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ON A CONJECTURE OF JACQUET ABOUT
DISTINGUISHED REPRESENTATIONS OF GL(n)

DIPENDRA PRASAD

Abstract
In this paper we prove a conjecture of Jacquet about supercuspidal representations of
GLn(K ) distinguished byGLn(k), or by Un(k), for K a quadratic unramified exten-
sion of a non-Archimedean local field k.

1. Introduction
Let G be a reductive algebraic group over a non-Archimedean local fieldk. Let K
be a quadratic field extension ofk. There has recently been much interest in trying to
classify representations ofG(K ) which haveG(k)-invariant linear forms. The initial
impetus for such a study came from the work of G. Harder, R. Langlands, and M.
Rapoport [HLR] for G = GL2 which was done in the global context. H. Jacquet (cf.
[JY1], [JY2]) has made the following conjectures forG = GLn andG = Un, where
Un is the unique quasi-split unitary group inn variables overk which is split overK .
We also refer to the paper [F] by Y. Flicker.

CONJECTURE1
Letπ be an irreducible admissible representation ofGLn(K ), where K is a quadratic
extension of a non-Archimedean local field k. Assume that the central character ofπ

restricted to k∗ is trivial. Then we have the following.
(1) If n is odd,πσ ∼= π∗ if and only if π has aGLn(k)-invariant linear form,

whereπσ denotes the representation ofGLn(K ) obtained fromπ by using
the automorphism ofGLn(K ) coming from the Galois automorphismσ of K
over k.

(2) If n is even,πσ ∼= π∗ if and only if eitherπ has aGLn(k)-invariant linear
form orπ has a linear form̀ with `(gv) = ωK/k(detg)`(v) for g ∈ GLn(k)

and v ∈ π , whereωK/k is the quadratic character of k∗ associated to the
extension K of k.
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CONJECTURE2
Letπ be an irreducible admissible representation ofGLn(K ), where K is a quadratic
extension of a non-Archimedean local field k. Thenπσ ∼= π if and only if π has a
Un(k)-invariant linear form for Un, the unique quasi-split unitary group in n vari-
ables over k which is split over K , and whereπσ denotes the representation of
GLn(K ) obtained fromπ by using the automorphism ofGLn(K ) coming from the
Galois automorphismσ of K over k.

The aim of this paper is to prove these conjectures for supercuspidal representations
of GLn(K ) whenK is an unramified quadratic extension ofk.

The analogues of these conjectures in the case of finite fields is due to R. Gow
[G] (cf. also [P2]).

The proof of this conjecture is accomplished via the methods of our earlier paper
[P2], in which we treated a similar question for certain representations of finite groups
of Lie type, together with the theorem of C. Bushnell and P. Kutzko that realizes any
supercuspidal representation of GLn by compact induction from a finite-dimensional
representation of an open subgroup which is compact modulo the center. Since the
methods of compact induction are expected to be true for supercuspidal representa-
tions in great generality, it appears that the methods of this paper, which treats rep-
resentations of compact open subgroups via finite groups of Lie type, though usually
not reductive, may have greater applicability.

We note that in an ongoing work of J. Hakim and F. Murnaghan (cf. [HM]),
the authors are able to obtain certain results for both the ramified and unramified
quadratic extensionK of k by an elaborate structure theory of the representations of
GLn, but they are not able to get as complete results as we obtain here for the quadratic
unramified case. We refer to the paper of Hakim and Z. Mao [HMa] for some of the
earlier results in this direction.

2. Recollection of earlier results
We begin by recalling the theorem proved in our earlier paper [P2].

Let G(F) be theF rational points of a connected algebraic groupG over a finite
field F. Let E be the quadratic field extension ofF.

We recall that in [P2] we called a representation ofG = G(E) stableif its charac-
ter takes the same value on any two elements inG(E) which become conjugate when
we extend the fieldE to its algebraic closure.

Let σ denote the automorphism ofG(E) obtained from the Galois automorphism
of E overF, and letπσ denote the representation ofG(E) obtained from a represen-
tationπ of G(E) by using the automorphismσ of the groupG(E).
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THEOREM 1
For a connected algebraic group GoverF, an irreducible stable representationπ of
G(E) has a fixed vector for G(F) if and only ifπσ ∼= π∗.

Remark.For a Hermitian matrixJ in GLn(E), the unitary groupUn(J) can be defined
to be the set of matricesg ∈ GLn(E) such that

gJσ(t g) = J,

or g = Jσ(t g−1)J−1. Thus the unitary groupUn(J) can be considered as the fixed
points of the involutiong → Jσ(t g−1)J−1 on GLn(E), which is to be thought of
as the new Frobenius action on GLn(E) whose fixed point subgroup isUn(J). Under
this Frobenius action the transform ofπ , to be denoted byπFr, becomes(πσ )∗; hence
the conditionπFr ∼= π∗ becomes, for unitary groups,(πσ )∗ ∼= π∗ or πσ ∼= π . This
explains the difference in the condition on a representation of GLn(K )—to have a
GLn(k)-invariant linear form, or to have aUn(k)-invariant linear form in Conjectures
1 and 2 due to Jacquet.

We apply this theorem to prove the following theorem.

THEOREM 2
Let K be a quadratic unramified extension of a non-Archimedean local field k. Sup-
pose thatOK andOk are the ring of integers in the two fields. Let Gbe eitherGLn

overOk or the unitary group overOk defined in terms of a nondegenerate Hermitian
form overOK . (A nondegenerate Hermitian form overOK means, in concrete terms,
that the matrix of the Hermitian form has entries inOK and that its determinant is a
unit, i.e., an element ofO∗

K .) Then an irreducible representationπ of GLn(OK ) has
a fixed vector for G(Ok) if and only ifπσ ∼= π∗. Here the action ofσ on represen-
tations ofGLn(K ) is the standard Galois action for G= GLn and is the standard
Galois action composed with the dual for G, the unitary group.

Proof
An irreducible representation of GLn(OK ) is actually a representation of
GLn(OK /πm

k ) for some integerm ≥ 1, whereπk denotes a uniformizing parame-
ter ofOk and hence also ofOK . It is a consequence of a theorem of M. Greenberg (cf.
[G1], [G2]), generalizing the notion ofWitt group schemes, that the groupG(Ok/π

m
k )

is representable by a connected algebraic group over the finite fieldOk/πk in the sense
that there is a connected algebraic groupGn,m over the finite fieldOk/πk such that for
any finite field extensionE of Ok/πk, Gn,m(E) = G(OL/πm

k ), whereL is the unique
unramified extension ofk which corresponds to the extensionE of the residue field
Ok/πk of k.
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The proof of this theorem will therefore follow from Theorem 1 if we can check
that all representations of GLn(OK /πm

k ) are stable. This is because in fact inGn,m

there is no difference between conjugacy and stable conjugacy. This follows, for in-
stance, by an application of Lang’s theorem, as the centralizer of any element inGn,m

is connected. To substantiate our claim about the connectedness of the centralizer, we
only point out that the invertible elements in anyOK subalgebra (not necessarily free
overOK /πk

n) of the matrix algebraMn(OK /πk
n) define a connected group.

3. The theorem of Bushnell and Kutzko
The following theorem is due to Bushnell and Kutzko [BK, Chap. 6].

THEOREM 3
Given a supercuspidal representationπ of GLn(K ), there exists an irreducible repre-
sentation5 of K∗GLn(OK ) such that

IndGLn(K )

K ∗GLn(OK )
5 ∼=

∑
µ

π ⊗ µ,

where the charactersµ of K∗ are certain distinct unramified characters of K∗ with
µn

= 1 which form a group under multiplication; the representationsπ ⊗ µ are
distinct for distinct charactersµ.

Proof
Since this is not the usual form of the theorem of Bushnell and Kutzko, we give a
detailed proof. We recall that Bushnell and Kutzko realized any supercuspidal repre-
sentation of GLn(K ) as an induced representation from a maximal compact modulo
center subgroup of GLn(K ),

π ∼= indGLn(K )

K 3,

for a certain maximal compact modulo center subgroupK of GLn(K ) which can be
written as

K = K0 · E∗

with K0 ⊂ GLn(OK ), a normal subgroup ofK , and E a field extension ofK of
degreen. The mapping val◦ det onK induces an isomorphism

K /(K0 · K ∗) ∼= f Z/nZ ∼= Z/eZ,

where f Z is the image of val◦ det onE∗ ande is the ramification index ofE. It
follows that

IndK
K ∗K0

(
3|K ∗K0

)
=

∑
3 ⊗ µ
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for unramified charactersµ of K ∗ coming from the characters ofZ/eZ. Hence∑
π ⊗ µ = indGLn(K )

K ∗K0

(
3|K ∗K0

)
= indGLn(K )

K ∗GLn(OK )

[
indK ∗GLn(OK )

K ∗K0

(
3|K ∗K0

)]
= indGLn(K )

K ∗GLn(OK )
5

with

5 = indK ∗GLn(OK )

K ∗K0

(
3|K ∗K0

)
.

That the representationsπ ⊗ µ are distinct follows from the uniqueness of the rep-
resentation3 of K with π ∼= indGLn(K )

K 3 together with the property of3 that it is
irreducible when restricted toK0.

4. Some known results
In this section we recall the following lemma due to Flicker (cf. [F]) about the dou-
ble coset decomposition of GLn(K ) by GLn(k), whose simple proof we supply for
completeness. HereK is a separable quadratic extension ofk.

LEMMA 1
For any g inGLn(K ), σ(g−1) = g1gg2 for matrices g1, g2 ∈ GLn(k).

Proof
It suffices to prove that, given anyg in GLn(K ), there isg1 in GLn(k) such that
σ(g)g1g belongs to GLn(k). For this it suffices to prove that the equation

σ(g)Xg = gXσ(g)

has a solution forX in GLn(k). It is clear that the set of solutions in the matrix algebra
Mn(K ) forms a vector spaceV that is stable under the Galois involution, hence de-
fined overk, and is nonzero (as it contains, for instance,g−1). Since the determinant
takes nonzero values onV , it does so over thek structureVk of V too. (A nonzero
polynomial cannot vanish on an affine space over an infinite field!)

The following two corollaries were also obtained by Flicker via standard techniques.

COROLLARY 1
The space ofGLn(k)-invariant linear forms on any irreducible admissible represen-
tation ofGLn(K ) is at most one-dimensional.
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COROLLARY 2
If an irreducible representationπ of GLn(K ) has aGLn(k)-invariant linear form,
then one hasπσ ∼= π∗.

5. Main theorem
We now give the proof of Jacquet’s conjecture whenK is an unramified quadratic
extension ofk.

THEOREM 4
Let π be an irreducible admissible supercuspidal representation ofGLn(K ), where
K is an unramified quadratic extension of a non-Archimedean local field k. Assume
that the central character ofπ restricted to k∗ is trivial. Then we have the following.
(1) If n is odd,πσ ∼= π∗ if and only if π has aGLn(k)-invariant linear form,

whereπσ denotes the representation ofGLn(K ) obtained fromπ by using the
automorphism ofGLn(K ) coming from the Galois automorphismσ of K over
k.

(2) If n is even,πσ ∼= π∗ if and only if eitherπ has aGLn(k)-invariant linear
form or π has a linear form̀ with `(gv) = ωK/k(detg)`(v) for g ∈ GLn(k)

and v ∈ π , whereωK/k is the quadratic character of k∗ associated to the
extension K of k.

Proof
From Corollary 2 we already know that ifπ has a GLn(k)-invariant linear form, then
πσ ∼= π∗. It therefore suffices to prove the converse statement. From the theorem of
Bushnell and Kutzko recalled in Section 3, there exists an irreducible representation
5 of K ∗GLn(OK ) such that

IndGLn(K )

K ∗GLn(OK )
5 ∼=

∑
µ

π ⊗ µ,

where the charactersµ of K ∗ are certain distinct unramified characters ofK ∗. The
isomorphismπσ ∼= π∗ implies that the same is true for5: 5σ ∼= 5∗. To prove
this, note that Bushnell and Kutzko work with “simple types”, say(J, λ), and prove
a uniqueness theorem for these up toG conjugacy. The isomorphism ofπ with πσ∗

would, however, only give an elementg in G = GLn(K ) which preservesJ under
inner conjugation and takesλ to λσ∗. This g has the property thatg2 takesλ to λ

and hence belongs toJ. It follows that the groupJ generated byg and J is compact
modulo center and that the induction ofλ to J, say3, has the property that3 ∼= 3σ∗.
Induction of3 to a maximal compact modulo center subgroup will continue to have
this property, and hence the same is true for5 by the proof of Theorem 3.
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From a simple application of Mackey theory about the restriction of an induced
representation to a subgroup, it follows that

ResGLn(k)IndGLn(K )

K ∗GLn(OK )
5 = IndGLn(k)

k∗GLn(Ok)
5|k∗GLn(Ok) ⊕ . . . ,

where the terms omitted in the above expression come from the nontrivial double
cosets of

K ∗GLn(OK )\GLn(K )/GLn(k).

Noting that5 restricted tok∗ is trivial, Theorem 2 together with an application of the
Frobenius reciprocity implies that one of the twists ofπ by an unramified character
µ of K ∗ has a GLn(k)-invariant form. We claim that the only possibleµ for which
π ⊗ µ could possibly have a GLn(k)-invariant linear form is the unramified character
µ of order 2. For this we note by Corollary 2 that ifπ ⊗ µ has a GLn(k)-invariant
linear form, then(π ⊗ µ)σ ∼= (π ⊗ µ)∗, or πσ ∼= π∗

⊗ µ−2. Since we are already
given thatπσ ∼= π∗, it follows thatπ ∼= π⊗µ2. But the twists that appear in Theorem
3 (due to Bushnell and Kutzko) are all distinct. Henceµ2

= 1. In particular, ifn is
odd,µ is trivial, and hence a representationπ of GLn(K ), n odd, withπσ ∼= π∗,
has a GLn(k)-invariant linear form. Ifn is even, then eitherπ or π ⊗ ωK/k, has a
GLn(k)-invariant form.

THEOREM 5
Letπ be an irreducible admissible supercuspidal representation ofGLn(K ), where K
is a quadratic unramified extension of a non-Archimedean local field k. Thenπσ ∼=

π if and only if π has a Un(k)-invariant linear form for Un, the unique quasi-split
unitary group in n variables over k which is split over K , and whereπσ denotes the
representation ofGLn(K ) obtained fromπ by using the automorphism ofGLn(K )

coming from the Galois automorphismσ of K over k.

Proof
If a representationπ of GLn(K ) has aUn(k)-invariant linear form, then one has
πσ ∼= π . This is proved via global methods by embedding a representation of GLn(K )

which has a nontrivialUn(k)-invariant linear form into a global automorphic repre-
sentation with nonzero period on the unitary group and then appealing to a global
theorem. We refer to [F], [HF], and [H] for various contexts in which such a result
has been proved and to the most recent and most complete work by Jacquet in [J].

It therefore suffices to prove that supercuspidal representationsπ of GLn(K )

with πσ ∼= π carry aUn(k)-invariant linear form. The proof of the previous theorem
constructs in this case aUn(k)-invariant linear form on some twistπ ⊗ µ of π by an
unramified character ofK ∗. Notice that ifπ ⊗ µ has aUn(k)-invariant linear form,
thenπ itself carries aUn(k) linear form. This follows as the determinant map on
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GLn(K ) which, when restricted toUn(k), takes values inU1 = {z ∈ K ∗
|zσ(z) = 1}

on which an unramified character such asµ must be trivial.

Remark.It will be nice to be able to carry out a generalization of the method used
here to the case of the ramified quadratic extensions. One of the difficulties in this
case, which was also encountered in [P1] but taken care of there by explicit character
formulae, is that the unique invariant linear form that one wants to construct does not
arise from thetrivial double coset used in the arguments of the above theorems. Thus
although Theorem 2 is not true for ramified field extensions, as one can easily see,
Conjectures 1 and 2 are expected to be true.

Remark.It is expected that ifπ is a supercuspidal representation of GLn(K ) with
πσ ∼= π∗, then eitherπ or π ⊗ ωK/k has a GLn(k)-invariant linear form, where
ωK/k is the quadratic character ofk∗ associated to the extensionK of k, but that
the two possibilities do not hold simultaneously. Also, it is expected that ifπ is a
supercuspidal representation of GLn(K ) with πσ ∼= π , thenπ has aUn(k)-invariant
form which is unique up to scalars. Both of these expectations are false for principal
series representations, as can be easily seen. Hence methods of Gelfand pairs are
inadequate to prove these multiplicity-1 expectations. Having constructed the desired
linear forms, what needs to be proved is thatnontrivial double cosets do not contribute
to invariant linear forms. This can be done by the property of inducing data in many
cases (cf. [HM], [HMa]).

6. Question of central characters
In Conjecture 1 and Theorem 4, we restricted ourselves to representations of GLn(K )

whose central character restricted tok∗ is trivial. One can in fact treat the more gen-
eral situation that might arise from the conditionπσ ∼= π∗. Observe that ifπσ ∼= π∗,
then the restriction of the central character ofπ to k∗ is either trivial or isωK/k. Fix
a characterχ of K ∗ whose restriction tok∗ is ωK/k. It is easy to see that twisting by
the characterχ preserves the conditionπσ ∼= π∗, and if n is odd, it takes represen-
tationsπ whose central character restricted tok∗ is trivial to representationsπ ⊗ χ

whose central character restricted tok∗ is nontrivial, and vice-versa. It is clear that
if π has a GLn(k)-invariant linear form, then forn odd,π ⊗ χ has a linear form on
which GLn(k) operates byωK/k. Hence Theorem 4 implies the following slightly
more general theorem

THEOREM 6
A representationπ of GLn(K ) for K a quadratic unramified extension of k and n odd,
with πσ ∼= π∗, has aGLn(k)-invariant linear form if and only if its central character
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restricted to k∗ is trivial. If the central character ofπ restricted to k∗ is ωK/k, thenπ

has a linear form̀ : π → C with `(gv) = ωK/k(detg)`(v) for v ∈ π and for g in
GLn(k).

For n even, we have the following theorem.

THEOREM 7
For K a quadratic extension of k and n even, a supercuspidal representationπ of
GLn(K ), with πσ ∼= π∗ has trivial central character when restricted to k∗.

Proof
The analogous result for irreducible representations of the Weil groupWK is a simple
group-theoretic fact proved in J. Rogawski’s book (cf. [R, Lemma 15.1.2(b)]). The
result then follows from the local Langlands conjecture proved by Harris, Taylor, and
Henniart.

7. A conjecture
The method of this paper, which tries to retrieve information on representations of a
p-adic group via its restriction to compact open subgroups, does not apply to repre-
sentations other than supercuspidals, most notably to discrete series representations
that are not supercuspidal. Based on what is expected for GLn, it is tempting to spec-
ulate about at least one general class of representations as to what may be expected in
general. In this section we make a conjecture about when the Steinberg representation
of G(K ) has aG(k)-invariant linear form in the case whenG is a quasi-split reduc-
tive group over a non-Archimedean local fieldk. A particular case of the conjecture
below is that, for a simply connected semisimple quasi-split groupG over a local field
k, the Steinberg representation ofG(K ) carries a uniqueG(k)-invariant linear form.
This is not the case for general quasi-split reductive groups, and we make a precise
conjecture below.

Observe that if there is an exact sequence of algebraic groups

1 → A → G → G′
→ 1

with A a central subgroup in a reductive algebraic groupG whose derived subgroup is
quasi-split overk, then thek-rational points of a flag varietyG/P of G can be identi-
fied to thek-rational points of a flag varietyG′/P′ of G′. It follows that the Steinberg
representation ofG(k) is the restriction toG(k) of the Steinberg representation of
Gad(k), whereGad is the groupG divided by its centerZ(G). This actually gives
an extra structure to the Steinberg representation ofG(k) sinceGad(k) is in general
larger than the image ofG(k) in Gad(k).
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We now construct a natural characterχK on G(k) with values inZ/2 associated
to any quadratic extensionK of k, whereG is any reductive group over the local field
k.

We denote the simply connected cover ofGad by Gsc, and we denote the center of
Gsc by Z. By a theorem due to Kneser and Bruhat-Tits, the first Galois cohomology
of Gsc vanishes. This gives rise to the following exact sequence of groups:

1 → Z(k) → Gsc(k) → Gad(k) → H1(k, Z) → 1.

It is known thatGsc(k)/Z(k) is its own derived subgroup ifGsc is not anisotropic; this
is a consequence of the so-called Kneser-Tits problem, known to be true for allp-adic
fields due to Platonov. Hence, from the exact sequence above, the character group of
Gad(k) can be identified to the character group ofH1(k, Z). By the Tate-Nakayama
duality, the character group ofH1(k, Z) can be identified toH1(k, Z∨), whereZ∨ is
the Cartier dual ofZ.

Let G∨ be the dual group ofGad. SoG∨ is a complex semisimple simply con-
nected group whose center is isomorphic toZ∨(C). The groupG∨ comes equipped
with the action of the Galois group ofk via algebraic automorphisms on the com-
plex groupG∨(C), and hence the center ofG∨(C), which as we have pointed out is
Z∨(C), gets a Galois action that is the same as it gets as the Cartier dual ofZ. (In
particular,Z∨ is a constant group scheme overk for a semisimple split groupGs.)
It follows from the Jacobson-Morozov theorem that there is a homomorphism from
SL2(C) to G∨(C) which takes a nontrivial unipotent of SL2 to a regular unipotent
in G∨(C). Since the action of the Galois group ofk preserves a based root datum in
G∨, there is a regular unipotent inG∨(C) on which the Galois action is trivial. Hence
the homomorphism from SL2(C) to G∨(C) can be assumed to be invariant under the
Galois action. Under this homomorphism the center of SL2, consisting of±1, goes to
the center ofG∨ and thus canonically gives a Galois invariant element in the center of
G∨ which is either trivial or is of order 2. (This is the element that decides whether an
algebraic self-dual representation ofG∨ is orthogonal or symplectic (cf. [P3]).) The
associated mapping fromZ/2 to Z∨ gives rise to a homomorphism fromH1(k, Z/2)

to H1(k, Z∨). We now define an element inH1(k, Z∨) to be the image of the element
in H1(k, Z/2) which defines the quadratic extensionK of k. This, as we saw earlier,
defines a character, sayχK , which is either trivial or of order 2 on the groupGad(k)

with values inZ/2 associated to any quadratic extensionK of a local fieldk. If G is
any reductive group overk, the natural map fromG to Gad, when composed with the
characterχK defined here forGad, thus defines a character onG(k) for any reductive
groupG.

We are now ready to make our conjecture.
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CONJECTURE3
For a reductive algebraic group G over a local field k whose derived subgroup is
quasi-split, the Steinberg representation of G(K ), K a quadratic extension of k, car-
ries a unique linear form̀ such that

`(gv) = χK (g)`(v)

for all g ∈ Gad(k), and v a vector in the Steinberg representation of G(K ). The
Steinberg representation of G(K ) does not carry aχ -invariant linear form for the
action of the group Gad(k) on the Steinberg representation of G(K ) for any other
characterχ of Gad(k).

Remark.For G = GL2(K ), this conjecture follows from the results in [P1].
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