the orthogonal group of the orthogonal complement of W_{1} inside V, and $\Delta \mathrm{O}\left(W_{1}\right)$ represents the natural diagonal embedding of $\mathrm{O}\left(W_{1}\right)$ inside $\mathrm{O}(V) \times$ $\mathrm{O}\left(W_{1}\right)$ as V contains W_{1}; the character $\chi_{V}(\operatorname{det} g)$ is for the element $(h, g) \in \mathrm{O}(V) \times$ $\mathrm{O}\left(W_{1}\right)$.

Proof. Observe that $\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)$ operates on the set of homomorphisms from W_{1} to V, and in fact by Witt's theorem, this action is transitive on the set of homomorphisms from W_{1} to V such that the quadratic form on V restricts to the quadratic form on W_{1}. The isotropy subgroup inside $\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)$ of a fixed embedding of W_{1} inside V is exactly $\mathrm{O}\left(W_{1}^{\perp}\right) \times \Delta \mathrm{O}\left(W_{1}\right)$, proving the claim.

The previous analysis of twisted Jacquet functor in fact gives a representation space for $\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)\right]$ which we record as the following corollary, but before doing that let us note the following form of Witt's extension theorem for similitude groups.
Lemma 6.5. Suppose W_{1} is a nondegenerate subspace of a quadratic space V carrying the restricted quadratic form. Suppose ϕ belongs to $\mathrm{GO}\left(W_{1}\right)$ such that the similitude factor of ϕ arises as a similitude factor in $\mathrm{GO}(V)$. Then there is an element ϕ^{\prime} in $\mathrm{GO}(V)$ taking W_{1} into itself, and such that the restriction of ϕ^{\prime} to W_{1} is ϕ.

Proof. Write $V=W_{1} \oplus W_{1}^{\perp}$. Note that $\lambda \in k^{\times}$is a similitude factor for the quadratic space V if and only if $V \cong \lambda \cdot V$. Since $\lambda \cdot V \cong \lambda \cdot W_{1} \oplus \lambda \cdot W_{1}^{\perp}$, if λ is a similitude character for both V and W_{1}, we find that $W_{1}^{\perp} \cong \lambda \cdot W_{1}^{\perp}$, therefore the conclusion of the lemma.

The group $\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)\right]$ operates on the set of embeddings of W_{1} inside V which gives rise to a particular quadratic form on W_{1}. The action is transitive, and by Lemma 6.5, the stabilizer of a given embedding is $\mathrm{G}\left[\mathrm{O}\left(W_{1}^{\perp}\right) \times \Delta \mathrm{O}\left(W_{1}\right)\right]$. The subgroup $\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{SO}\left(W_{1}\right)\right]=\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)\right] \cap\left[\mathrm{GO}(V) \times \mathrm{GSO}\left(W_{1}\right)\right]$ of $\mathrm{G}[\mathrm{O}(V) \times$ $\left.\mathrm{O}\left(W_{1}\right)\right]$ also operates transitively with stabilizer a given embedding being $\mathrm{G}\left[\mathrm{O}\left(W_{1}^{\perp}\right) \times\right.$ $\left.\Delta \mathrm{SO}\left(W_{1}\right)\right]$. Thus using $(* * *)$, we obtain the following corollary.
Corollary 6.6. The twisted Jacquet functor of the Weil representation of the dual reductive pair $(\mathrm{O}(V), \mathrm{Sp}(W))$ for the character of the unipotent radical of the Siegel parabolic of $\operatorname{sp}(W)$ which corresponds to a non-degenerate quadratic form on W_{1}, which we assume is obtained by restriction of the quadratic form on V via a linear map $x: W_{1} \rightarrow V$ is the representation

$$
\operatorname{ind}_{\mathrm{G}\left[\mathrm{O}\left(W_{1}^{\perp}\right) \times \Delta \mathrm{SO}\left(W_{1}\right)\right]}^{\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{SO}\left(W_{1}\right)\right]} \mathbb{C},
$$

where $\mathrm{O}\left(W_{1}^{\perp}\right)$ is the orthogonal group of the orthogonal complement of W_{1} inside V, and $\Delta \mathrm{O}\left(W_{1}\right)$ represents the natural diagonal embedding of $\mathrm{O}\left(W_{1}\right)$ inside $\mathrm{O}(V) \times \mathrm{O}\left(W_{1}\right)$ as V contains W_{1}; the group $\mathrm{G}\left[\mathrm{O}\left(W_{1}^{\perp}\right) \times \Delta \mathrm{SO}\left(W_{1}\right)\right]$ is the subgroup of $\mathrm{G}\left[\mathrm{O}\left(W_{1}^{\perp}\right) \times \mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}\right)\right]$ contained in $\mathrm{G}\left[\mathrm{O}(V) \times \mathrm{SO}\left(W_{1}\right)\right]$ consisting of the triples $\left.\left(g_{1}, g_{2}, g_{3}\right) \in \mathrm{GO}\left(W_{1}^{\perp}\right) \times \operatorname{GSO}\left(W_{1}\right) \times \operatorname{GSO}\left(W_{1}\right)\right]$ with $g_{2}=g_{3}$ (and the same similitude factors for g_{1}, g_{2}, g_{3}).

The previous corollary together with the formalism of the Weil representation yields the following theorem as a simple consequence.

Theorem 5. Let π_{1} be an irreducible admissible representation of the group $\operatorname{GSO}(V)$. Assume that $\pi_{2}=\Theta\left(\pi_{1}\right)$ is the theta lift of π_{1} to $\operatorname{GSp}(W)$. Let ψ be a non-degenerate character of the unipotent radical N of the Siegel parabolic $P=M N$ of $\operatorname{GSp}(W)$. Assume that ψ corresponds to a quadratic form q on W_{1}, a maximal isotropic subspace of W. Then an irreducible representation χ of $\mathrm{GSO}\left(W_{1}\right)$ appears in $\pi_{2, \psi}$ as a quotient if and only if
(1) $\left(q, W_{1}\right)$ can be embedded in the quadratic space V; let W_{1}^{\perp} denote the orthogonal complement of W_{1} sitting inside V through this embedding.
(2) The representation χ^{\vee} of $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ appears as a quotient in the representation π_{1} of $\mathrm{GSO}(V)$ restricted to $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$, where χ^{\vee} is obtained by pulling back the contragredient of χ under the natural map $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right] \rightarrow \mathrm{GSO}\left(W_{1}\right)$.
Remark 6.7. It is a consequence of this theorem that if the representation χ^{\vee} of $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ appears as a quotient in the representation π_{1} of $\operatorname{GSO}(V)$ restricted to $G\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$, then $\pi_{2}=\Theta\left(\pi_{1}\right)$ is nonzero. It is one of the standard ways by which one proves non-vanishing of local (or global) representations: by proving the non-vanishing of a particular Fourier coefficient; for example it proves that the theta lifting from $\operatorname{GSO}(4)$ to $\operatorname{GSp}(4)$ is always nonzero locally.

Remark 6.8. Theorem 5 roughly states that a representation π_{1} of $\operatorname{GSO}(V)$ has a $\tilde{\chi}$-period for the subgroup $G\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$, where $\tilde{\chi}$ is obtained from a representation χ of $\operatorname{GSO}\left(W_{1}\right)$ extending trivially across $\mathrm{SO}\left(W_{1}^{\perp}\right)$, if and only if $\pi_{2}=\Theta\left(\pi_{1}\right)$, a representation of $\operatorname{GSp}\left(W_{1} \oplus W_{1}^{\vee}\right)$, has χ-Bessel model for the representation χ of $\operatorname{GSO}\left(W_{1}\right)$. This theorem has a certain symmetry in π_{1} and π_{2}. However, we note an important asymmetry: one concludes from the theorem that as soon as a representation π_{1} of $\operatorname{GSO}(V)$ has a nonzero $\tilde{\chi}$-period, $\Theta\left(\pi_{1}\right) \neq 0$; but it may happen that although a representation π_{2} of $\operatorname{GSp}\left(W_{1} \oplus W_{1}^{\vee}\right)$ has a χ-Bessel model, $\Theta\left(\pi_{2}\right)=0$.

Remark 6.9. The considerations of this section can be pictorially represented by the following diagram where $M_{\psi}=\mathrm{O}\left(W_{1}\right)$, and $V=W_{1}+W_{1}^{\perp}$, and a vertical line between representations denotes the appearance of the representation on the smaller group at the lower end of the line in the representation of the larger group at the upper end.

7. Applications

To be able to use Theorem 5, we need to understand the embedding of $\mathrm{O}\left(W_{1}\right)$ inside $\mathrm{O}(V)$ more concretely. For application to Theorem 2, we need it in the case when V is a four dimensional quadratic space, and W_{1} is a two dimensional subspace of it, and for applications to Theorem 4, we need it in the case when V is a 6 dimensional quadratic space, and W_{1} is a two dimensional subspace of it.
We begin with the case of a four dimensional quadratic space V of discriminant 1, so that it can be identified to the norm form of a four dimensional central simple algebra, say D, over k. Assume that the two dimensional non-degenerate subspace W_{1} of $V=D$ is the norm form on a two dimensional sub-algebra K of D. Write $D=K \oplus K \cdot j$ where j is an element of D^{\times}which normalizes K^{\times}with $j^{2}=a \in k^{\times}$. The group $D^{\times} \times D^{\times}$ operates on D by $\left(d_{1}, d_{2}\right) X=d_{1} X \bar{d}_{2}$, and gives an identification of $\left[D^{\times} \times D^{\times}\right] / \Delta k^{\times}$ with $\operatorname{GSO}(D)$. Observe that the map $\iota:(x, y) \rightarrow(x y, x \bar{y})$ from $K^{\times} \times K^{\times}$to itself gives an isomorphism of $\left(K^{\times} \times K^{\times}\right) / \Delta k^{\times}$onto the subgroup $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ of $\operatorname{GSO}\left(W_{1}\right) \times \operatorname{GSO}\left(W_{1}^{\perp}\right)$ consisting of pairs of elements of K^{\times}with the same similitude factors for the two components. Since $x[K \oplus K j] \bar{y}=x \bar{y} K \oplus x y K j$, the following diagram allows one to identify $\left(K^{\times} \times K^{\times}\right) / \Delta k^{\times}$inside $\left(D^{\times} \times D^{\times}\right) / \Delta k^{\times}$as the subgroup $G[S O(K) \times S O(K)]$ inside $G S O(D)=G S O(K \oplus K)$

Therefore a representation $\pi_{1} \boxtimes \pi_{2}$ of $D^{\times} \times D^{\times}$contains the restriction of the character (χ_{1}, χ_{2}) of $K^{\times} \times K^{\times}$to the subgroup $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ if and only if $\chi_{1} \bar{\chi}_{2}$ appears in π_{1} and $\chi_{1} \chi_{2}$ appears in π_{2}. Taking $\chi_{2}=1$, we get the following corollary to Theorem 5.

Corollary 7.1. Let $\pi_{1} \boxtimes \pi_{2}$ be an irreducible admissible representation of $\left[D^{\times} \times\right.$ $\left.D^{\times}\right] / k^{\times} \cong \operatorname{GSO}(V)$ where $V=D$ is a quaternion algebra over k equipped with its reduced norm as the quadratic form. Let ψ be a character of the unipotent radical of the Siegel parabolic of $\operatorname{GSp}(W)$ which corresponds to the non-degenerate quadratic space $\mathbb{N}: K \rightarrow k$ where K is a quadratic sub-algebra of D. Then for the representation $\Theta\left(\pi_{1} \boxtimes \pi_{2}\right)$ of $\operatorname{GSp}(W)$, the twisted Jacquet functor, $\Theta_{\psi}\left(\pi_{1} \boxtimes \pi_{2}\right)$ of $\operatorname{GSp}(W)$, contains the representation $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$if and only if χ appears in both π_{1} and π_{2}. (In particular, K is a field if D is a division algebra.)

Similarly, for the case of the rank one form $\mathrm{Sp}_{4}^{D}(k)$ of the symplectic group defined using the quaternion division algebra D, we get the following result.
Corollary 7.2. Let $\pi_{1} \boxtimes \pi_{2}$ be a representation of $\left[D^{\times} \times \mathrm{GL}_{2}(k)\right] / k^{\times} \cong \operatorname{GSO}_{4}^{D}(k)$ where D is a quaternion division algebra over k. Let ψ be a character of the unipotent radical of the Siegel parabolic of $\operatorname{GSp}_{4}^{D}(k)$ which corresponds to the non-degenerate quadratic space $\mathbb{N}: K \rightarrow k$ where K is a quadratic sub-algebra of D. Then for the representation $\Theta\left(\pi_{1} \boxtimes \pi_{2}\right)$ of $\operatorname{GSp}_{4}^{D}(k)$, the twisted Jacquet functor, $\Theta_{\psi}\left(\pi_{1} \boxtimes \pi_{2}\right)$ of $\mathrm{GSp}_{4}^{D}(k)$, contains the representation $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$if and only if χ appears in both π_{1} and π_{2}.

We next consider Bessel model of representations of $\mathrm{GSp}_{4}(k)$ which are obtained as theta lift from $\operatorname{GSO}(V)$ where V is a quadratic space of dimension 4 with non-trivial discriminant, in which case we recall that

$$
\operatorname{GSO}(V) \cong\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta\left(E^{\times}\right),
$$

for E a quadratic extension of k.
Let K and L be two distinct quadratic extensions of k, and let E be the third quadratic extension of k contained in $K L$. Considering K and L together with their norm forms, we have two 2-dimensional quadratic spaces, and $K \oplus L$ is a four dimensional quadratic space. It can be seen that $\operatorname{GSO}(K \oplus L) \cong\left(\mathrm{GL}_{2}(E) \times k^{\times}\right) / \Delta E^{\times}$where $\Delta E^{\times} \cong E^{\times}$sits inside $\mathrm{GL}_{2}(E)$ as scalar matrices, and inside k^{\times}via the inverse of the norm mapping.

The group $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(L)]$ is the subgroup of $K^{\times} \times L^{\times}$consisting of pairs $\left(x_{1}, x_{2}\right) \in K^{\times} \times L^{\times}$with the same norm to k^{\times}.

The mapping from $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(L)]$ to $\left(\mathrm{GL}_{2}(E) \times k^{\times}\right) / \Delta E^{\times}$obtained as the composition,

$$
\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(L)] \rightarrow \mathrm{GSO}(K \oplus L) \cong\left(\mathrm{GL}_{2}(E) \times k^{\times}\right) / \Delta E^{\times}
$$

fits in the following diagram of maps where ϕ_{E} denotes the natural inclusion of $(K L)^{\times}$ into $\mathrm{GL}_{2}(E)$, and i, i_{K}, i_{L} are inclusions of k^{\times}in $k^{\times}, K^{\times}, L^{\times}$respectively, and \mathbb{N}_{K} and \mathbb{N}_{L} are norm mappings from $(K L)^{\times}$to K^{\times}and L^{\times}respectively:

As the arrow on the left can be checked to be an isomorphism, it follows from this diagram that to check that a character of $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(L)]$ appears in the restriction of a representation of $\operatorname{GSO}(K \oplus L)$, it is equivalent to check that its restriction to $\left[(K L)^{\times} \times k^{\times}\right] / \Delta E^{\times}$now thought of as a subgroup of $\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta\left(E^{\times}\right)$appears in the corresponding representation of $\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta\left(E^{\times}\right)$. Therefore we obtain the following theorem.

Theorem 6. Let π_{1} be an irreducible admissible representation of $\operatorname{GSp}_{4}(k)$ obtained from the theta lift of a representation π of $\mathrm{GO}_{4}(k)$ such that the normalized discriminant algebra associated to the four dimensional quadratic space is a quadratic field extension E of k. Assume that in the identification of $\mathrm{GSO}_{4}(k)$ with $\left(\mathrm{GL}_{2}(E) \times k^{\times}\right) /\left(\Delta E^{\times}\right)$, the restriction of $\pi\left(\right.$ from $\mathrm{GO}_{4}(k)$ to $\left.\mathrm{GSO}_{4}(k)\right)$ corresponds to the representation $\pi_{2} \boxtimes \mu$ of $\mathrm{GL}_{2}(E) \times k^{\times}$. Let ψ be a non-degenerate character of N, where N is the unipotent radical of the Siegel parabolic $P=M N$ stabilizing a maximal isotropic subspace W_{1} of the four dimensional symplectic space W, corresponding to a quadratic form q on W_{1} which defines a quadratic field extension $K \neq E$. (The case $K=E$ is easier to analyze but we do not do it here.) Then a character χ of K^{\times}such that $\left.\chi\right|_{k^{\times}}$is the central character of π_{1}, appears in $\pi_{1, \psi}$ if and only if the character $\chi \circ \mathbb{N}:(K E)^{\times} \xrightarrow{\mathbb{N}} K^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$of $(K E)^{\times}$appears in the restriction of π_{2} to $(K E)^{\times}$which by the theorem of Saito and Tunnell is the case if and only if

$$
\begin{aligned}
\omega_{K E / E}(-1) \omega_{\pi_{2}}(-1) & =\epsilon\left(\left.\pi_{2} \otimes \operatorname{ind}_{K E}^{E} \chi^{-1}\right|_{K E}\right) \\
& =\epsilon\left(\pi_{2} \otimes \operatorname{Res}_{E}\left[\operatorname{ind}_{K}^{k}\left(\chi^{-1}\right)\right]\right) \\
& =\epsilon\left(\operatorname{ind}_{E}^{k}\left(\pi_{2}\right) \otimes \operatorname{ind}_{K}^{k}\left(\chi^{-1}\right)\right) .
\end{aligned}
$$

Noting the generality that $\omega_{K E / E}=\omega_{K / k} \circ \mathbb{N}_{K E \rightarrow K}$, we have $\omega_{K E / E}(-1)=1$, and that $\omega_{\pi_{2}}(-1)=1$ as π_{2} is a representation of $\mathrm{GL}_{2}(E)$ which extends to a representation of $\left(\mathrm{GL}_{2}(E) \times k^{\times}\right) /\left(\Delta E^{\times}\right)$, its central character restricted to E^{1} is trivial, we get that

$$
\epsilon\left(\operatorname{ind}_{E}^{k}\left(\pi_{2}\right) \otimes \operatorname{ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1
$$

if and only if the character χ appears in the Bessel model of π as required by Theorem 2.

Remark 7.3. There is a form of this theorem for the rank 1 form $\operatorname{GSp}_{4}^{D}(k)$ of $\mathrm{GSp}_{4}(k)$ too in which one would be considering theta lifting from an orthogonal group in 4 variables defined using D and a skew-hermitian matrix in $\mathrm{GL}_{2}(D)$ whose discriminant in $k^{\times} / k^{\times 2}$ defines a quadratic extension E of k. In this case, the orthogonal similitude
group turns out to be $\left(D_{E}^{\times} \times k^{\times}\right) / E^{\times}$with D_{E} the unique quaternion division algebra over E. A similar analysis as done in the previous theorem confirms the relevant parts of Theorem 2 for such representations of $\operatorname{GSp}_{4}^{D}(k)$. We discuss symplectic and orthogonal groups arising out of hermitian and skew-hermitian forms over D, and the calculation of Bessel models in this context, in some detail in section 9.

8. A seesaw argument

In the previous sections we have used theta correspondence between $\operatorname{GSp}_{4}(k)$ and $\mathrm{GO}_{4}(k)$ to calculate Bessel models of certain representations of $\mathrm{GSp}_{4}(k)$. This method works well for all representations of $\mathrm{GSp}_{4}(k)$ which arise as theta lift from $\mathrm{GO}_{4}(k)$. Thus, it misses out on representations of $\mathrm{GSp}_{4}(k)$ which do not arise as theta lift from $\mathrm{GO}_{4}(k)$. Among the missed representations are those representations of $\mathrm{GSp}_{4}(k)$ with Langlands parameter of the form $\sigma_{\pi} \otimes \mathrm{St}_{2}$ for an irreducible representation σ_{π} of W_{k} which has a non-trivial self-twist (so the parameter σ_{π} takes values in $\mathrm{GO}_{2}(\mathbb{C})$). In this section, we will study Bessel model of the representations of $\mathrm{GSp}_{4}(k)$ whose Langlands parameter is of the form $\sigma_{\pi} \otimes \mathrm{St}_{2}$, by going over to $\mathrm{GSO}_{6}(k)$ (a group closely related to $\mathrm{GL}_{4}(k)$) via theta correspondence, where the representation obtained is what is called the generalized Steinberg representation. The question of χ-Bessel model on $\mathrm{GSp}_{4}(k)$ for a character χ of K^{\times}becomes one of linear period on $\mathrm{GL}_{4}(k)$ for the corresponding character χ of the subgroup $\mathrm{GL}_{2}(K)$ of $\mathrm{GL}_{4}(k)$. This question on $\mathrm{GL}_{4}(k)$ also seems intractable, but what allows us to handle this case is the fact that corresponding to the generalized Steinberg, there is the companion Speh module on $\mathrm{GL}_{4}(k)$, which arises by theta lifting from $\mathrm{GL}_{2}(k)$, and a seesaw argument can be provided for $\mathrm{GL}_{2}(K)$-periods of the Speh module, which then implies the desired result about $\mathrm{GL}_{2}(K)$-period of the generalized Steinberg on $\mathrm{GL}_{4}(k)$. In fact, there is an extra twist to the argument. We use the dual pair $\left(\mathrm{GL}_{2}(k), \mathrm{GO}_{6}(k)\right)$ to calculate $\mathrm{GL}_{2}(K)$-period for a representation of $\mathrm{GL}_{4}(k)$; but when we use the pair $\left(\mathrm{GSp}_{4}(k), \mathrm{GO}_{6}(k)\right)$, we do not use the representation of $\mathrm{GO}_{6}(k)$ encountered for the pair $\left(\mathrm{GL}_{2}(k), \mathrm{GO}_{6}(k)\right)$ but another one whose restriction to $\mathrm{GL}_{4}(k) \subset\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] / \Delta\left(k^{\times}\right)=\mathrm{GSO}_{6}(k)$ is the same.

The section uses many details about theta correspondence which we borrow either from [G-T1], or from [Ro1], or directly from conversations with W-T Gan.

We begin by noting the following lemma about theta lifting between $\mathrm{SO}(4)$ and GL(2), cf. [Ro1]. (Only the part of the lemma asserting that a certain theta lift from $\mathrm{SO}(4)$ to $\mathrm{GL}(2)$ is one dimensional is what is used in the sequel; however, we have preferred to state the more complete result.)

Lemma 8.1. For a character λ of k^{\times}, let

$$
\begin{aligned}
& \pi_{1}(\lambda)=\lambda(\mathbb{N} \circ \operatorname{det}) \boxtimes \lambda^{2}, \\
& \pi_{2}(\lambda)=\lambda(\mathbb{N} \circ \operatorname{det}) \boxtimes \omega_{K} \lambda^{2},
\end{aligned}
$$

be one dimensional representations of $\mathrm{GSO}(3,1) \cong\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta\left(K^{\times}\right)$which are invariant under the action of $\mathrm{GO}(3,1)$. For the representations, $\pi_{1}(\lambda), \pi_{2}(\lambda)$, exactly one extension to $\mathrm{GO}(3,1)$ participates in the theta correspondence with $\mathrm{GL}_{2}(k)^{+}$, the
subgroup of $\mathrm{GL}_{2}(k)$ with determinant in $\mathbb{N} K^{\times}$. One has,

$$
\begin{aligned}
\Theta\left(\pi_{1}(\lambda)\right)=\theta\left(\pi_{1}(\lambda)\right) & =\operatorname{Ind}\left(\omega_{K}|\cdot|^{1 / 2} \lambda,|\cdot|^{-1 / 2} \lambda\right), \\
\Theta\left(\pi_{2}(\lambda)\right)=\theta\left(\pi_{2}(\lambda)\right) & =\left.\lambda \circ \operatorname{det}\right|_{\mathrm{GL}_{2}^{+}(k)},
\end{aligned}
$$

where $\operatorname{Ind}\left(\omega_{K}|\cdot|{ }^{1 / 2} \lambda,|\cdot|{ }^{-1 / 2} \lambda\right)$ denotes the restriction of the corresponding principal series representation of $\mathrm{GL}_{2}(k)$ to $\mathrm{GL}_{2}(k)^{+}$, which we note is irreducible.

We now prove the following theorem.
Theorem 7. Let π be a supercuspidal representation of $\mathrm{GL}_{2}(k)$, with central character ω_{π}, which has a non-trivial self-twist by a quadratic character ω_{K} associated to a quadratic extension K of k. Let $\mathrm{Sp}_{2}(\pi)$ be the associated Speh module of $\mathrm{GL}_{4}(k)$. Let $\chi: K^{\times} \rightarrow \mathbb{C}^{\times}$be a character such that $\left.\chi\right|_{k^{\times}}=\omega_{\pi} \cdot \omega_{K}$. By abuse of notation, let χ also denote the character $\chi \circ \operatorname{det}$ of $\mathrm{GL}_{2}(K)$ given by $\mathrm{GL}_{2}(K) \xrightarrow{\text { det }} K^{\times} \xrightarrow{\chi} \mathbb{C}^{\times}$. Then,
$\operatorname{Hom}_{\mathrm{GL}_{2}(K)}\left[\operatorname{Sp}_{2}(\pi), \chi\right] \neq 0$, if and only if $\pi \cong \pi_{\chi}$,
where π_{χ} is the monomial representation of $\mathrm{GL}_{2}(k)$ arising from the character χ of K^{\times}.

Proof. For K^{-}, the vector space K on which the quadratic form (the normform) is scaled by -1 , let $V=K \oplus H \oplus K^{-}$, with H the hyperbolic plane, denote the 6 dimensional split quadratic space. The embedding $G\left[\mathrm{SO}(K+H) \times \mathrm{SO}\left(K^{-}\right)\right] \hookrightarrow \mathrm{GSO}(V)$ will be abbreviated to $G\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right] \hookrightarrow \mathrm{GSO}_{6}(k)$ in what follows.

The proof of the theorem will be based on the following seesaw diagram:

where G^{+}denotes various similitude groups with similitude factor in $\mathbb{N} K^{\times}$.
In this diagram, we take the representation π of $\mathrm{GL}_{2}(k)$ (restricted to $\mathrm{GL}_{2}^{+}(k)$) on the lower left corner, whose theta lift $\Theta(\pi)$ to $\mathrm{GSO}_{6}^{+}(k)$ is, by Theorem 8.11 of [G-T1], the restriction to $\mathrm{GSO}_{6}^{+}(k)$, of the representation $\Theta(\pi)=\theta(\pi)=\mathrm{Sp}_{2}(\pi) \boxtimes \omega_{\pi}$ of $\mathrm{GSO}_{6}(k)$ under the identification

$$
\operatorname{GSO}_{6}(k)=\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\} .
$$

Since $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]$ is a subgroup of $\mathrm{GSO}_{4}(k) \times \mathrm{GSO}_{2}(k)$, one can construct a representation of $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]$ by restricting one of $\mathrm{GSO}_{4}(k) \times \mathrm{GSO}_{2}(k)$ which we take to be ($\chi(\mathbb{N} \circ$ det $\left.), \omega_{K} \chi^{2}\right) \times \chi^{-1}$ under the identification $\mathrm{GSO}_{4}(k) \cong$ $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta\left(K^{\times}\right)$; this is the representation on the right hand lower corner of the diagram.

The map,

$$
\begin{aligned}
\frac{\left[\mathrm{GL}_{2}(K) \times k^{\times}\right]}{\Delta\left(k^{\times}\right)} & \longrightarrow \frac{\left[\mathrm{GL}_{2}(K) \times k^{\times}\right]}{\Delta\left(K^{\times}\right)} \times K^{\times}=\mathrm{GSO}_{4}(k) \times \mathrm{GSO}_{2}(k) \\
(X, a) & \longrightarrow((X, a), a \operatorname{det} X)
\end{aligned}
$$

is an isomorphism onto the subgroup $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]$ of $\mathrm{GSO}_{4}(k) \times \mathrm{GSO}_{2}(k)$. Using this isomorphism

$$
\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\} \cong \mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]
$$

the character $\left(\chi(\mathbb{N}\right.$ odet $\left.), \omega_{K} \chi^{2}\right) \times \chi^{-1}$ of $\mathrm{GSO}_{4}(k) \times \mathrm{GSO}_{2}(k)$ (restricted to $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times\right.$ $\left.\mathrm{SO}_{2}(k)\right]$) becomes the character ($\chi^{\sigma} \circ$ det, $\left.\chi\right|_{k^{\times}} \cdot \omega_{K}$) of $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in\right.$ $\left.k^{\times}\right\}$, where $\chi^{\sigma}=\chi(\mathbb{N} x) \chi^{-1}(x)$.

The embedding of $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]$ in $\mathrm{GSO}_{6}(k)$ can be identified to the natural embedding

$$
\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\} \hookrightarrow\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\}
$$

For the character $\left(\chi(\mathbb{N} \circ \operatorname{det}), \omega_{K} \chi^{2}\right) \times \chi^{-1}$ of $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times \mathrm{SO}_{2}(k)\right]$ to appear in the representation $\Theta(\pi)=\operatorname{Sp}_{2}(\pi) \boxtimes \omega_{\pi}$ of $\mathrm{GSO}_{6}(k)$, it is necessary that $\omega_{\pi}=\left.\chi\right|_{k \times \omega_{K}}$, which we assume is the case.

Let the theta lift of the character χ^{-1} of $\mathrm{GSO}_{2}(k)=K^{\times}$to $\mathrm{GL}_{2}^{+}(k)$ be $\left(\pi_{\chi}^{\vee}\right)^{+}$, and let $\pi_{\chi}^{\vee}=\operatorname{ind}_{\mathrm{GL}_{2}^{+}(k)}^{\mathrm{GL}_{2}(k)}\left(\pi_{\chi}^{\vee}\right)^{+}$, an irreducible representation of $\mathrm{GL}_{2}(k)$.

By Lemma 8.1, the theta lift of the character $\left(\chi(\mathbb{N} \circ \operatorname{det}), \omega_{K} \chi^{2}\right) \times \chi^{-1}$ of $\mathrm{G}\left[\mathrm{SO}_{4}(k) \times\right.$ $\left.\mathrm{SO}_{2}(k)\right]$ to $\mathrm{G}\left[\mathrm{SL}_{2}(k) \times \mathrm{SL}_{2}(k)\right]$ is the restriction of the representation $\left.\chi\right|_{k \times} \circ \operatorname{det} \boxtimes\left(\pi_{\chi}^{\vee}\right)^{+}$ of $\mathrm{GL}_{2}^{+}(k) \times \mathrm{GL}_{2}^{+}(k)$. The restriction of the representation $\left.\chi\right|_{k^{\times}} \circ \operatorname{det} \boxtimes\left(\pi_{\chi}^{\vee}\right)^{+}$of $\mathrm{GL}_{2}^{+}(k) \times \mathrm{GL}_{2}^{+}(k)$ to the diagonal $\mathrm{GL}_{2}^{+}(k)$ is a component of π_{χ} that we denote by π_{χ}^{+}. The proof of the theorem now follows by the seesaw identity after using the following form of the Frobenius reciprocity:

$$
\operatorname{Hom}_{\mathrm{GL}_{2}(k)}\left[\pi_{\chi}, \pi\right]=\operatorname{Hom}_{\mathrm{GL}_{2}^{+}(k)}\left[\pi_{\chi}^{+}, \pi\right] .
$$

We will use the previous theorem to deduce a corollary about Bessel models. But before we can do that, we must note the following result about theta correspondence between $\mathrm{GSp}_{4}(k)$ and $\mathrm{GSO}_{6}(k)$ which is due to [G-T1], Theorem 8.4. (Only the part of the lemma asserting that a certain theta lift from $\mathrm{SO}(6)$ to $\mathrm{GSp}(4)$ is the non-generic component of a reducible principal series of $\mathrm{GSp}(4)$ is what is used in the sequel; however, we have preferred to state the more complete result.)
Lemma 8.2. Let π be a supercuspidal representation of $\mathrm{GL}_{2}(k)$ which has a nontrivial self-twist by a quadratic character ω_{K}. Let $\operatorname{Sp}_{2}(\pi)$ be the associated Speh module, and $\mathrm{St}_{2}(\pi)$ the generalized Steinberg representation of $\mathrm{GL}_{4}(k)$. For the representations $\mathrm{Sp}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}$ and $\mathrm{St}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}$ of $\mathrm{GSO}(6)=\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] / \Delta\left(k^{\times}\right)$, we have $\Theta\left(\operatorname{Sp}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}\right)=\theta\left(\operatorname{Sp}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}\right)$, the non-generic component of the reducible principal series representation of $\mathrm{GSp}_{4}(k)$ induced from the Klingen parabolic $Q=M N$ with $M=k^{\times} \times \mathrm{GL}_{2}(k)$, the representation $\omega_{K}|\cdot| \boxtimes|\cdot|^{-1 / 2} \pi$, and $\Theta\left(\operatorname{St}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}\right)=\theta\left(\operatorname{St}_{2}(\pi) \boxtimes \omega_{K} \omega_{\pi}\right)$, the generic component of the same principal
series. Further, $\Theta\left(\operatorname{Sp}_{2}(\pi) \boxtimes \omega_{\pi}\right)=\theta\left(\operatorname{Sp}_{2}(\pi) \boxtimes \omega_{\pi}\right)$, the irreducible principal series representation $|\cdot| \boxtimes|\cdot|^{-1 / 2} \pi$.
The next corollary is a consequence of Theorem 7, combined with Lemma 8.2, and Theorem 5 according to which the existence of a χ-invariant linear form for the subgroup $\mathrm{GL}_{2}(K)$ of $\mathrm{GL}_{4}(k)$ is the same as the existence of χ-Bessel model for the representation of $\mathrm{GSp}_{4}(k)$ which is the theta lift of the representation $\pi \boxtimes \mu$ of $\mathrm{GSO}_{6}(k)=\left[\mathrm{GL}_{4}(k) \times\right.$ $\left.k^{\times}\right] / \Delta\left(k^{\times}\right)$in which $\mu=\left.\chi\right|_{k^{\times}}$as we discuss in greater detail in section 11 .
Corollary 8.3. Let π be an irreducible supercuspidal representation of $\mathrm{GL}_{2}(k)$ with central character ω_{π} which has a nontrivial self-twist by a quadratic character ω_{K} associated to a quadratic extension K of k. Let $\mathrm{Sp}_{2}(\pi)$ be the irreducible non-generic component of the principal series representation of $\mathrm{GSp}_{4}(k)$ induced from the Klingen parabolic with Levi $k^{\times} \times \mathrm{GL}_{2}(k)$ the representation $\omega_{K} \cdot|\cdot| \boxtimes|\cdot|^{-1 / 2} \pi$. The irreducible representation $\mathrm{Sp}_{2}(\pi)$ of $\mathrm{GSp}_{4}(k)$ with Langlands parameter $\sigma_{\pi} \otimes\left(|\cdot|^{1 / 2} \oplus\right.$ $\left.|\cdot|^{-1 / 2}\right)$ has Bessel models for exactly those characters χ of K^{\times}for which $\pi_{\chi} \cong \pi$.
Since we know that the principal series representation of $\mathrm{GSp}_{4}(k)$ induced from a representation $\lambda \boxtimes \pi$ of $k^{\times} \times \mathrm{GL}_{2}(k)$, a Levi subgroup of the Klingen parabolic, has χ-Bessel model for every character χ of K^{\times}, which is unique, we know that when such a principal series has two irreducible sub-quotients, the two sub-quotients have Bessel models for complementary characters. We thus obtain the following corollary.
Corollary 8.4. The generic representation of $\mathrm{GSp}_{4}(k)$ with parameter $\sigma_{\pi} \otimes \mathrm{St}_{2}$ has a Bessel model for a character χ of K^{\times}if and only if

$$
\sigma_{\pi} \neq \operatorname{Ind}_{K}^{k} \chi .
$$

This is exactly the conclusion required by Theorem 2 for representations of $\mathrm{GSp}_{4}(k)$ with Langlands parameter $\sigma_{\pi} \otimes \mathrm{St}_{2}$ as discussed in 4.
Remark 8.5. Representations of $\mathrm{GSp}_{4}(k)$ with Langlands parameter $\sigma_{\pi} \otimes \mathrm{St}_{2}$ have Bessel models for all characters of K^{\times}except the two characters χ for which $\sigma_{\pi} \cong$ $\operatorname{Ind}_{K}^{k} \chi$. Theorem 2 in this case requires that these two missing characters appear in the Bessel model of the corresponding representation of the rank 1 form $\operatorname{GSp}_{4}^{D}(k)$ of $\mathrm{GSp}_{4}(k)$. Indeed, considerations of this section will prove this too for which instead of the 6 dimensional split quadratic space over k, we will use the unique anisotropic skewhermitian space of dimension 3 over the quaternion division algebra (see next section for a description of this), and the representation of the isometry group coming from theta correspondence with the isometry group of the hermitian space of dimension 1 (the similitude group being D^{\times}). We leave the details to the interested reader.

9. Dual pairs involving division algebras

In this section we briefly recall the formalism of dual reductive pairs which involve quaternion division algebra; the final goal of this section will be to state the analogue of theorem 5 in this context.

Let D be a quaternion division algebra with its canonical involution $x \rightarrow \bar{x}$. Using this involution, right D-modules can be identified to left D-modules.

Let V be a right D-module, and $H: V \times V \rightarrow D$ a ϵ-hermitian form on V which is D-linear in the second variable, so that
(1) $H\left(v_{1} d_{1}, v_{2} d_{2}\right)=\bar{d}_{1} H\left(v_{1}, v_{2}\right) d_{2}$.
(2) $\overline{H\left(v_{1}, v_{2}\right)}=\epsilon H\left(v_{2}, v_{1}\right)$. (This forces ϵ to be ± 1.)

If $\epsilon=1$ (resp., $\epsilon=-1$), an ϵ-hermitian form is called hermitian (resp., skewhermitian).

Let V_{1} be a right D-module together with a ϵ_{1}-hermitian form linear in the second variable, and V_{2} a left D-module together with a ϵ_{2}-hermitian form H_{2} which is linear in the first variable. Then $V_{1} \otimes_{D} V_{2}$ is a vector space over k together with a natural bilinear form $H=H_{1} \otimes H_{2}$ given by

$$
H\left(v_{1} \otimes v_{2}, w_{1} \otimes w_{2}\right)=\operatorname{tr}_{D / k}\left(H_{1}\left(v_{1}, w_{1}\right) \overline{H_{2}\left(v_{2}, w_{2}\right)}\right)
$$

If $\epsilon_{1} \epsilon_{2}=-1$, as will always be the case in what follows, H will be a symplectic form on $V_{1} \otimes_{D} V_{2}$. In this case, the isometry group G_{1} of $\left(V_{1}, H_{1}\right)$ to be denoted by $\mathrm{U}\left(V_{1}\right)$, and the isometry group G_{2} of $\left(V_{2}, H_{2}\right)$ to be denoted by $\mathrm{U}\left(V_{2}\right)$, form a dual reductive pair inside $\operatorname{Sp}\left(V_{1} \otimes_{D} V_{2}\right)$. We let $\mathrm{GU}\left(V_{1}\right)$ and $\mathrm{GU}\left(V_{2}\right)$ denote the corresponding similitude groups.

It is known that to get a form of an orthogonal group, we need to take a skewhermitian form, and that to get a form of the symplectic group, we need to take a hermitian form. Over a non-archimedean local field k, a non-degenerate hermitian form is uniquely determined by its dimension, whereas a non-degenerate skew-hermitian form is uniquely determined by its dimension and its discriminant which is an element of $k^{\times} / k^{\times 2}$. (It is curious that over \mathbb{R}, these assertions are interchanged: a skew-hermitian form is unique, whereas a hermitian form is determined by its signature.)

As an example of interest for our work, for $a \in D^{\times}$, let $D(a)$ denote the one dimensional right D-module which is D itself together with the form $H\left(d_{1}, d_{2}\right)=\bar{d}_{1} a d_{2}$. This form is skew-hermitian if $a+\bar{a}=0$, and hermitian if $a=\bar{a}$. Assuming a is such that $a+\bar{a}=0$, it can be seen that $\mathrm{U}(D(a))=K^{1}$, and $\operatorname{GU}(D(a))=K^{\times}$where K is the quadratic extension of k generated by a; we note in particular that $\mathrm{U}(D(a))$ is a form of $\mathrm{SO}(2)$, and not of $\mathrm{O}(2)$.

The following two examples play a role in this paper. (See for example the papers of T. Tsukamoto as well as that of I. Satake in J. Math. Soc. Japan, vol. 13, 1961, pages 387-400, and pages 401-409 for proofs.)

Example 9.1. The orthogonal group defined by the skew-hermitian form

$$
\left(\begin{array}{cc}
\sqrt{a} & 0 \\
0 & \sqrt{b}
\end{array}\right)
$$

for $a, b \in k^{\times} \backslash k^{\times 2}$ defines an orthogonal group in four variables which is,
(1) $\operatorname{GSO}_{4}^{D}(k) \cong\left[D^{\times} \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$if $a b \in k^{\times 2}$; here $\Delta k^{\times}=k^{\times}$is embedded in $D^{\times} \times \mathrm{GL}_{2}(k)$ as $\left(a, a^{-1}\right)$.
(2) $\operatorname{GSO}_{4}^{D}(k) \cong\left[D_{E}^{\times} \times k^{\times}\right] / \Delta E^{\times}$if $a b \notin k^{\times 2}$ and E is the quadratic extension of k given by $E=k(\sqrt{a b})$, and D_{E} is the unique quaternion division algebra over E. Here the mapping from E^{\times}to k^{\times}is the inverse of the norm mapping.

Example 9.2. The skew-hermitian form

$$
\left(\begin{array}{ccc}
\sqrt{a} & 0 & 0 \\
0 & \sqrt{b} & 0 \\
0 & 0 & \sqrt{a b}
\end{array}\right)
$$

for $a, b, a b \in k^{\times} \backslash k^{\times 2}$, is, up to isomorphism, the unique an-isotropic skew-hermitian form in 3 variables over D. (Notice that elements such as \sqrt{a} in D^{\times}are well defined only up to conjugacy; but the skew-hermitian form above is, up to isomorphism, independent of these choices in $\sqrt{a}, \sqrt{b}, \sqrt{a b}$.) The corresponding orthogonal group $\mathrm{GSO}_{6}^{D}(k)$ is isomorphic to $\left[\mathcal{D}^{\times} \times k^{\times}\right] / \Delta k^{\times}$where \mathcal{D} is the unique division algebra over k with invariant $1 / 4$, and where $\Delta k^{\times}=k^{\times}$is naturally included in \mathcal{D}^{\times}, and the map from k^{\times}to k^{\times}is $x \rightarrow x^{-2}$. (If \mathcal{D}^{\prime} is the division algebra with invariant $3 / 4$, then $\mathcal{D}^{\prime \times} \cong \mathcal{D}^{\times}$.)

Assume that H_{1} is a skew-hermitian form on V_{1}, and H_{2} is a hermitian form on V_{2}. Let $V_{2}=W_{2} \oplus W_{2}^{\vee}$ be a complete polarization of V_{2}. The Weil representation of $\mathrm{Sp}\left(V_{1} \otimes_{D} V_{2}\right)$ is realized on the Schwartz space of functions on $V_{1} \otimes_{D} W_{2}^{\vee}$ on which $\mathrm{U}\left(V_{1}\right)$ acts in the natural way. The polarization $V_{2}=W_{2} \oplus W_{2}^{\vee}$ gives rise to the parabolic P in $\mathrm{U}\left(V_{2}\right)$ stabilizing the subspace W_{2} with $\mathrm{GL}\left(W_{2}\right)$ as the Levi subgroup, and the additive group of skew-hermitian forms on W_{2}^{\vee} as N. Thus the character group of N can be identified to the additive group of skew-hermitian forms on W_{2}.
With these preliminaries, we state the analogue of Theorem 5 in this context; application of this result to theta lifting between $\operatorname{GSp}_{4}^{D}(k)$, and $\operatorname{GSO}_{4}^{D}(k)$ will not be explicitly stated.

Theorem 8. Let π_{1} be an irreducible admissible representation of $\mathrm{GU}\left(V_{1}\right)$, and π_{2} that of $\operatorname{GU}\left(V_{2}\right)$. Assume that $\pi_{2}=\Theta\left(\pi_{1}\right)$ is the theta lift of π_{1} to $\operatorname{GU}\left(V_{2}\right)$. Let ψ be a non-degenerate character of the unipotent radical N of the Siegel parabolic $P=$ $M N$ of $\mathrm{GU}\left(V_{2}\right)$ stabilizing a maximal isotropic subspace W_{2} of V_{2}. Assume that ψ corresponds to a skew-hermitian form H on W_{2}. Then an irreducible representation χ of $\mathrm{GU}\left(W_{2}\right)$ appears in $\pi_{2, \psi}$ as a quotient if and only if
(1) $\left(H, W_{2}\right)$ can be embedded in the skew hermitian space V_{1}; let W_{2}^{\perp} denote the orthogonal complement of W_{2} sitting inside V_{1} through this embedding.
(2) The representation χ^{\vee} of $\mathrm{G}\left[\mathrm{U}\left(W_{2}\right) \times \mathrm{U}\left(W_{2}^{\perp}\right)\right]$ appears as a quotient in the representation π_{1} of $\mathrm{GU}\left(V_{1}\right)$ restricted to $\mathrm{G}\left[\mathrm{U}\left(W_{2}\right) \times \mathrm{U}\left(W_{2}^{\perp}\right)\right]$, where χ^{\vee} is obtained by pulling back the contragredient of χ under the natural map $\mathrm{G}\left[\mathrm{U}\left(W_{2}\right) \times \mathrm{U}\left(W_{2}^{\perp}\right)\right] \rightarrow \mathrm{GU}\left(W_{2}\right)$.

10. Concluding the proof of Theorem 2

We begin by observing that from what is called the Standard modules conjecture, which is a theorem for $\mathrm{GSp}_{4}(k)$, a generic representation cannot be a proper Langlands quotient, i.e., either it is already tempered (up to a twist), or it is a full induced representation.

For the full induced representation, analysis of principal series representations gives complete information about Bessel models, and if the principal series is irreducible, proves Theorem 2 in these cases.

If the representation is tempered but not discrete series, then the sum of the representations in its L-packet is obtained by inducing a unitary discrete series representation of a parabolic subgroup of $\mathrm{GSp}_{4}(k)$. This unitary principal series is irreducible except if the parabolic is the Klingen parabolic, and the representation is $1 \rtimes \pi$ for a discrete series representation π of $\mathrm{GL}_{2}(k)$. This principal series has two irreducible components which arise as theta lifts from compact orthogonal group $\mathrm{O}(4)$, and split orthogonal group $\mathrm{O}(2,2)$, for which methods of theta correspondence enable one to calculate Bessel models.
All L-packets of size >1 for $\operatorname{GSp}_{4}(k)$, or in odd residue characteristic, all L-packets containing a supercuspidal representation arise as theta lift from an orthogonal group of a quadratic space of dimension 4, for which methods of theta correspondence give complete information about Bessel models; we indicate the calculation of necessary epsilon factors below.

It remains to deal with discrete series representations of $\mathrm{GSp}_{4}(k)$ which are not supercuspidal, and which is an L-packet by itself. There are two class of such representations:
(1) Steinberg, up to a twist.
(2) Representations of $\mathrm{GSp}_{4}(k)$ with parameter of the form $\sigma \otimes S t_{2}$ where σ is a 2-dimensional irreducible monomial representation of W_{k}, and $S t_{2}$ is the 2dimensional irreducible representation of $\mathrm{SL}_{2}(\mathbb{C})$.
Both these class of representations have been individually handled in sections 5, and 7, completing the proof of Theorem 2 in these cases.

Following Gan and Takeda in [G-T2], we now recall the Langlands parameter of representations of $\mathrm{GSp}_{4}(k)$ arising from theta correspondence with representations of $\mathrm{GO}_{4}(k)$, and then do the necessary epsilon factor calculation to verify Theorem 2 from results proved in the previous sections for such representations.
As recalled in the introduction, for a four dimensional quadratic space $V, \operatorname{GSO}(V)$ has the structure of one of the following groups:
(1) $\operatorname{GSO}\left(V^{s}\right) \cong\left[\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)\right] / \Delta k^{\times}$.
(2) $\operatorname{GSO}\left(V^{a}\right) \cong\left[D^{\times} \times D^{\times}\right] / \Delta k^{\times}$.
(3) $\operatorname{GSO}\left(V^{d}\right) \cong\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta E^{\times}$,
where $\Delta k^{\times}=k^{\times}$sits as $\left(t, t^{-1}\right)$, and $\Delta E^{\times}=E^{\times}$sits inside $\mathrm{GL}_{2}(E) \times k^{\times}$via its natural embedding in $\mathrm{GL}_{2}(E)$, and in k^{\times}by the inverse of the norm mapping.

In cases (1) and (2), an irreducible representation of $\operatorname{GSO}(V)$ is a tensor product $\tau_{1} \boxtimes \tau_{2}$ of two irreducible representations τ_{1} and τ_{2} which are both irreducible representations of $\mathrm{GL}_{2}(k)$ in case (1), and of D^{\times}in case (2), and have the same central characters, and with Langlands parameters σ_{1} and σ_{2}. The Langlands parameter of the representation of $\mathrm{GSp}(4)$ arising from theta correspondence from an irreducible representation of $\mathrm{GO}(V)$ which restricted to $\operatorname{GSO}(V)$ is $\tau_{1} \boxtimes \tau_{2}$ in cases (1) and (2) is,

$$
\sigma_{1} \oplus \sigma_{2}
$$

In case (3), an irreducible representation of $\operatorname{GSO}\left(V^{d}\right)$ corresponds to an irreducible representation τ of $\mathrm{GL}_{2}(E)$ whose central character is invariant under $\operatorname{Gal}(E / k)$, together with a character χ of k^{\times}such that the central character of τ can be considered to be the character of E^{\times}obtained from the character χ of k^{\times}through the norm mapping. (There are two possibilities for χ which are twists of each other by $\omega_{E / k}$.) In
this case, the Langlands parameter of the representation $\mathrm{GSp}_{4}(k)$ arising from theta correspondence from this representation of $\mathrm{GO}\left(V^{d}\right)$ is,

$$
\operatorname{Ind}_{E}^{k} \sigma
$$

where σ is the L-parameter of the representation τ of $\mathrm{GL}_{2}(E)$.
(This representation with values in $\mathrm{GL}_{4}(\mathbb{C})$ can be considered as a representation with values in $\mathrm{GSp}_{4}(\mathbb{C})$ in two non-conjugate ways depending on the two choices for χ; the corresponding representations of $\mathrm{GSp}_{4}(k)$ are obtained from distinct representations of $\operatorname{GSO}\left(V^{d}\right) \cong\left[\mathrm{GL}_{2}(E) \times k^{\times}\right] / \Delta E^{\times}$, which are same when restricted to $\mathrm{GL}_{2}(E)$.)

The epsilon factor $\epsilon\left(\sigma \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)$ in cases (1) and (2) is simply the product of the epsilon factors, $\epsilon\left(\sigma_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)$ and $\epsilon\left(\sigma_{2} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)$ which by the theorem of Saito and Tunnell can be easily interpreted in terms of the existence of the character χ of K^{\times}in the representations τ_{1}, τ_{2}, making Theorem 2 a consequence of Corollaries 7.1 and 7.2. Similarly in case (3), Theorem 2 is equivalent to Theorem 6.

11. Theorem 4

In this section we use Theorem 5 to convert results about Bessel models for $\mathrm{GSp}_{4}(k)$ to results about χ-invariant linear forms on representations of $\mathrm{GL}_{4}(k)$ restricted to $\mathrm{GL}_{2}(K)$, where χ is a character of K^{\times}thought of as a character of $\mathrm{GL}_{2}(K)$ through the determinant map. This is achieved by looking at Theorem 5 for the dual reductive pair $\left(\mathrm{Sp}_{4}(k), \mathrm{O}_{6}(k)\right)$ where the group $\mathrm{O}_{6}(k)$ comes from a six dimensional quadratic space over k with discriminant of the split form in dimension 6 . Thus $\mathrm{O}_{6}(k)$ is either split, or is a rank 1 form of it, and $\mathrm{GSO}_{6}(k)$ will be one of the following two groups:
(1) $\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\}$,
(2) $\left[\mathrm{GL}_{2}(D) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\}$.

It follows from these isomorphisms that an irreducible representation of $\mathrm{GSO}_{6}(k)$ corresponds to a pair (π, χ) of a representation π of $\mathrm{GL}_{4}(k)$ (or $\mathrm{GL}_{2}(D)$), and a character χ of k^{\times}such that the central character ω_{π} of π is χ^{2}.
We will also have to use the duality correspondence between $\operatorname{GSp}_{4}^{D}(k)$ and $\mathrm{GSO}_{6}^{D}(k)$ $=\mathrm{GU}_{3}^{D}(k)$ defined using a skew-hermitian form over D of discriminant -1 , giving rise to
(3) $\mathrm{GU}_{3}^{D}(k) \cong\left[\mathcal{D}^{\times} \times k^{\times}\right] / \Delta k^{\times}$where the mapping from $\Delta k^{\times}=k^{\times}$to k^{\times}is $x \rightarrow x^{-2}$, and \mathcal{D} is the unique division algebra over k of invariant $1 / 4$.

The following theorem of Gan and Takeda [G-T2] lies at the basis of our proof of Theorem 4; the last part of the theorem is due to Gan and Tantono [G-T3].

Theorem 9. (1) The theta correspondence between $\mathrm{GSp}_{4}(k)$ and $\mathrm{GSO}_{6}(k)$ gives a correspondence between irreducible representations of $\mathrm{GSp}_{4}(k)$ and $\mathrm{GL}_{4}(k)$ and also between irreducible representations of $\mathrm{GSp}_{4}(k)$ and $\mathrm{GL}_{2}(D)$ which on Langlands parameters corresponds to the natural inclusion $\mathrm{GSp}_{4}(\mathbb{C}) \hookrightarrow$ $\mathrm{GL}_{4}(\mathbb{C})$.
(2) A representation π, resp. π^{\prime}, of $\mathrm{GL}_{4}(k)$, resp. $\mathrm{GL}_{2}(D)$ can be lifted to $\mathrm{GSp}_{4}(k)$ if and only if the Langlands parameter of π, resp π^{\prime}, lies inside $\mathrm{GSp}_{4}(\mathbb{C})$.
(3) If an L-packet of $\mathrm{GSp}_{4}(k)$ has size 2, then exactly one of its members lifts to $\mathrm{GL}_{4}(k)$, and the other to $\mathrm{GL}_{2}(D)$.
(4) If an L-packet $\{\pi\}$ of representations of $\mathrm{GSp}_{4}(k)$ has size one, then it lifts to a representation, say π^{\prime}, of $\mathrm{GL}_{4}(k)$; if the L-parameter of π^{\prime} is relevant to $\mathrm{GL}_{2}(D)$, then π also lifts to $\mathrm{GL}_{2}(D)$.
(5) Let \mathcal{D} be a division algebra of dimension 16 over k such that for the unitary group $\mathrm{U}_{3}^{D}(k)$ defined by a skew-hermitian form in 3 variables over D of discriminant $-1, \mathrm{GU}_{3}^{D}(k) \cong\left[\mathcal{D}^{\times} \times k^{\times}\right] / \Delta k^{\times}$where the mapping from $\Delta k^{\times}=k^{\times}$ to k^{\times}is $x \rightarrow x^{-2}$. Then the theta correspondence between $\operatorname{GSp}_{4}^{D}(k)$ and $\mathrm{GU}_{3}^{D}(k)$ gives an injection of representations of $\left[\mathcal{D}^{\times} \times k^{\times}\right] / \Delta k^{\times}$with symplectic similitude parameter into irreducible representations of $\mathrm{GSp}_{4}^{D}(k)$.

In this section, we will be looking at the embedding of the quadratic space underlying K (with its norm form as the quadratic form) in a six dimensional quadratic space, say $K \hookrightarrow K \oplus a K \oplus H$, a direct sum of quadratic spaces where $a K$ is the same underlying vector space as K, but the quadratic form is scaled by a, and H is the two dimensional hyperbolic plane. The embedding of quadratic spaces gives an embedding of $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(a K \oplus H)]$ inside $\mathrm{GSO}(K \oplus a K \oplus H)$. We remind ourselves that

$$
\operatorname{GSO}(a K \oplus H) \cong\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / K^{\times},
$$

where $\Delta K^{\times}=K^{\times}$sits inside $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right]$as $\left(x, \mathbb{N} x^{-1}\right)$. Therefore there is a natural embedding of $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(a K \oplus H)]$ inside $K^{\times} \times\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta K^{\times}$. We claim that under this embedding, the image of $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(a K \oplus H)]$ inside $K^{\times} \times$ $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta K^{\times}$can be identified to $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta k^{\times}$where k^{\times}sits naturally as the scalar matrices in $\mathrm{GL}_{2}(K)$, and in k^{\times}through $t \rightarrow t^{-2}$. To prove this claim, note that there is a natural map from $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta k^{\times}$to $\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta K^{\times}$, and therefore to $K^{\times} \times\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta K^{\times}$in which (X, t) goes to $t \operatorname{det} X$ in K^{\times}. It is easy to check that this map is injective, and its image is exactly $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(a K \oplus H)]$.

Using the identifications indicated above, the embedding of the group $\mathrm{G}[\mathrm{SO}(K) \times$ $\mathrm{SO}(a K \oplus H)]$ inside $\mathrm{GSO}(K \oplus a K \oplus H)$, becomes the standard embedding of $\left[\mathrm{GL}_{2}(K) \times\right.$ $\left.k^{\times}\right] / \Delta k^{\times}$inside $\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right): z \in k^{\times}\right\}$, or inside $\left[\mathrm{GL}_{2}(D) \times k^{\times}\right] /\left\{\left(z, z^{-2}\right):\right.$ $\left.z \in k^{\times}\right\}$as the case may be, and further the natural map from $\mathrm{G}[\mathrm{SO}(K) \times \mathrm{SO}(a K \oplus$ $H)]=\left[\mathrm{GL}_{2}(K) \times k^{\times}\right] / \Delta k^{\times}$to $K^{\times}=\mathrm{GSO}(K)$ appearing in Theorem 5 is nothing but (X, t) going to $t \operatorname{det} X$ in K^{\times}, and thus Theorem 5 detects the appearance of one dimensional representations of $\mathrm{GL}_{2}(K)$ as a quotient of a representation of $\mathrm{GL}_{4}(k)$ which arise from theta lifting from $\mathrm{GSp}_{4}(k)$.

From Theorem 9 (due to Gan and Takeda), it follows that a representation of $\mathrm{GL}_{4}(k)$ arises as a theta lift from $\mathrm{GSp}_{4}(k)$ if and only if its Langlands parameter belongs to the symplectic similitude group $\mathrm{GSp}_{4}(\mathbb{C})$. By the remark following Theorem 5, as soon as a character of $\mathrm{GL}_{2}(K)$ appears as a quotient of a representation of $\mathrm{GL}_{4}(k)$, the representation of $\mathrm{GL}_{4}(k)$ arises from theta lifting from $\mathrm{GSp}_{4}(k)$, and therefore its parameter belongs to the symplectic similitude group. Further, the existence of χ-invariant linear form for the subgroup $\mathrm{GL}_{2}(K)$ of $\mathrm{GL}_{4}(k)$ is the same as the existence of χ-Bessel model for the representation of $\mathrm{GSp}_{4}(k)$ which is the theta lift of the representation $\pi \boxtimes \mu$ of $\mathrm{GSO}_{6}(k)=\left[\mathrm{GL}_{4}(k) \times k^{\times}\right] / \Delta\left(k^{\times}\right)$in which $\mu=\left.\chi\right|_{k^{\times}}$. Having proved the theorem about Bessel models for $\operatorname{GSp}_{4}(k)$, we deduce Theorem 4 about $\mathrm{GL}_{4}(k)$. For deducing Theorem 4 about other forms of $\mathrm{GL}_{4}(k)$, we will need to use theta correspondence between $\mathrm{GSp}_{4}(k)$ and the rank 1 form of $\mathrm{GO}_{6}(k)$ giving rise to $\mathrm{GL}_{2}(D)$, as well as theta
correspondence between $\operatorname{GSp}_{4}^{D}(k)$ and $\mathrm{GU}_{3}^{D}(k)$ giving rise to \mathcal{D}^{\times}for a division algebra of dimension 16 over k; we omit very analogous arguments in these cases.

We note, however, that, as usual, the methods of theta correspondence give results only for those irreducible representations of $\mathrm{GL}_{4}(k)$ which arise as $\Theta(\pi)$ with $\Theta(\pi)=\theta(\pi)$ for an irreducible representation π of $\mathrm{GSp}_{4}(k)$. For ensuring this, we will use the methods of theta correspondence only for supercuspidal representations of $\mathrm{GL}_{4}(k)$. Other representations of $\mathrm{GL}_{4}(k)$ for which there is a character of $\mathrm{GL}_{2}(K)$ appearing in it as a quotient, must arise from parabolic induction of an irreducible representation of the $(2,2)$ parabolic (as their parameter is in $\mathrm{GSp}_{4}(\mathbb{C})$, so cannot arise from parabolic induction of a supercuspidal representation of a Levi subgroup of the $(3,1)$ parabolic subgroup). If we are dealing with non-discrete series but generic representation of $\mathrm{GL}_{4}(k)$, we can assume that the representation is a full induced representation from an irreducible representation of the $(2,2)$ parabolic, and analyze separately the existence of χ-invariant linear form for the subgroup $\mathrm{GL}_{2}(K)$ of $\mathrm{GL}_{4}(k)$.

For the induced representation of $\mathrm{GL}_{4}(k)$ arising from the $(2,2)$ parabolic subgroup, Mackey theory will answer questions about restriction to a subgroup. This depends on the understanding of the double cosets,

$$
\mathrm{GL}_{2}(K) \backslash \mathrm{GL}_{4}(k) / P_{(2,2)},
$$

which we describe now.
To describe the double cosets $\mathrm{GL}_{2}(K) \backslash \mathrm{GL}_{4}(k) / P_{(2,2)}$, it will be convenient to let V be a two dimensional vector space over K thought of as a four dimensional vector space $R_{k} V$ over k so that $\mathrm{GL}_{2}(K)$ as well as $\mathrm{GL}_{4}(k)$ operate on $R_{k} V$. With this notation, $\mathrm{GL}_{2}(K) \backslash \mathrm{GL}_{4}(k) / P_{(2,2)}$ can be identified to $\mathrm{GL}_{2}(K)$-orbits on the set of two dimensional k-subspaces W of $R_{k} V$ which is easily seen to consist of two orbits, one represented by a W which is invariant under K, and the other which is not. It follows that the restriction to $\mathrm{GL}_{2}(K)$ of a principal series representation of $\mathrm{GL}_{4}(k)$ induced from a representation $\pi_{1} \otimes \pi_{2}$ of $\mathrm{GL}_{2}(k) \times \mathrm{GL}_{2}(k)=M$, which is a Levi subgroup of the $(2,2)$ parabolic $P_{(2,2)}$ with the Levi decomposition $P_{(2,2)}=M \times N$, is
(3) $\left.0 \rightarrow \operatorname{ind}_{\mathrm{GL}_{2}(k)}^{\mathrm{GL}_{2}(K)}\left(\pi_{1} \otimes \pi_{2}\right) \rightarrow \pi\right|_{\mathrm{GL}_{2}(K)} \rightarrow \operatorname{ind}_{B(K)}^{\mathrm{GL}_{2}(K)}\left(\left.\left.\left.|\cdot|_{K}^{1 / 2} \pi_{1}\right|_{K \times} \otimes|\cdot|\right|_{K} ^{-1 / 2} \pi_{2}\right|_{K^{\times}}\right) \rightarrow 0$,
where $B(K)$ is the Borel subgroup of $\mathrm{GL}_{2}(K)$ consisting of upper-triangular matrices with entries in K, and $\left.\left.|\cdot|_{K}^{1 / 2} \pi_{1}\right|_{K^{\times}} \otimes|\cdot|_{K}^{-1 / 2} \pi_{2}\right|_{K^{\times}}$denotes the restriction of $|\cdot|_{k}^{1 / 2} \pi_{1} \otimes$ $|\cdot|_{k}^{-1 / 2} \pi_{2}$ to $K^{\times} \times K^{\times}$, which is then extended trivially across the unipotent radical of $B(K)$, and then induced to $\mathrm{GL}_{2}(K)$. (All inductions considered in this paper are normalized induction.)
It follows that if π has a χ-invariant form for a character $\chi: \mathrm{GL}_{2}(K) \xrightarrow{\text { det }} K^{\times} \rightarrow \mathbb{C}^{\times}$, then either

(2) π_{1} and π_{2} both contain the character χ of $K^{\times} \hookrightarrow \mathrm{GL}_{2}(k)$, in particular, $\omega_{1}=$ $\omega_{2}=\left.\chi\right|_{k^{x}}$.
In both cases, it is easy to see that the parameter of the representation π lies inside $\mathrm{GSp}_{4}(\mathbb{C})$ with similitude character $\left.\chi\right|_{k^{x}}$, and that we further have (as consequence of the theorem due to Tunnell and Saito in case (2), and by generalities about epsilon
factors in case (1)),

$$
\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=\epsilon\left(\pi_{1} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right) \cdot \epsilon\left(\pi_{2} \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=1 .
$$

If π_{1} and π_{2} both contain the character χ of K^{\times}, then it follows from the exact sequence (3) that π carries a linear form on which $\mathrm{GL}_{2}(K)$ operates via χ. We now show that if $\left.\pi_{1} \cong \pi_{2}^{\vee} \otimes \chi\right|_{k^{\times}}$, but that one of π_{1} or π_{2} does not contain the character χ, then the unique (up to scaling) linear form on $\operatorname{ind}_{\mathrm{GL}_{2}(k)}^{\mathrm{GL}_{2}(K)}\left(\pi_{1} \otimes \pi_{2}\right)$ on which $\mathrm{GL}_{2}(K)$ operates by χ extends to a linear form on π on which $\mathrm{GL}_{2}(K)$ operates by χ. For this one needs to prove that an exact sequence of the form

$$
0 \rightarrow \mathbb{C}_{\chi} \rightarrow \pi^{\prime} \rightarrow \operatorname{ind}_{B(K)}^{\mathrm{GL} L_{2}(K)}\left(\left.\left.|\cdot|_{K}^{1 / 2} \pi_{1}\right|_{K^{\times}} \otimes|\cdot|_{K}^{-1 / 2} \pi_{2}\right|_{K^{\times}}\right) \rightarrow 0
$$

is a split extension under the condition that one of π_{1} or π_{2} does not contain the character χ. Since $\operatorname{ind}_{B(K)}^{\mathrm{GL}_{2}(K)}\left(\left.\left.|\cdot|_{K}^{1 / 2} \pi_{1}\right|_{K^{\times}} \otimes|\cdot|_{K}^{-1 / 2} \pi_{2}\right|_{K^{\times}}\right)$is a direct sum of (infinitely many) principal series representations, if we can create splittings over each principal series representations, we will be done. Therefore, it suffices to note the following result from [[P3], Corollary 5.9].

Lemma 11.1. Let χ be a character of K^{\times}, and $\chi \circ$ det the corresponding character of $\mathrm{GL}_{2}(K)$. Then if V is a principal series representation of $\mathrm{GL}_{2}(K)$ such that $\operatorname{Hom}_{\mathrm{GL}_{2}(K)}[V, \chi \circ \operatorname{det}]=0$, we have $\operatorname{Ext}_{\mathrm{GL}_{2}(K)}^{1}[V, \chi \circ \operatorname{det}]=0$.
Completing proof of Theorem 4. Notice that if the representations π_{1} and π_{2} of $\mathrm{GL}_{2}(k)$ are discrete series representations with $\pi_{1}^{J L}$ and $\pi_{2}^{J L}$ the corresponding representations of D^{\times}, one can construct a representation $\pi^{J L}=\pi_{1}^{J L} \times \pi_{2}^{J L}$ of $\mathrm{GL}_{2}(D)$ by parabolic induction of the representation $\pi_{1}^{J L} \boxtimes \pi_{2}^{J L}$ of $D^{\times} \times D^{\times}$which is a Levi subgroup in $\mathrm{GL}_{2}(D)$, and one can restrict the representation $\pi^{J L}$ from $\mathrm{GL}_{2}(D)$ to $\mathrm{GL}_{2}(K)$, and get the analogous exact sequence,
$\left.0 \rightarrow \operatorname{ind}_{D^{\times}}^{\mathrm{GL}_{2}(K)}\left(\pi_{1}^{J L} \otimes \pi_{2}^{J L}\right) \rightarrow \pi\right|_{\mathrm{GL}_{2}(K)} \rightarrow \operatorname{ind}_{B(K)}^{\mathrm{GL}_{2}(K)}\left(\left.\left.|\cdot|\right|_{K} ^{1 / 2} \pi_{1}^{J L}\right|_{K^{\times}} \otimes|\cdot| \begin{array}{l}-1 / 2 \\ \left.\left.\pi_{2}^{J L}\right|_{K^{\times}}\right) \rightarrow 0 .\end{array}\right.$
It follows that if π has a $\chi \circ$ det-invariant form, then either

(2) $\pi_{1}^{J L}$ and $\pi_{2}^{J L}$ both contain the character χ, in particular, $\omega_{1}=\omega_{2}=\left.\chi\right|_{k^{\times}}$.

It is clear that if condition (1) held for π_{1}, π_{2}, it will also hold for representations $\pi_{1}^{J L}, \pi_{2}^{J L}$ of D^{\times}, and hence $\pi^{J L}$ will have a χ-invariant linear form when restricted to $\mathrm{GL}_{2}(K)$. On the other hand, if the condition (2) held for π_{1} and π_{2}, it will not hold for $\pi_{1}^{J L}, \pi_{2}^{J L}$. These conclusions together with the knowledge of L-packets for $\mathrm{GSp}_{4}(k)$ completes the proof of Theorem 4 on noting that conditions (1), (2) simultaneously hold exactly when $\pi_{1}=\pi_{2}$, with their central characters equal to $\left.\chi\right|_{k^{x}}$, in which case both π and $\pi^{J L}$ have a χ-invariant linear form when restricted to $\mathrm{GL}_{2}(K)$.

Remark 11.2. We note a curious consequence of the proof above in the case $\pi_{1}=\pi_{2}$, a supercuspidal representation of $\mathrm{GL}_{2}(k)$, in which case both the representation $\pi_{1} \times \pi_{1}$ of $\mathrm{GL}_{4}(k)$, and the representation $\pi_{1}^{J L} \times \pi_{1}^{J L}$ of $\mathrm{GL}_{2}(D)$ have $\chi \circ$ det-invariant linear form for $\mathrm{GL}_{2}(K)$ for any character χ of K^{\times}, hence both lift to $\mathrm{GSp}_{4}(k)$, and the two lifts to $\mathrm{GSp}_{4}(k)$ have χ-Bessel models. Since $\theta\left(\pi_{1} \times \pi_{1}\right)$ and $\theta\left(\pi_{1}^{J L} \times \pi_{1}^{J L}\right)$ are respectively the
generic and non-generic members of the unitary principal series representation $1 \rtimes \pi_{1}$ of $\mathrm{GSp}_{4}(k)$ induced from the Klingen parabolic, only one of these two have χ-Bessel model. It follows that either for $\theta\left(\pi_{1} \times \pi_{1}\right)$ or for $\theta\left(\pi_{1}^{J L} \times \pi_{1}^{J L}\right)$, there is a difference between Θ and θ, i.e, there must be a nontrivial extension between the two irreducible components of the unitary principal series representation $1 \rtimes \pi_{1}$ induced from the Klingen parabolic (which are $\theta\left(\pi_{1} \times \pi_{1}\right)$ and $\theta\left(\pi_{1}^{J L} \times \pi_{1}^{J L}\right)$). Extension between irreducible components of a reducible unitary principal series representation seems not to have been noticed earlier.

For later use, we note the following lemma which is clear from the analysis of the principal series representation arising out of the $(2,2)$ parabolic.

Lemma 11.3. Let π_{1} and π_{2} be two representations of $\mathrm{GL}_{2}(k)$, of the same central characters, for k either an archimedean or a non-archimedean local field. Then the principal series representation $\pi_{1} \times \pi_{2}$ of $\mathrm{GL}_{4}(k)$ has χ-Bessel model for all characters χ of K^{\times}which appear in both π_{1} and π_{2}. Thus if π_{1} and π_{2} are principal series representations of the same central characters, then $\pi_{1} \times \pi_{2}$ has Bessel models for all characters of K^{\times}whose restriction to k^{\times}is the central character of π_{1} and π_{2}.

We end this section by formulating the following general conjecture, which is a modified form of a conjecture in [P2].

Conjecture 1. Let $A \cong M_{r}(\mathcal{D})$, with \mathcal{D} a central division algebra over k, be a central simple algebra over a local field k of dimension $4 n^{2}$, and K a quadratic separable algebra over k which can be embedded in A. (The set of embeddings of K in A is unique by the Skolem-Noether theorem.) Let A^{K} be the centralizer of K in A which is a central simple algebra over K of dimension n^{2}. Let π be an irreducible, admissible representation of A^{\times}such that the corresponding representation of $\mathrm{GL}_{2 n}(k)$ is generic with central character ω_{π}. Let χ be a character of K^{\times}such that $\left.\chi^{n}\right|_{k^{\times}}=\omega_{\pi}$. Let det : $\left(A^{K}\right)^{\times} \rightarrow K^{\times}$denote the reduced norm map. If the character $\chi \circ \operatorname{det}$ of $\left(A^{K}\right)^{\times}$appears as a quotient in π restricted to $\left(A^{K}\right)^{\times}$, then
(1) The Langlands parameter of π takes values in $\mathrm{GSp}_{2 n}(\mathbb{C})$ with similitude factor $\left.\chi\right|_{k^{\times}}$.
(2) The epsilon factor $\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=(-1)^{r} \omega_{K / k}(-1)^{n} \chi(-1)^{n}$.

If π is a discrete series representation of A^{\times}, then these two conditions are necessary and sufficient for the character $\chi \circ \operatorname{det}$ of $\left(A^{K}\right)^{\times}$to appear as a quotient in π restricted to $\left(A^{K}\right)^{\times}$. If π is not a discrete series representation, then one will need to consider not just the epsilon factor appearing in the condition (2) above, but other epsilon factors just as in (2) built out of irreducible sub-representations in the Langlands parameter of π which are of symplectic type with similitude factor $\left.\chi\right|_{k^{\times}}$.

Remark 11.4. Multiplicity 1 of the trivial representation of $\mathrm{GL}_{n}(K)$ inside an irreducible admissible representation of $\mathrm{GL}_{2 n}(k)$ was proved by J. Guo in [G], but the multiplicity 1 of more general characters of $\mathrm{GL}_{n}(K)$, or in our context, of even more general subgroups $\left(A^{K}\right)^{\times}$of A^{\times}, seems not to have been addressed in the literature.

Remark 11.5. By generalities about epsilon factors (twisting by highly ramified characters) it can be seen that given π, a Galois representation of dimension $2 n$,

$$
\epsilon\left(\pi \otimes \operatorname{Ind}_{K}^{k}\left(\chi^{-1}\right)\right)=\omega_{K / k}(-1)^{n} \chi(-1)^{n}
$$

for all but finitely characters χ of K^{\times}with $\left.\chi^{n}\right|_{k^{\times}}=\omega_{\pi}$. This makes the conjecture fit well with the fact that irreducible representations of E^{\times}where E is a division algebra over k of dimension $4 n^{2}$ are finite dimensional; the corresponding finiteness assertion for other odd values of r is not clear.

12. Discrete series over the reals

Our study of Bessel model for principal series representations in the p-adic case depended on two crucial, although rather elementary facts.
(1) If Y is a closed subspace of a p-adic manifold X, one has an exact sequence,

$$
0 \rightarrow \mathcal{S}(X-Y) \rightarrow \mathcal{S}(X) \rightarrow \mathcal{S}(Y) \rightarrow 0
$$

(2) Twisted Jacquet functor is exact for any character θ of N.

Both these fail for real groups in general, necessitating extra work.

12.1. Preliminaries. We begin by setting up the notation.

Let M be a real analytic manifold, N a closed sub-manifold. We have a sequence of natural maps,

$$
0 \rightarrow \mathcal{C}_{c}^{\infty}(M-N) \rightarrow \mathcal{C}_{c}^{\infty}(M) \rightarrow \mathcal{C}_{c}^{\infty}(N) \rightarrow 0
$$

which is exact except in the middle. If we denote $\mathcal{D}(M)$, resp $\mathcal{D}(N)$, resp $\mathcal{D}(M-N)$, the space of distributions on M, resp N, resp. $M-N$, then there is a natural map from $\mathcal{D}(M)$ to $\mathcal{D}(M-N)$, whose kernel is the space of distributions on M supported in N, which we denote by $\mathcal{D}_{N}(M)$:

$$
0 \rightarrow \mathcal{D}_{N}(M) \rightarrow \mathcal{D}(M) \rightarrow \mathcal{D}(M-N)
$$

Given a vector field X on M, it makes sense to differentiate functions on M by X, and hence also a distribution \mathcal{D} on M by X, which we denote by $X \mathcal{D}$; clearly if a distribution \mathcal{D} is supported on a closed sub-manifold N, then so is $X \mathcal{D}$. Thus from distributions $\mathcal{D}(N)$ thought of as distributions on M, one can create newer distributions on M supported on N by differentiating. It is known by the work of L . Schwartz that this way one constructs all distributions on M supported on N by iterated differentiation. Define a filtration $\mathcal{D}_{N}^{d}(M)$ on $\mathcal{D}_{N}(M)$ which consists of the space of distributions on M, supported on N, and which are obtained from the subspace $\mathcal{D}(N)$ of $\mathcal{D}(M)$ by differentiating by at most d vector fields on M. Observing that as $\mathcal{D}(N)$ is invariant under differentiation by vector fields along N, vector fields on M which are transversal to N need only be considered.

More precisely, let X_{1}, \cdots, X_{q} be vector fields on M which are transversal to N at points of N in some neighborhood (in N) of a point of N, i.e., $T_{x}(M)=T_{x}(N) \oplus$ $\mathbb{C} X_{1} \oplus \cdots \oplus \mathbb{C} X_{q}$, where $T_{x}(M)$ is the tangent space to M at a point x of N, and $T_{x}(N)$ is the tangent space to N. This defines a filtration on $\mathcal{D}_{N}(M)$ which consists
of the space of distributions on M, supported on N, and which are in the sum of the image of the natural maps

$$
\begin{aligned}
\otimes^{r}\left\{X_{1}, \cdots, X_{q}\right\} \otimes \mathcal{D}(N) & \rightarrow \mathcal{D}(M) \\
X_{i_{1}} \otimes \cdots \otimes X_{i_{r}} \otimes \mathcal{D} & \rightarrow X_{i_{1}} \cdots X_{i_{r}} \mathcal{D},
\end{aligned}
$$

for $r \leq d$. This filtration is the same as the filtration $\mathcal{D}_{N}^{d}(M)$ introduced earlier, and is therefore independent of the choice of vector fields X_{1}, \cdots, X_{q} on M in the neighborhood of the point of N where these are transversal.

The following lemma identifies the successive quotients of this filtration. This lemma is a variant of lemma 2.4 of Shalika's paper [26] which itself is essentially due to Schwartz, but notice that unlike Shalika's paper, we do not assume that the transversal vector fields $X_{1} \cdots, X_{q}$, exist globally on N, nor do we need to assume that they span a Lie algebra of vector fields. In this lemma, we will in fact work more generally with distributions with coefficients in a vector bundle E over M which is modeled on a Fréchet space. In this context, let $\mathcal{D}(M, E)$ be the dual in the natural topology of $\mathcal{C}_{c}^{\infty}(M, E)$, the space of compactly supported \mathcal{C}^{∞} sections of E over M.

Lemma 12.1. For a Fréchet vector bundle E on a manifold M, the space of distributions $\mathcal{D}_{N}(M, E)$ on M supported on a closed subanifold N comes equipped with a natural filtration $\mathcal{D}_{N}^{d}(M, E)$ such that the successive quotients, $\mathcal{D}_{N}^{d}(M, E) / \mathcal{D}_{N}^{d-1}(M, E)$ can be identified to a certain space of distributions on N, which is $\mathcal{D}\left(N, \operatorname{Sym}^{d}(T M / T N)^{\vee} \otimes\right.$ $E)$, where $T M / T N$ is the quotient of the tangent bundle $T M$ of M restricted to N by the tangent bundle $T N$ of N, and $\operatorname{Sym}^{d}(T M / T N)^{\vee}$ represents the dual bundle of the symmetric power bundle.

Remark 12.2. We will apply this lemma in the context where a Lie group G operates transitively on a manifold M, and R is a subgroup of G operating transitively on a closed submanifold N. Let o be a point on N, with stabilizer H in G. The Lie algebra \mathfrak{g} of G gives rise to vector fields on M, and if $\left\{X_{1}, \cdots, X_{q}\right\}$ is a set of generators of $\mathfrak{g} /(\mathfrak{r}+\mathfrak{h})$ where \mathfrak{r} is the Lie algebra of R, and \mathfrak{h} that of H, then the vector fields on M corresponding to X_{i} form a set of transversal vector fields to N in a neighborhood of \circ, and $T M / T N$ can be realized as a homogeneous vector bundle on N corresponding to the representation $\mathfrak{g} /(\mathfrak{r}+\mathfrak{h})$ of the stabilizer (in R, i.e. $H \cap R)$ of the previously chosen point \circ in N.

The most important result for us will be the following form of the Frobenius reciprocity, cf. Theorem 5.3.3.1 of [Wa].

Proposition 12.3. Let V be a real analytic manifold on which a Lie group H acts transitively with H_{\circ} as the stabilizer of a point \circ in V. Let E be a homogeneous vector bundle on V given by a representation of H_{\circ} on a (possibly infinite dimensional) Fréchet space E_{0}. Let $\phi: H \rightarrow \mathbb{C}^{\times}$be a character on H. Then if $\mathcal{D}(V, E)$ is the dual in the natural topology of $\mathcal{C}_{c}^{\infty}(V, E)$, the space of compactly supported \mathcal{C}^{∞} sections of E, then,

$$
\mathcal{D}(V, E)^{H, \phi} \cong E_{0}^{\vee,\left(H_{o}, \phi\right)}
$$

where $E_{0}^{\vee,\left(H_{0}, \phi\right)}=\left\{e \in E_{\circ}^{\vee} \mid h \cdot e=\phi(h) e \forall h \in H_{\circ}\right\}$, and where E_{\circ}^{\vee} is the space of continuous linear forms on E_{0}.
12.2. Discrete series for $\mathrm{GSp}_{4}(\mathbb{R})$ and inner forms. First we describe the discrete series representations of $\mathrm{GL}_{2}(\mathbb{R})$. Let $\eta=|\cdot|^{s} \operatorname{sgn}^{\epsilon}, \epsilon=0,1$, be any quasi-character of \mathbb{R}^{\times}. Then for any positive integer k, we have the following exact sequence of representations of $\mathrm{GL}_{2}(\mathbb{R})$

$$
0 \longrightarrow \delta(\eta, k) \longrightarrow \eta|\cdot|^{k / 2} \operatorname{sgn}^{k+1} \times \eta|\cdot|^{-k / 2} \longrightarrow \zeta(\eta, k) \longrightarrow 0
$$

The representation $\zeta(\eta, k)$ is finite dimensional of dimension k, and the representation $\delta(\eta, k)$ is essentially square-integrable; it is discrete series if η is unitary.
We now deal with the group $\mathrm{Sp}_{4}(\mathbb{R})$. For every pair of integers (p, t) with $p>t>0$ there is a collection of four discrete series representations of $\mathrm{Sp}_{4}(\mathbb{R})$ with the same infinitesimal character as that of $F(p, t)$, a finite dimensional irreducible representation of $\mathrm{Sp}_{4}(\mathbb{R})$ which in the standard notation has highest weight $(p-2) e_{1}+(q-1) e_{2}$. We will denote these by $X(p, t), X(p,-t), X(t,-p), X(-t,-p)$. The representations $X(p,-t)$ and $X(t,-p)$ are generic, and the representations $X(p, t)$ and $X(-t,-p)$ are holomorphic and anti-holomorphic representations.

These discrete series representations appear in the principal series representations of $\mathrm{Sp}_{4}(\mathbb{R})$ obtained from the Siegel parabolic subgroup with $\mathrm{GL}_{2}(\mathbb{R})$ as the Levi subgroup. We state the following exact sequences from the paper [Mu] of Muic; in these sequences we use the standard notation of denoting $\pi \rtimes 1$ for the representation of $\mathrm{Sp}_{4}(\mathbb{R})$ obtained by inducing the representation π of $\mathrm{GL}_{2}(\mathbb{R})$ which is the Levi subgroup of the Siegel parabolic; the representation $L(\pi \rtimes 1)$ denotes the Langlands quotient, and V_{p} denotes the unique irreducible representation of $\mathrm{SL}_{2}(\mathbb{R})$ of dimension p. Then we have the following exact sequences

$$
\begin{aligned}
& 0 \rightarrow X(p,-t) \oplus X(t,-p) \rightarrow \delta\left(|\cdot|^{\frac{p-t}{2}} \operatorname{sgn}^{t}, p+t\right) \rtimes 1 \rightarrow L\left(\delta\left(|\cdot|^{\frac{p-t}{2}} \operatorname{sgn}^{t}, p+t\right) \rtimes 1\right) \rightarrow 0 ; \\
& 0 \rightarrow F(p, t) \oplus L\left(\delta\left(|\cdot|^{\frac{p-t}{2}} \operatorname{sgn}^{t}, p+t\right) \rtimes 1\right) \rightarrow|\cdot|^{t} \operatorname{sgn}^{t} \rtimes V_{p} \rightarrow L\left(\delta\left(|\cdot|^{\frac{p+t}{2}} \operatorname{sgn}^{t}, p-t\right) \rtimes 1\right) \rightarrow 0 ; \\
& \quad 0 \rightarrow X(p, t) \oplus X(-t,-p) \rightarrow \zeta\left(|\cdot|^{\frac{p+t}{2}} \operatorname{sgn}^{t}, p-t\right) \rtimes 1 \rightarrow F(p, t) \rightarrow 0 .
\end{aligned}
$$

Now we have the following.
Lemma 12.4. The principal series representation $\chi \rtimes V_{p}$ induced from a finite dimensional representation of the Klingen parabolic subgroup of $\mathrm{Sp}_{4}(\mathbb{R})$ has no Bessel models for non-degenerate characters of the unipotent radical of the Siegel parabolic for which the corresponding centralizer in the Levi is the compact torus \mathbb{S}^{1}.
Proof. It is a simple consequence of the Bruhat theory that we omit. The corresponding statement for non-archimedean fields was proved earlier.

We would have liked to use this lemma to conclude that Bessel models for any composition factor of $\chi \rtimes V_{p}$ are also zero. Although one would like to believe this to be a consequence of generalities (exactness of Bessel models), but that is not available in the literature anywhere, lacking which we resort to the result according to which by an appropriate choice of inducing data, any subquotient of a principal series representation can in fact be arranged to be a quotient, proving the following.

Lemma 12.5. Sub-quotients of the representation $\chi \rtimes V_{p}$ of $\mathrm{Sp}_{4}(\mathbb{R})$ arising from finite dimensional representations of the Klingen parabolic have no Bessel models for non-degenerate characters of the unipotent radical of the Siegel parabolic for which the corresponding centralizer in the Levi is the compact torus \mathbb{S}^{1}.

We now prove a few simple results about contragredients which allow one to turn questions about submodules to questions about quotient modules for which conclusions on Bessel models are easier to achieve.

Lemma 12.6. Let $\alpha \in \operatorname{GSp}_{2 n}(\mathbb{R})$ be an element of similitude factor -1 . Then the automorphism of $\mathrm{Sp}_{2 n}(\mathbb{R})$ induced by the inner-conjugation action of α takes an irreducible representation π of $\mathrm{Sp}_{2 n}(\mathbb{R})$ to its contragredient π^{\vee}.
Proof. It suffices to prove that the representations π^{α} and π^{\vee} have the same characters. But one knows that the character $\Theta_{\pi^{\vee}}$ of π^{\vee} is related to the character Θ_{π} of π by

$$
\Theta_{\pi}\left(g^{-1}\right)=\Theta_{\pi^{\vee}}(g) .
$$

Therefore it suffices to note that $\alpha g \alpha^{-1}$ and g^{-1} are conjugate in $\mathrm{Sp}_{2 n}(\mathbb{R})$ which is well-known.

Corollary 12.7. An irreducible representation π of $\mathrm{Sp}_{4}(\mathbb{R})$ has a Bessel model for a character ψ_{t} of $N \cong\left\{\left.n=\left(\begin{array}{ll}a & b \\ b & c\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\}$ given by $\psi_{t}(n)=e^{2 \pi i t(a+c)}$ if and only if π^{\vee} has a Bessel model for the character ψ_{-t}.

Corollary 12.8. If $0 \rightarrow \pi_{1} \rightarrow \pi_{2}$ is an exact sequence of $\mathrm{Sp}_{4}(\mathbb{R})$ representations of finite length with $\left(\pi_{2}^{\vee}\right)_{\psi}=0$, then $\left(\pi_{1}\right)_{\psi_{-1}}=0$.

These lemmas and corollaries, together with the exact sequences recalled earlier from [Mu] relating principal series and discrete series representations, reduce the study of Bessel models for discrete series representations of $\mathrm{Sp}_{4}(\mathbb{R})$ to principal series representations of $\mathrm{Sp}_{4}(\mathbb{R})$ induced from the Siegel parabolic.

The group $\mathrm{GSp}_{4}(\mathbb{R})$ contains $\mathbb{R}^{\times} \cdot \mathrm{Sp}_{4}(\mathbb{R})$ as a subgroup of index 2 , and every discrete series representation of $\mathrm{GSp}_{4}(\mathbb{R})$ is obtained by inducing a discrete series representation of $\mathbb{R}^{\times} \cdot \mathrm{Sp}_{4}(\mathbb{R})$ which thus can be parametrized as $X(p, t ; \xi)$ with ξ a character of \mathbb{R}^{\times} such that $\left.\xi\right|_{ \pm 1}$ is the central character of the representation $X(p, t)$ of $\mathrm{Sp}_{4}(\mathbb{R})$. The action of $\mathrm{GSp}_{4}(\mathbb{R})$ on $\mathrm{Sp}_{4}(\mathbb{R})$ interchanges $X(p, t)$ with $X(-t,-p)$, and $X(p,-t)$ with $X(t,-p)$.

Given (p, t) with $p>t>0$, and a character $\xi: \mathbb{R}^{\times} \rightarrow \mathbb{C}^{\times}$, let Π_{1} be the generic representation of $\mathrm{GSp}_{4}(\mathbb{R})$ with central character ξ, and let Π_{2} be the other discrete series representation of $\mathrm{GSp}_{4}(\mathbb{R})$ with the same infinitesimal character. Let Π_{3} be the unique discrete series representation of $\mathrm{GSp}_{4}^{\mathbb{H}}(\mathbb{R})$ with the same infinitesimal and central character.
12.3. The result. For a given representation π, the Bessel functional is a continuous linear functional on the space of smooth vectors V_{π}^{∞} in V_{π} which comes equipped with its Fréchet topology satisfying appropriate invariance equations with respect to the Bessel subgroup. Explicitly, let χ be a character of \mathbb{C}^{\times}given by $\chi\left(r e^{i \theta}\right)=\chi_{1}(r) e^{i n \theta}$, for some quasi-character χ_{1} of \mathbb{R}_{+}^{\times}. Given n and χ as above, we set $n(\chi)=n$. We identify \mathbb{C}^{\times}
with a subgroup of $\mathrm{GL}_{2}(\mathbb{R})$, and \mathbb{H}^{\times}, by sending $z=a+i b \mapsto t(z):=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$. Define a subgroup R of $\mathrm{GSp}_{4}(\mathbb{R})$ by setting

$$
R=\left\{b(z ; r, s, t):=\left(\begin{array}{ll}
t(z) & \\
& t(z)
\end{array}\right)\left(\begin{array}{cccc}
1 & s & r \\
& 1 & r & t \\
& & 1 & \\
& & & 1
\end{array}\right) ; r, s, t \in \mathbb{R}, z \in \mathbb{C}^{\times}\right\}
$$

We now define a character χ_{R} of R by setting

$$
\chi_{R}(b(z ; r, s, t))=\chi(z) e^{2 \pi i(s+t)}
$$

There is a closely related subgroup $R_{\mathbb{H}}$ of $\mathrm{GSp}_{4}^{\mathbb{H}}(\mathbb{R})$. One defines a similar character of $R_{\mathbb{H}}$, again denoted by χ_{R}. We say a continuous functional λ on V_{π}^{∞} is a χ-Bessel functional if it satisfies

$$
\lambda(\pi(r) v)=\chi_{R}(r) \lambda(v)
$$

for all $v \in V_{\pi}^{\infty}$ and $r \in R$. We define χ-Bessel functionals for representations of $\operatorname{GSp}_{4}^{\mathrm{H}}(\mathbb{R})$ similarly.

The exact sequences contained in the following lemma reduce questions about Bessel models for discrete series representations to similar questions for principal series representations.

In the following, we let $|\cdot|{ }^{s} V_{n}$ denote the n-dimensional irreducible representation of $\mathbb{H}^{\times}=\mathbb{R}^{+} \times \mathrm{SU}_{2}(\mathbb{R})$ on which \mathbb{R}^{+}operates by $|x|^{2 s}$.

Lemma 12.9. For the discrete series representation Π_{3} of $\mathrm{GSp}_{4}^{\mathbb{H}}(\mathbb{R})$, there are exact sequences of $\mathrm{GSp}_{4}^{\mathbb{H}}(\mathbb{R})$ representations as follows:

$$
\begin{aligned}
0 & \rightarrow \Pi_{3} \rightarrow\left(|\cdot|^{\frac{p-t}{2}} V_{p+t}\right) \rtimes 1 \rightarrow L\left(\left(|\cdot|^{\frac{p-t}{2}} V_{p+t}\right) \rtimes 1\right) \rightarrow 0, \\
0 & \left.\rightarrow L\left(|\cdot|^{\frac{p-t}{2}} V_{p+t}\right) \rtimes 1\right) \rightarrow\left(|\cdot|^{\frac{p+t}{2}} V_{p-t}\right) \rtimes 1 \rightarrow F(p, t) \rightarrow 0 .
\end{aligned}
$$

In the previous lemma as well as in an earlier lemma for $\operatorname{GSp}_{4}(\mathbb{R})$, it is useful to identify those principal series representations of a real group which contain (or by dualizing, have quotients) finite dimensional representations. The following lemma, whose simple proof is omitted, does exactly that.
Lemma 12.10. Let G be the real points of a reductive algebraic group defined over \mathbb{R}. Let $P=M N$ be the real points of a parabolic defined over \mathbb{R}. Let F_{λ} be the finite dimensional irreducible representation of G of highest weight λ, containing the highest weight module V_{λ} for M with highest weight λ. (We assume having chosen positive system of roots for M as well as G in the usual way.) Let ρ_{P} denote half the sum of roots in N, thought of as a character $\rho_{P}: M \rightarrow \mathbb{R}^{\times}$, taking positive values. Then there is a natural inclusion,

$$
0 \rightarrow F_{\lambda}^{\vee} \rightarrow \operatorname{Ind}_{P}^{G}\left(V_{\lambda}^{\vee} \otimes \rho_{P}^{-1}\right)
$$

and on taking duals, a surjection

$$
\operatorname{Ind}_{P}^{G}\left(V_{\lambda} \otimes \rho_{P}\right) \rightarrow F_{\lambda} \rightarrow 0
$$

In the following theorem we are interested in the existence of Bessel functionals for the representations Π_{i}.
Theorem 10. Let χ be a character of \mathbb{C}^{\times}as above, and let $\left\{\Pi_{1}, \Pi_{2}, \Pi_{3}\right\}$ be the Vogan packet consisting of discrete series representations associated with a pair of integers (p, t) with $p>t>0$, in such a way that $\left.\chi\right|_{\mathbb{R}^{\times}}$is the same as the central character of Π_{1}. Then exactly one of the representations $\Pi_{i}, 1 \leq i \leq 3$, has a χ-Bessel model. More precisely
(1) Π_{1} has the model if and only if $|n(\chi)|>p+t$;
(2) Π_{2} has the model if and only if $|n(\chi)|<p-t$; and
(3) Π_{3} has the model if and only if $p-t<|n(\chi)|<p+t$.

In each case the space of the functionals is one dimensional.
A few remarks are in order. The theorem is of course the Gross-Prasad conjecture for discrete series representations of $\mathrm{GSp}_{4}(\mathbb{R})$ though we will not check the condition on local epsilon factors. From considerations of central characters, we note that the parity of $n(\chi)$ is opposite that of $p+t$ and $p-t$. Theorem 10 completes the work [TB]. We recall that [TB] proved the existence of Bessel functionals using global theta correspondence.

Proof of Theorem 10. By the lemma above, and the earlier exact sequences for $\mathrm{Sp}_{4}(\mathbb{R})$, we are reduced to calculating Bessel models for principal series representations of $\mathrm{Sp}_{4}(\mathbb{R})$, and $\mathrm{GSp}_{4}^{\mathbb{H}}(\mathbb{R})$ induced from the Siegel parabolic, which is what we will be doing now.

Our result will follow from the following claim:
Claim. Suppose the Π is a quotient of the $\operatorname{Ind}(\pi \mid P, G)$ with π an irreducible representation of $\mathrm{GL}_{2}(\mathbb{R})$. Then if Π has a χ-Bessel functional, there is a continuous functional λ on V_{π}^{∞} satisfying $\lambda\left(\pi(t(z)) v=\chi(z) \lambda(v)\right.$ for all $v \in V_{\pi}^{\infty}, z \in \mathbb{C}^{\times}$; such linear forms will be called Waldspurger functional.

Suppose π acts on a space V_{π}. By the definition of an induced representation, a Bessel functional on $\operatorname{Ind}(\pi \mid P, G)$ defines a distribution T on the space of V_{π} valued Schwartz functions on $G=\mathrm{GSp}_{4}(\mathbb{R})$ satisfying
(1) $T\left(L_{p} F\right)=T\left(\pi(p)^{-1} F\right)$, for $p \in P$
(2) $T\left(R_{r} F\right)=\theta(n) \chi_{n}(t) T(F)$, for $r=n t \in R$.

Consider the Bruhat decomposition of G as $P \times P$ double cosets written as

$$
\mathrm{GSp}_{4}(\mathbb{R})=P \cup P w_{1} P \cup P w_{2} P,
$$

with $P w_{2} P$ the unique open cell. The element w_{1} can be represented by the following matrix

$$
w_{1}=\left(\begin{array}{llll}
1 & & & \\
& & & 1 \\
& & 1 & \\
& -1 & &
\end{array}\right)
$$

We will show that if T is nonzero, it restricted to the open cell is nonzero too, and hence by Frobenius reciprocity, it happens only if the inducing representation π of $\mathrm{GL}_{2}(\mathbb{R})$ has a Waldspurger functional for the character χ_{n}.

Step 1. First step is to show that T restricted to the open set $P w_{1} P \cup P w_{2} P$ is nonzero. If it were zero, then T would be supported on P. We will show that there are no distributions supported on P satisfying the invariance properties. In fact we do not need the entire group $P \times R ; P \times N$ is sufficient.

Note that the tangent space to G / P at the point P can be identified to $\mathfrak{g} / \mathfrak{p}$ as a P-module. The bilinear pairing,

$$
\begin{aligned}
\mathfrak{n} \times \mathfrak{g} / \mathfrak{p} & \rightarrow \mathbb{C} \\
(X, Y) & \rightarrow \operatorname{tr}\left(a d_{X} \cdot a d_{Y}\right),
\end{aligned}
$$

is a perfect pairing of \mathfrak{p} modules. Therefore the tangent space of G / P at P can be identified to \mathfrak{n}^{\vee} as a P-module, in particular as an N-module. Observe that as \mathfrak{n} is abelian, this implies that the tangent space to G / P at the point P is the 3-dimensional trivial representation of N.

From lemma 1, it follows that in the space of distributions on G / P with values in the vector bundle on it arising from a representation of $\mathrm{GL}_{2}(\mathbb{R})$, those distributions supported at the point P do not carry any Bessel distributions.
Step 2. We now consider the restriction of T to the open set $P w_{1} P \cup P w_{2} P$. We would like to show that the restriction of T to $P w_{2} P$ is non-zero. We show that there are no distributions supported on $P w_{1} P$ satisfying the invariance properties. Here too we just need to use $P \times R$.

The orbit of P passing through $w_{1} P$ has dimension 2, and is a homogeneous space for the Bessel subgroup R; this is crucial for our analysis. Denote the orbit by V. In this case, the normal bundle $T_{x}(G / P) / T_{x}(V)$ is a 1 dimensional representation space for the stabilizer R_{\circ}, a subgroup of R. We claim that the action of R_{\circ} on $T_{x}(G / P) / T_{x}(V)$ is trivial. For this, we just need to note that $T_{x}(G / P) / T_{x}(V)$ being 1 dimensional, the action is given by a character $\mu: R_{\circ} \rightarrow \mathbb{R}^{\times}$. But R_{\circ} is a subgroup of $\mathbb{S}^{1} \times N$, from which it is clear that μ being algebraic must be trivial.

From lemma 1 combined with Frobenius reciprocity, it follows that in the space of distributions on $G / P-e P$ with values in the vector bundle on it arising from a representation of $\mathrm{GL}_{2}(\mathbb{R})$, those distributions supported on the submanifold $P w_{1} P$ do not carry Bessel distributions.

Thus Bessel distributions arise only through the open orbit, and arise only if the inducing representation π of $\mathrm{GL}_{2}(\mathbb{R})$ has a Waldspurger functional for the character χ_{n} (by Frobenius reciprocity).
From the work of Wallach in [Wa2], it follows that indeed when a character χ_{n} appears in π, then Bessel functional can be defined by a process of analytic continuation; in fact Wallach considers parabolic induction only from finite dimensional representations, but in our context extension of his argument to discrete series poses no essential difficulties.

The theorem now follows from the following elementary lemma.

Lemma 12.11. If π is a finite dimensional irreducible representation of $G=$ $\mathrm{SL}_{2}(\mathbb{R})$, or $\mathrm{SU}_{2}(\mathbb{R})$ of dimension m, then π has characters χ_{n} of $\mathbb{S}^{1} \hookrightarrow G$ exactly for $|n|<m$, and $n \equiv(m-1) \bmod 2$.

13. The global correspondence for The dual Pair (GSp, GO)

We now turn to the global setting. Let F be a number field and let W,\langle.$\rangle (resp.$ $V,()$.$) be a non-degenerate symplectic (resp. orthogonal) vector space over F$ with $\operatorname{dim}_{F} W=2 n$ (resp. $\operatorname{dim}_{F} V=m$). Let $G=\operatorname{GSp}(W)$ and $H=\mathrm{GO}(V)$. Also let $\mathbb{W}=V \otimes W$ and $\langle\langle\rangle\rangle=.(.) \otimes\langle$.$\rangle , so that G$ and H form a dual reductive pair in the similitude group $\mathrm{GSp}(\mathbb{W})$. If ν denotes the similitude character for the various groups involved, let

$$
R=\{(g, h) \in G \times H \mid \nu(g)=\nu(h)\},
$$

so there is a natural homomorphism $i: R \rightarrow \operatorname{Sp}(\mathbb{W})$. Note that if we let $G_{1}=\operatorname{Sp}(W)$ and $H_{1}=\mathrm{O}(V)$, then $G_{1} \times H_{1} \subset R$.

From now on assume that $m=\operatorname{dim}_{F} V$ is even, and fix a non-trivial character ψ of $\mathbb{A}=$ \mathbb{A}_{F} trivial on F. Let $W=W_{1} \oplus W_{1}^{\vee}$ denote a complete polarization of the symplectic space W. Let $\omega=\omega_{\psi}$ denote the usual action of $G_{1}(\mathbb{A})$ on the Schwartz-Bruhat space $\mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$ of $\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})$. For $h \in H(\mathbb{A})$ and $\varphi \in \mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$, let

$$
L(h) \varphi(x)=|\nu(h)|^{-m n / 4} \varphi\left(h^{-1} x\right) .
$$

Since $(\operatorname{det} h)^{2}=\nu(h)^{m}$, these operators are unitary with respect to the natural preHilbert space structure on the Schwartz-Bruhat functions. Note that the actions of $G_{1}(\mathbb{A})$ and $H_{1}(\mathbb{A})$ on $\mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$ commute, and are the usual ones associated to the dual pair $\left(G_{1}, H_{1}\right)$.

For $(g, h) \in R(\mathbb{A})$ and $\varphi \in \mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$, let

$$
\theta(g, h ; \varphi)=\sum_{x \in\left(V \otimes W_{1}^{\vee}\right)(F)} \omega(g, h) \varphi(x)
$$

It is then well-known that $\theta(g, h ; \varphi)$ is invariant under $R(F)$. For $\varphi \in \mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$ and a cusp form $f \in \mathcal{A}_{0}(H)$, consider the integral

$$
\theta(f ; \varphi)(g)=\int_{H_{1}(F) \backslash H_{1}(\mathbb{A})} \theta\left(g, h_{1} h ; \varphi\right) f\left(h_{1} h\right) d h_{1}
$$

where $h \in H(\mathbb{A})$ is any element such that $\nu(g)=\nu(h)$ and $d h_{1}$ is a Haar measure on $H_{1}(F) \backslash H_{1}(\mathbb{A})$.

It is easy to check that the integral defining $\theta(f ; \varphi)$ is absolutely convergent and is independent of the choice of h. One can also check that $\theta(f ; \varphi)$ is left-invariant under

$$
\left\{\gamma \in G(F) \mid \nu(\gamma)=\nu\left(\gamma^{\prime}\right), \text { for some } \gamma^{\prime} \in H(F)\right\}
$$

As far as the central characters are concerned, it's not hard to see that if the central character of f is χ, then the central character of $\theta(f ; \varphi)$ is $\chi \cdot \chi_{V}^{n}$, where $\chi_{V}(x)=$ $\left(x,(-1)^{m / 2} \operatorname{det} V\right)$ is the quadratic character associated to V, and therefore for n even, the central character of $\theta(f ; \varphi)$ is χ.

Remark 13.1. One usually defines $\theta(f ; \varphi)(g)$ by integration on the quotient $H_{1}(F) \backslash H_{1}(\mathbb{A})$ for $H_{1}=O(V)$. However, if f belongs to an automorphic representation of $G O(V)(\mathbb{A})$ which does not remain irreducible when restricted to $\operatorname{GSO}(V)(\mathbb{A})$, then the space of automorphic functions on $G S p(W)$ defined by

$$
\theta^{0}(f ; \varphi)(g)=\int_{H_{1,0}(F) \backslash H_{1,0}(\mathbb{A})} \theta\left(g, h_{1} h ; \varphi\right) f\left(h_{1} h\right) d h_{1}
$$

with $H_{1,0}=S O(V)$, is the same space of functions as those obtained as $\theta(f ; \varphi)(g)$. We will use this well-known observation, and use θ^{0} instead of θ in what follows.
13.1. Global Bessel Models. We recall the notion of Bessel model introduced by Novodvorsky and Piatetski-Shapiro [N-PS]. For a symmetric matrix $S \in \mathrm{GL}_{2}(F)$, define a subgroup $T=T_{S}$ of $\mathrm{GL}_{2}(F)$ by

$$
T=\left\{\left.g \in \mathrm{GL}_{2}(F)\right|^{t} g S g=\operatorname{det} g \cdot S\right\} .
$$

We consider T as a subgroup of $\mathrm{GSp}_{4}(F)$ via

$$
t \mapsto\left(\begin{array}{ll}
t & \\
& \operatorname{det} t .^{t} t^{-1}
\end{array}\right) .
$$

Let us denote by U the subgroup of $\mathrm{GSp}_{4}(F)$ defined by

$$
\mathrm{U}=\left\{\left.u(X)=\left(\begin{array}{cc}
I_{2} & X \\
& I_{2}
\end{array}\right) \right\rvert\, X={ }^{t} X\right\} .
$$

Finally, we define a subgroup R of $\operatorname{GSp}_{4}(F)$ by $R=T \mathrm{U}$.
Let ψ be a non-trivial character of $F \backslash \mathbb{A}$. For a symmetric matrix $S \in \mathrm{GL}_{2}(F)$, define a character ψ_{S} on $\mathrm{U}(\mathbb{A})$ by $\psi_{S}(u(X))=\psi(\operatorname{tr}(S X))$ for $X={ }^{t} X \in \mathrm{M}_{2}(\mathbb{A})$; as S will be fixed throughout, we abbreviate ψ_{S} to ψ. Let χ be a character of $T(F) \backslash T(\mathbb{A})$. Denote by $\chi \otimes \psi$ the character of $R(\mathbb{A})$ defined by $(\chi \otimes \psi)(t u)=\chi(t) \psi(u)$ for $t \in T(\mathbb{A})$ and $u \in \mathrm{U}(\mathbb{A})$.

Let π be an automorphic cuspidal representation of $\mathrm{GSp}_{4}(\mathbb{A})$ realized on a space V_{π} of automorphic functions. We assume that

$$
\begin{equation*}
\left.\chi\right|_{\mathbb{A}^{X}}=\omega_{\pi} . \tag{5}
\end{equation*}
$$

Then for $\varphi \in V_{\pi}$, we define a function $B(\varphi, g)$ on $\operatorname{GSp}_{4}(\mathbb{A})$ by

$$
\begin{equation*}
B(\varphi, g)=\int_{Z_{\mathrm{A}} R_{F} \backslash R_{\mathbb{A}}}(\chi \otimes \psi)(r)^{-1} \cdot \varphi(r g) d r . \tag{6}
\end{equation*}
$$

We say that π has a global Bessel model of type (S, χ, ψ) if for some $\varphi \in V_{\pi}$, the function $B(\varphi, g)$ is non-zero. In this case, the \mathbb{C}-vector space of functions on $\operatorname{GSp}_{4}(\mathbb{A})$ spanned by $\left\{B(\varphi, g) \mid \varphi \in V_{\pi}\right\}$ is called the space of the global Bessel model of π. We abbreviate $B(\varphi, e)$ to be $B(\varphi)$.

Let $\mu: W_{1} \rightarrow V$ be a homomorphism of vector spaces such that the quadratic form on V restricted to W_{1} via μ is the quadratic form on W_{1} with respect to which the Fourier coefficients is being calculated on $\operatorname{GSp}(W)$, i.e., the symmetric matrix S in the notation above, but now we prefer to do things in a co-ordinate free way. Let $\mathrm{GO}\left(W_{1}\right)^{+}$be the subgroup of $\mathrm{GO}\left(W_{1}\right)$ consisting of those elements for which the similitude factor is the similitude factor of an element of $\mathrm{GO}(V)$. (It is understood that the quadratic form on W_{1} arises from a $\mu: W_{1} \rightarrow V$ which is fixed.) In our applications, $\mathrm{GO}^{+}\left(W_{1}\right)=\mathrm{GO}\left(W_{1}\right)$.

A map $\mu: W_{1} \rightarrow V$ will be identified to a (F-valued) point of $V \otimes W_{1}^{\vee}$, also denoted by μ, and therefore for a function $f \in \mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$, it makes sense to consider $f(\mu)$, as well as $L(h) f(\mu)$ for any $h \in\left[\mathrm{GO}(V) \times \operatorname{GL}\left(W_{1}\right)\right](\mathbb{A})$. Let $\mathrm{O}\left(W_{1}^{\perp}\right)$ be the subgroup of $\mathrm{O}(V)$ acting trivially on $\mu: W_{1} \rightarrow V$. It is a standard calculation that in the summation defining the theta function, $\theta(\varphi)=\sum_{\mu: W_{1} \rightarrow V} \varphi(\mu)$, only those μ 's
contribute to the Fourier coefficient we are looking at for which the quadratic form on V restricts to the desired quadratic form on W_{1}. Since such embeddings $\mu: W_{1} \rightarrow V$ are conjugate under $\mathrm{SO}(V)$ with stabilizer $\mathrm{SO}\left(W_{1}^{\perp}\right)$, for an automorphic form f on $\operatorname{GSO}(V)(\mathbb{A}), \varphi \in \mathcal{S}\left(\left(V \otimes W_{1}^{\vee}\right)(\mathbb{A})\right)$, and χ an automorphic form on $\operatorname{GSO}\left(W_{1}\right)(\mathbb{A})$

$$
B_{\chi, \mu}\left(\theta^{0}(f ; \varphi)\right)=\int_{\mathrm{SO}\left(W_{1}^{\perp}\right)(\mathbb{A}) \backslash \operatorname{SO}(V)(\mathbb{A})} \Lambda_{\mu}(f, \chi)(h) L(h) \varphi(\mu) d h,
$$

where $h \in \operatorname{SO}(V)(\mathbb{A})$, and

$$
\begin{aligned}
\Lambda_{\mu}(f, \chi)(h) & =\int_{\mathbb{A}^{\times} \operatorname{GSO}\left(W_{1}\right) \backslash \operatorname{GSO}\left(W_{1}\right)(\mathbb{A})}\left[\int_{\mathrm{SO}\left(W_{1}^{\perp}\right) \backslash \operatorname{SO}\left(W_{1}^{\perp}\right)(\mathbb{A})} f(\delta h(g) h) d \delta\right] \chi(g) d g \\
& =\int_{\left.\mathbb{A}^{\times} \times\left[\operatorname{GO}\left(W_{1}^{\perp}\right) \times \operatorname{SO}\left(W_{1}\right)\right](F) \backslash \operatorname{G[SO}\left(W_{1}^{\perp}\right) \times \operatorname{SO}\left(W_{1}\right)\right](\mathbb{A})} f(\delta h(g) h) \chi(g) d \delta d g,
\end{aligned}
$$

where $h(g) \in \operatorname{GSO}(V)(\mathbb{A})$ has similitude factor $\nu(g)$, preserves the embedding $\mu: W_{1} \rightarrow$ V, and acts as g on W_{1}; we have $(\delta, g) \in \mathrm{G}\left[S O\left(W_{1}^{\perp}\right) \times S O\left(W_{1}\right)\right] \subset \operatorname{GSO}\left(W_{1}^{\perp}\right) \times$ $\operatorname{GSO}\left(W_{1}\right)$. For sake of explicitness, we record the following simple lemma needed for the last equality above.

Lemma 13.2. Let G be an algebraic group over a number field F, and N a normal subgroup, with $H=N \backslash G$. Then for appropriate choice of Haar measures, the following holds for appropriate choice of functions f on $G(F) \backslash G(\mathbb{A})$

$$
\int_{H(F) \backslash H(\mathbb{A})} \int_{N(F) \backslash N(\mathbb{A})} f(n g) d n d \bar{g}=\int_{G(F) \backslash G(\mathbb{A})} f(g) d g .
$$

The following theorem is now immediate by standard arguments; it may be noted that the statement of this theorem is identical to Theorem 5

Theorem 11. Let π_{1} be an irreducible cuspidal automorphic representation of $\operatorname{GSO}(V)(\mathbb{A})$, and π_{2} that of $\operatorname{GSp}(W)(\mathbb{A})$. Assume that $\pi_{2}=\Theta\left(\pi_{1}\right)$ is the theta lift of π_{1} to $\operatorname{GSp}(W)$. Let ψ be a non-degenerate character of the unipotent radical N of the Siegel parabolic $P=M N$ of $\operatorname{GSp}(W)$. Assume that ψ corresponds to a quadratic form q on W_{1}, a maximal isotropic subspace of W. Then for a cuspidal automorphic representation χ of $\operatorname{GSO}\left(W_{1}\right)$, the period integral (on $\operatorname{GSO}\left(W_{1}\right) \mathbb{A}^{\times} \backslash \operatorname{GSO}\left(W_{1}\right)(\mathbb{A})$) of χ against the ψ-th Fourier coefficient of π_{2} is not identically zero if and only if
(1) $\left(q, W_{1}\right)$ can be embedded in the quadratic space V; let W_{1}^{\perp} denote the orthogonal complement of W_{1} sitting inside V through this embedding.
(2) For $\tilde{\chi}$ the automorphic representation on $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ which is obtained by pulling back the automorphic representation χ under the natural map $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right] \rightarrow \mathrm{GSO}\left(W_{1}\right)$, the period integral of $\tilde{\chi}$ against the automorphic forms in π_{1} restricted to $\mathrm{G}\left[\mathrm{SO}\left(W_{1}\right) \times \mathrm{SO}\left(W_{1}^{\perp}\right)\right]$ is not identically zero.

Just as in the local case, the following diagram allows one to identify $\left(E^{\times} \times E^{\times}\right) / \Delta F^{\times}$ inside $\left(D^{\times} \times D^{\times}\right) / \Delta F^{\times}$as the subgroup $\mathrm{G}[S O(E) \times S O(E)]$ inside $\operatorname{GSO}(D)=$ $\mathrm{GSO}(E \oplus E)$

Therefore the integral

$$
\int_{\mathbb{A}^{\times} \mathrm{G}\left[\mathrm{SO}\left(W_{1}^{\perp}\right) \times \mathrm{SO}\left(W_{1}\right)\right](F) \backslash \mathrm{G}\left[\mathrm{SO}\left(W_{1}^{\perp}\right) \times \mathrm{SO}_{\left.\left(W_{1}\right)\right](\mathbb{A})}\right.} f(\delta h(g)) \chi(g) d \delta d g,
$$

becomes a product of two toral integrals on $E^{\times} \mathbb{A}_{F}^{\times} \backslash \mathbb{A}_{E}^{\times}$on which the theorem of Waldspurger applies, yielding Theorem 3 of the introduction. In the case where the dual pair involves division algebras one can prove a similar theorem. The proof carries over in an essentially verbatim manner.
Corollary 13.3. Let $\pi_{1}=\otimes \pi_{1, v}$, and $\pi_{2}=\pi_{2, v}$ be two cuspidal automorphic representations of $\mathrm{GL}_{2}\left(\mathbb{A}_{F}\right)$ with the same central character $\omega: \mathbb{A}_{F}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}$. Let K be a quadratic field extension of F. Then there are Grössencharacters $\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$ such that $\left.\chi\right|_{\mathbb{A}_{F}^{\times} / F^{\times}}=\omega$, and such that

$$
\begin{aligned}
& L\left(\frac{1}{2}, \pi_{1} \otimes \operatorname{Ind}\left(\chi^{-1}\right)\right) \neq 0, \text { and } \\
& L\left(\frac{1}{2}, \pi_{2} \otimes \operatorname{Ind}\left(\chi^{-1}\right)\right) \neq 0 .
\end{aligned}
$$

Proof. : If $\pi_{1}=\pi_{2}$, this is part of Waldspurger's theorem. Therefore assume that $\pi_{1} \neq \pi_{2}$. In this case, $\pi_{1} \boxtimes \pi_{2}$ gives rise to an automorphic form on $\operatorname{GSO}(2,2)=$ $\left[\mathrm{GL}_{2}(F) \times \mathrm{GL}_{2}(F)\right] / \Delta\left(F^{\times}\right)$. By a theorem due to B. Roberts, the theta lift $\Theta\left(\pi_{1} \boxtimes \pi_{2}\right)$ to $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$ is nonzero. Assume that v is a place of F which is inert in K, so that K_{v} is a quadratic field extension of F_{v}. Let $\chi_{v}: K_{v}^{\times} \rightarrow \mathbb{C}^{\times}$be a character which appears in both $\pi_{1, v}$ and $\pi_{2, v}$. (As $\pi_{1, v}$ and $\pi_{2, v}$ contain all but finitely many characters of K_{v}^{\times}with a given central character, this is possible.) Therefore, $\Theta_{v}\left(\pi_{1, v} \boxtimes \pi_{2, v}\right)$ has Bessel models for the character χ_{v}. It follows by a globalization theorem along the lines of [P3] that there is a character $\chi: \mathbb{A}_{K}^{\times} / K^{\times}$, with χ_{v} as the local component at v such that $\Theta\left(\pi_{1} \boxtimes \pi_{2}\right)$ has a nonzero χ-Bessel period integral. Thus from the above theorem,

$$
\begin{aligned}
& L\left(\frac{1}{2}, \pi_{1} \otimes \operatorname{Ind}\left(\chi^{-1}\right)\right) \neq 0, \text { and } \\
& L\left(\frac{1}{2}, \pi_{2} \otimes \operatorname{Ind}\left(\chi^{-1}\right)\right) \neq 0,
\end{aligned}
$$

completing the proof of the corollary.
Remark 13.4. As the existence of global Bessel model depends on the non-vanishing of an L-function at the center of symmetry, one can construct examples of cuspidal representations of $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ which have local Bessel models at all primes of \mathbb{Q}, but do not have global Bessel model. This should be contrasted with what one expects for Whittaker models of automorphic representations of $\mathrm{GSp}_{4}\left(\mathbb{A}_{\mathbb{Q}}\right)$ where existence
of local Whittaker models is supposed to be necessary and sufficient for the existence of global Whittaker model.

14. An Example

Let Π be an automorphic cuspidal representation of $\mathrm{GL}_{4}\left(\mathbb{A}_{F}\right), K$ a quadratic algebra over $F, \chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$, thought of as a character on $\mathrm{GL}_{2}\left(\mathbb{A}_{K}\right)$. If the period integral

$$
\int_{\mathbb{A}_{F}^{\times} G L_{2}(K) \backslash \operatorname{GL}_{2}\left(\mathbb{A}_{K}\right)} f(g) \chi^{-1}(g) d g,
$$

is not identically zero, then by Theorem 11, one knows that the theta lift of Π to $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$ is nonzero, and the automorphic form so obtained on $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$ has a global χ-Bessel model. By Theorem 13.1 of [G-T2], and the theorem due to Ginzburg, Jiang, Rallis in [J-G-R] about Bessel models for $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$, it follows that,
(1) $L\left(s,\left.\Lambda^{2}(\Pi) \otimes \chi^{-1}\right|_{\mathbb{A}_{F}^{x}}\right)$ has a pole at $s=1$.
(2) $L\left(\frac{1}{2}, \Pi \otimes \operatorname{Ind}_{K}^{F} \chi^{-1}\right) \neq 0$.

However, we construct an example here to show that these global conditions together with the necessary local condition,
(3) $\operatorname{Hom}_{\mathrm{GL}_{2}\left(K_{v}\right)}\left(\Pi_{v}, \chi_{v}\right) \neq 0$,
are not adequate to ensure that the period integral

$$
\int_{\mathbb{A}_{F}^{\times} \mathrm{GL}_{2}(K) \backslash \mathrm{GL}_{2}\left(\mathbb{A}_{K}\right)} f(g) \chi^{-1}(g) d g
$$

is not identically zero.
In the example constructed below, if the period integral were nonzero, then the theta lift to $\mathrm{GSp}_{4}\left(\mathbb{A}_{F}\right)$ would be a nonzero generic cuspidal irreducible automorphic representation, with a χ-Bessel model. In particular for the theta lift, $\theta(\Pi)=\otimes_{v} \theta\left(\Pi_{v}\right)$ each of $\theta\left(\Pi_{v}\right)$ will have χ_{v}-Bessel models. However, we will ensure that at some place, say v_{0} of F, the representation of $\mathrm{GL}_{4}\left(F_{v_{0}}\right)$ is of the form $\tau \times \tau$ for a supercuspidal representation τ of $\mathrm{PGL}_{2}\left(F_{v_{0}}\right)$ such that the character $\chi_{v_{0}}$ of $K_{v_{0}}^{\times}$does not appear in the restriction of τ to $K_{v_{0}}^{\times}$. In that case, $\theta\left(\Pi_{v_{0}}\right)$ which is the generic member of the principal series representation $1 \rtimes \tau$ of $\operatorname{GSp}_{4}\left(F_{v_{0}}\right)$ coming from the Klingen parabolic does not carry the character $\chi_{v_{0}}$ of $K_{v_{0}}^{\times}$in its Bessel model by our calculations in earlier sections, contradicting our assumption of nonzero period integral.

It suffices to construct an automorphic representation Π on $\mathrm{GL}_{4}\left(\mathbb{A}_{F}\right)$, a quadratic field extension K of F, and a character $\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$with properties (1), (2), (3), which has the further property that at some place, say v_{0} of F which remains inert in $K, \Pi_{v_{0}}=\tau \times \tau$ for a supercuspidal representation τ of $\mathrm{PGL}_{2}\left(F_{v_{0}}\right)$ such that
(4) $\operatorname{Hom}_{K_{v_{0}}}\left(\tau, \chi_{v_{0}}\right)=0$.

Let us begin with F a totally real number field, K a totally imaginary quadratic extension of F, v_{0} a place of F which is inert in K, τ a supercuspidal representation of $\mathrm{PGL}_{2}\left(F_{v_{0}}\right)$, and $\chi_{v_{0}}$ a character of $K_{v_{0}}^{\times}$which does not appear in τ. Let χ be a Grössencharacter $\chi: \mathbb{A}_{K}^{\times} / K^{\times} \rightarrow \mathbb{C}^{\times}$which is trivial on \mathbb{A}_{F}^{\times}is trivial, and whose restriction to $K_{v_{0}}^{\times}$is $\chi_{v_{0}}$.

Let E be a quadratic extension of F which is totally real and for which the place v_{0} of F splits in two places v_{1}, v_{2} of E. Let D_{E} be a quaternion division algebra over E
such that the invariants of D_{E} are $1 / 2,1 / 2$ at the two places v_{1}, v_{2} of E, and zero at all the other finite places. We also assume that D_{E} remains a division algebra at all the infinite places.

By the globalization theorem of $[\mathrm{P}-\mathrm{S}]$, there is an automorphic representation Λ of $\mathbb{A}_{E}{ }^{\times} \backslash D_{E}^{\times}\left(\mathbb{A}_{E}\right)$ with local components $\tau^{J L}, \tau^{J L}$ at the two places v_{1}, v_{2}, unramified at all the other non-archimedean places, and such that the period integral

$$
\int_{\mathbb{A}_{E}^{\times}(K E) \times \backslash \mathbb{A}_{K E}^{\times}} f(g) \chi_{K E}^{-1}(g) d g,
$$

is nonzero for some function f in the space of Λ, where $\chi_{K E}$ is the Grössencharacter on $\mathbb{A}_{K E}^{\times}$which is obtained by taking the norm mapping to \mathbb{A}_{K}^{\times}and composing with χ defined on \mathbb{A}_{K}^{\times}. (Note that since the character $\chi_{v_{0}}$ of $K_{v_{0}}^{\times}$does not belong to τ, it belongs to $\tau^{J L}$.)

Note the general identity of group representations for H a subgroup of index two in G :

$$
\Lambda^{2}\left(\operatorname{Ind}_{H}^{G} X\right) \cong \operatorname{Ind}_{H}^{G}\left(\Lambda^{2}(X)\right) \oplus M(X),
$$

where $M(X)$ is the multiplicative, or twisted tensor induction. It follows that if X is two dimensional, and the determinant of X is trivial,

$$
\Lambda^{2}\left(\operatorname{Ind}_{H}^{G} X\right) \cong \mathbf{1} \oplus \omega \oplus M(X)
$$

where ω is the nontrivial character of G trivial on H.
As the representation Λ of $D_{E}^{\times}\left(\mathbb{A}_{E}\right)$ has trivial central character, it follows from the above that the representation $\Pi=\operatorname{Ind}_{E}^{F} \Lambda$ of $\mathrm{GL}_{4}\left(\mathbb{A}_{F}\right)$ (automorphic induction due to Arthur and Clozel after going from $D_{E}^{\times}\left(\mathbb{A}_{E}\right)$ to $\mathrm{GL}_{2}\left(\mathbb{A}_{E}\right)$ by the Jacquet-Langlands correspondence) is symplectic in the sense that

$$
L\left(s, \Lambda^{2}(\Pi)\right)
$$

has a pole at $s=1$. (We will also need to appeal to a theorem of D. Ramakrishnan according to which the (Asai) representation $M(X)$ is modular for X two dimensional.)

Because of the nonvanishing of the period integral of Λ along a torus in $D_{E}^{\times}\left(\mathbb{A}_{E}\right)$, it follows from a theorem of Waldspurger that

$$
L\left(\frac{1}{2}, \Lambda \otimes \operatorname{Ind}_{K E}^{E} \chi_{K E}^{-1}\right) \neq 0
$$

By generality about L-functions, for $\Pi=\operatorname{Ind}_{E}^{F} \Lambda$,

$$
L\left(s, \Pi \otimes \operatorname{Ind}_{K}^{F} \chi^{-1}\right)=L\left(s, \Lambda \otimes \operatorname{Ind}_{K E}^{E} \chi_{K E}^{-1}\right)
$$

In particular,

$$
L\left(\frac{1}{2}, \Pi \otimes \operatorname{Ind}_{K}^{F} \chi^{-1}\right) \neq 0
$$

Observing that the local conditions,
(3) $\operatorname{Hom}_{\mathrm{GL}_{2}\left(K_{v}\right)}\left(\Pi_{v}, \chi_{v}\right) \neq 0$,
are automatically satisfied at all the other places of F outside of v_{0} as by construction the local representations are principal series representations where this follows from lemma 11.3; at the place v_{0}, this condition is satisfied by the analysis of χ-invariant linear forms for the subgroup $\mathrm{GL}_{2}(K)$ of $\mathrm{GL}_{4}(k)$ done for principal series representations of $\mathrm{GL}_{4}(k)$
coming from the $(2,2)$ parabolic in section 11 . This completes the construction of the desired example.
Remark 14.1. The question considered in this section is closely related to the existence of Shalika models considered recently by Jacquet-Martin [J-M], as well as Gan-Takeda [G-T1]. We recall that Gan-Takeda have constructed a counter-example to the existence of global Shalika periods for $\mathrm{GL}_{2}(D)$ even when all the natural local and global conditions are met. Our construction of the counter-example is very similar to that of Gan-Takeda; however, we note that the Gan-Takeda counter-example works for $\mathrm{GL}_{2}(D)$, whereas ours actually works (for a slightly different question) for $\mathrm{GL}_{4}(k)$. The counter-example here as well as in the work of Gan-Takeda are based on exploiting the difference between theta liftings $\Theta(\tau \times \tau)$ and $\theta(\tau \times \tau)$ from $\mathrm{GO}_{6}(k)$ to $\mathrm{GSp}_{4}(k)$. The representation $\tau \times \tau$ of $\mathrm{GL}_{4}(k)$ has nontrivial χ-period for the subgroup $\mathrm{GL}_{2}(K)$, so the representation $\Theta(\tau \times \tau)$ of $\mathrm{GSp}_{4}(k)$ has χ-Bessel model; but the representation $\theta(\tau \times \tau)$ of $\mathrm{GSp}_{4}(k)$ does not have χ-Bessel model. In this example, the representation $\Theta(\tau \times \tau)$ of $\mathrm{GSp}_{4}(k)$ is a nontrivial extension of $\theta(\tau \times \tau)$ by $\theta\left(\tau^{J L} \times \tau^{J L}\right)$, which are the two irreducible components of the unitary principal series $1 \rtimes \tau$ coming from the Klingen parabolic.

References

[F] M. Furusawa, On L-functions for $\operatorname{GSp}(4) \times \operatorname{GL}(2)$ and their special values. J. Reine Angew. Math. 438 (1993), 187-218.
[G-T1] W.T. Gan and S. Takeda, On Shalika Periods and a theorem of Jacquet-Martin, to appear in the American J. of Math..
[G-T2] W.T. Gan and S. Takeda, The local Langlands conjecture for GSp(4), preprint.
[G-T3] W.T. Gan and W. Tantono, The local Langlands conjecture for GSp(4) II: The case of inner forms, preprint.
[G-J-R] D. Ginzburg, D. Jiang and S. Rallis, On the nonvanishing of the central value of the RankinSelberg L-functions, II, Automorphic representations, L-functions and applications: progress and prospects, 157-191, Ohio State Univ. Math. Research Inst. publication 11, de Guyter, Berlin (2005).
[G-P1] B. Gross and D. Prasad, On the decomposition of a representation of SO_{n} when restricted to SO_{n-1}. Canad. J. Math. 44 (1992), no. 5, 974-1002.
[G-P2] B. Gross and D. Prasad, On irreducible representations of $\mathrm{SO}_{2 n+1} \times \mathrm{SO}_{2 m}$. Canad. J. Math. 46 (1994), no. 5, 930-950.
[G] J. Guo, Uniqueness of Generalized Waldspurger model for GL(2n). Pacific J. of Math, vol 180, No. 2, 1997, 273-289.
[H-K] M. Harris and S.S. Kudla, Arithmetic automorphic forms for the nonholomorphic discrete series of $\operatorname{GSp}(2)$. Duke Math. J. 66 (1992), no. 1, 59-121.
[H-S-T] M.Harris, D. Soudry, R. Taylor, ℓ-adic representations associated to modular forms over quadratic imaginary fields I, lifting to $\mathrm{GSp}_{4}(\mathbb{Q})$, Inventiones Math. 112 (1993), No. 2, 377-411.
[I-I] A. Ichino and T. Ikeda, On periods of Automorphic forms on Special Orthogonal groups and the Gross-Prasad conjecture, preprint (2007).
[J-M] H. Jacquet and K. Martin, Shalika periods on GL(2,D) and GL(4), Pacific J. Math., Vol. 233, No. 2 (2007), pp. 341-370.
[M] G. Muic, Intertwining operators and Jordan-Holder Series for $\mathrm{Sp}_{4}(\mathbb{R})$., preprint.
[N-PS] M. Novodvorsky and I. Piatetski-Shapiro, Generalized Bessel models for the symplectic group of rank 2. (Russian) Mat. Sb. (N.S.) 90(132) (1973), 246-256, 326.
[Pi-S] A. Pitale and R. Schmidt, Integral representation for L-functions for $\mathrm{GSp}(4) \times \mathrm{GL}(2)$, preprint.
[P] D. Prasad, Trilinear forms for rep representations of $G L(2)$, and local epsilon factors, Compositio Math. 75 (1990) 1-46.
[P1] D. Prasad, Some applications of seesaw duality to branching laws, Math. Annalen. 304 (1996), 1-20.
[P2] D. Prasad, Some remarks on representations of a division algebra and of the Galois group of a local field, J. Number Theory 74 (1999), no. 1, 73-97.
[P3] D. Prasad, Relating invariant linear form and local epsilon factors via global methods, with an appendix by H. Saito; Duke J. of Math. vol. 138, No.2, 233-261 (2007).
[P-S] D. Prasad and Rainer Schulze-Pillot, Generalized form of a conjecture of Jacquet, and a local consequence, Crelle Journal, vol. 616 (2008).
[Pr] T. Przebinda, The duality correspondence of infinitesimal characters, Colloq. Math. 70 (1996), no. 1, 93-102.
[Ra] S. Rallis, Langlands' Functoriality and the Weil Representation, American J. Math, 104 (1982), no. 3, pp. 469-515
[Ro1] B. Roberts, The nonarchimedean theta correspondence for $\operatorname{GSp}(2)$ and $G O(4)$, Transactions of the AMS, 351 (1999),781-811.
[Ro2] B. Roberts, Global L-packets for GSp(2) and theta lifts, Doc. Math. 6 (2001), 247-314.
[Sc] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren der Mathematischen Wissenschaften, 270. Springer-Verlag, Berlin, 1985. x+421 pp.
[S] H. Saito, On Tunnell's formula for characters of GL(2), Compositio Math 85 (1993) 99-108.
[Sh] J. A. Shalika, Multiplicity One for GL(n), Ann. of Math. (2) 100 (1974), 171-193.
[TB] R. Takloo-Bighash, Theta functions, Bessel coefficients, and Sprinor L-functions, with an appendix by Philippe Michel, Forum Math. 19 (2007), no. 3, 487-554.
[T] J. Tunnell, Local ϵ-factors, and characters of GL(2), American J. Math 105 (1983)1277-1307.
[W] J.-L. Waldspurger,Sur les valeurs de certaines fonctions L automorphes en leur centre de symtrie. Compositio Math. 54 (1985), no. 2, 173-242.
[Wa1] N. Wallach, Generalized Whittaker vectors for holomorphic and quaternionic representations, Comment. Math. Helv. 78 (2003), 266-307.
[Wa2] N. Wallach, Holomorphic continuation of generalized Jacquet integrals for degenerate principal series, Representation Theory 10 (2006), 380-398.
[War] G. Warner Harmonic Analysis on Semi-Simple Lie groups I, Die Grundlehren der mathemtischen Wissenschaften in Einzeldarstellungen, Band 188, Springer-Verlag (1972).
D. P.: School of Mathematics, Tata Institute of Fundamental Research, Colaba, Mumbai-400005, INDIA

E-mail address: dprasad@math.tifr.res.in
R. T.-B.: Department of Mathematics, Statistics, and Computer Science, University of Illinois at Chicago, 851 S. Morgan St, Chicago, IL 60607

E-mail address: rtakloo@math.uic.edu

[^0]: Key words and phrases. Bessel models, Weil representation, Theta correspondence, local epsilon factors, central critical L-value.

