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ON THE STEINITZ MODULE AND

CAPITULATION OF IDEALS

CHANDRASHEKHAR KHARE and DIPENDRA PRASAD

Abstract. Let L be a finite extension of a number field K with ring of integers
OL and OK respectively. One can consider OL as a projective module over
OK . The highest exterior power of OL as an OK module gives an element of
the class group of OK , called the Steinitz module. These considerations work
also for algebraic curves where we prove that for a finite unramified cover Y of
an algebraic curve X, the Steinitz module as an element of the Picard group
of X is the sum of the line bundles on X which become trivial when pulled
back to Y . We give some examples to show that this kind of result is not true
for number fields. We also make some remarks on the capitulation problem for
both number field and function fields. (An ideal in OK is said to capitulate in
L if its extension to OL is a principal ideal.)

§1. Introduction

Let L be a finite extension of a number field K, and let OL and OK

denote the ring of integers in L and K respectively. It is easy to see that

OL is a projective module of rank equal to the degree of the field extension

d = [L : K]. It is well known that any projective module, such as OL, over

a Dedekind domain, such as OK , can be written as a sum of a free module

and an ideal. This ideal gives a well defined element in the ideal class group

of OK , called the Steinitz module. We will denote this ideal class by StL/K .

It is the purpose of this paper to make some remarks on this module and

its relation to capitulation: An ideal in OK is said to capitulate in OL if its

extension to OL is a principal ideal. We refer to the paper of Miyake [Mi],

as well as the report by Kisilevsky [K] on the work of Olga Taussky-Todd

in which he discusses capitulation in some detail, including a comment of

E. Artin who seems to have once asked Olga Tausky-Todd if she was still

working ‘on those hopeless questions’ ! The situation seems to prevail even

today. We refer to the book of Narkiewicz [Na, pp. 397–403], together with

its exhaustive bibliography, for the known literature on Steinitz module.
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The concepts introduced in the previous paragraph work as well for

algebraic curves over general fields too where OL and OK are to be thought

of as structure sheaves on algebraic curves to be denoted by XL and XK ,

respectively. In this case the Steinitz module is an invertible sheaf on the

curve XK defined most simply as the determinant line bundle associated

to the vector bundle OL over XK . When the map XL → XK is an abelian

unramified covering, the Steinitz class StL/K is the product of the elements

in the (finite) kernel of the induced map Pic0(XK) → Pic0(XL) (see Propo-

sition 1). In the number field case, the analogous statement for unramified

abelian extensions L/K is false as we show by some examples.

After a few generalities in Section 2, we study the function field case

in Section 3. In the number field case, we have only been able to provide

counter-examples to certain results about capitulation and Steinitz modules

available for the function field.

Acknowledgements. We would like to thank Anupam Srivastava for

the reference to [Na], R. Schoof for the reference to [HS], and, in addition,

B. Edixhoven, E. Ghate, H. Koch for helpful conversations.

§2. Generalities

For later calculations, it will be useful to have the structure of any

ideal in OL as an OK module. This follows once the structure of OL as an

OK -module is determined. In the following lemma, and in the rest of the

paper, we denote the norm of an ideal A in OL by Nm(A) which is an ideal

in OK .

Lemma 1. Let A be an ideal in OL. Then A thought of as a module

over OK is isomorphic to

A = On−1
K ⊕ Nm(A) · StL/K .

Proof. Assume first that A is a prime ideal. Let AK = A∩OK be the

corresponding prime ideal in OK . We have Nm(A) = Ad
K where d is the

degree of the residue field extension OL/A over OK/AK . Clearly [OL/A]

thought of as an element in the Grothendieck group of finitely generated

OK -modules K0[OK ] is

d[OK/AK ] = [OK/Ad
K ] = [OK/Nm(A)].
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Therefore,

[OL/A] = [OK/Nm(A)] .

This relation clearly continues to hold good for general ideals A =
∏

℘ni

i

as

[OL/A] =
∑

ni [OL/℘i]

=
∑

ni [OK/Nm(℘i)]

= [OK/Nm(A)] .

From the exact sequence,

0 → A → OL → OL/A → 0,

we have,

[A] = [OL] − [OK/Nm(A)]

= (n − 1)[OK ] + StL/K −[OK/Nm(A)]

= (n − 2)[OK ] + StL/K +[NmA]

= (n − 1)[OK ] + StL/K ·[NmA].

In the above, we have used the identity [I1] + [I2] = [OK ] + [I1 · I2]. Now

noting that two projective modules which are equal in the K-group are

actually isomorphic, the proof of the lemma follows.

We use this lemma to prove the following well-known result.

Lemma 2. The square of the Steinitz module StL/K is the discriminant

ideal of L over K as an element of the class group of K.

Proof. There is a nondegenerate K-bilinear form tr : L×L → K given

by (x, y) → tr(xy). Let δ−1 denote the fractional ideal in OL consisting of

those elements d in L such that tr(dy) belongs to OK for all y in OL. The

inverse of δ−1 is the different ideal of OL.

We note that there is an isomorphism of OL-modules:

HomOK
[OL,OK ] ∼= δ−1.

For this observe that for any d ∈ δ−1, we have φd(x) = tr(dx) ∈ HomOK
[OL,OK ]

for x ∈ OL. The mapping d → φd gives a surjection from δ−1 to HomOK
[OL,OK ]
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as any element of HomOK
[OL,OK ] is the restriction of an element in

HomK [L,K] which because of the nondegeneracy of the trace form, is of

the form φd(x) for some d in L. As φd restricted to OL gives an element in

HomOK
[OL,OK ], d ∈ δ−1.

Now write, OL = On−1
K ⊕StL/K , and note that as proved in the previous

lemma, for any ideal A in OL thought of as a module over OK ,

A = On−1
K ⊕ Nm(A) · StL/K .

Therefore from the isomorphism HomOK
[OL,OK ] ∼= δ−1, we get

On−1
K + St−1

L/K
∼= On−1

K + Nm(δ−1) · StL/K ,

or,

St2L/K
∼= Nm(δ).

We note an immediate consequence of the lemma above.

Corollary 1. If L is an unramified extension of K its Steinitz class

StL/K is of order dividing 2.

Remark 1. It is a well known theorem of Hecke (an existence theorem,

proved by analytic methods!) that the different ideal itself is a square in

the ideal class group. By Lemma 2, Steinitz module gives an explicit square

root of the discriminant ideal. The example in [FST] of a different with an

odd class, in the situation of curves over certain fields, shows that there

may not be a similar, explicit, algebraic construction for a square root of

the different ideal.

The following lemma will be useful in the calculation of the Steinitz

module.

Lemma 3. Let L be a degree n extension of a number field K. Suppose

that we have an exact sequence of OK modules

0 → On
K → OL → M → 0,

with M isomorphic to OK/℘ for a ideal ℘ in OK . Then ℘−1 represents the

Steinitz class of the extension L of K.
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Proof. We present one of several possible proofs. We have an exact

sequence of OK modules

0 → On
K → OL → OK/℘ → 0.

So, we have the equality in the K-group K0[OK ]:

[OL] = n[OK ] + [OK ] − [℘].

On the other hand,

[OL] = (n − 1)[OK ] + StL/K .

Therefore,

StL/K = 2[OK ] − [℘].

From the exact sequence,

0 → OK → ℘−1 → ℘−1

OK

∼= OK

℘
→ 0,

we have 2[OK ] − [℘] = [℘−1]. Therefore,

StL/K = [℘−1]

as objects in K0[OK ]. However, StL/K and ℘−1 are projective modules over

OK , and as noted in Lemma 1, two projective modules which are equal in

the K-group are actually isomorphic, proving the lemma.

§3. The function field case

Let X be a projective variety over an algebraically closed field k in

which n is invertible. From the Kummer sequence in étale topology

0 → Z/nZ → O∗ n→ O∗ → 0,

it follows that the isomorphism classes of line bundles of order n is repre-

sented by H1
ét(X,Z/n) ∼= Hom[π1(X),Z/nZ]. Moreover, this identification

is functorial. It follows that given a line bundle of finite order, say n, on a

variety X, there exists a variety Y , together with a finite unramified map

to X of degree n, with the property that for any variety Z together with

a map to X, the pull back of the line bundle on X is trivial on Z if and

only if the mapping from Z to X factors through the mapping from Y to
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X. The variety Y is a degree n unramified cover of X where n is the order

of the line bundle on X constructed using the Riemann existence theorem,

and the above property of Y proved using the lifting criterion in covering

spaces.

From the above consideration, there is an unramified covering of degree

n associated to a line bundle of order n. This has a concrete construction

too which we describe now, cf. Exercise 2.7 of Chapter 4 of Hartshorne’s

book [H] for n = 2.

Let L be a line bundle of order n over a scheme X. Let φ : Ln ∼= 1

be a fixed isomorphism of Ln with the trivial line bundle on X. We will

use this data to construct an unramified cover of X of degree n. Let A =

1⊕L⊕ · · · ⊕Ln−1. This is a sheaf of OX -algebras on the scheme X defined

by the obvious law of multiplication from Li × Lj → Li+j if i + j ≤ n − 1.

If i + j ≥ n, define the law of multiplication Li × Lj → Li+j−n by using

the isomorphism of Li+j with Li+j−n via φ. By taking the Spec of the OX

algebra A, we get a degree n unramified covering XL of X whenever n is

invertible on the scheme X. This follows from the fact that if n is invertible

in a ring R, then for any invertible element r of R,

R[x]

(xn − r)

is an unramified extension of the ring R.

It is easy to see that the line bundle L becomes trivial when pulled

back to XL, and from earlier remarks it follows that if X is a projective

variety over an algebraically closed field k in which n is invertible, XL has

the universal property that for any variety Z together with a map to X

such that L pulled back to Z is trivial, the mapping from Z to X factors

through XL.

Example 1. We show by an example that such an XL does not exist

for invertible ideals in the ring of integers of number fields. More precisely,

we find two degree 2 unramified extensions of a number field K and a non-

principal ideal in K which becomes principal in both of them. For this, let

K = Q(
√
−21), and L1 = K(

√
−3), L2 = K(

√
−1). The ideal class group

of K is Z/2 ⊕ Z/2, generated by primes in K above 2 and 3. As we will

see in more detail in Example 2, all the ideals in K become principal in L1,

and the prime ideal above 2 in K becomes principal in L2. So, the prime
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ideal above 2 in K becomes principal in two distinct quadratic unramified

extensions.

Proposition 1. Let k be a field, and X a projective variety over k.

Let Y be an unramified abelian Galois covering of X with Galois group G

with the order of G invertible in k. Assume that for every integer n for

which G has an element of order n, k∗ also has an element of order n. The

mapping from the abelian variety Pic0(X) to Pic0(Y ) obtained by pull back

of line bundles has finite kernel, say H. The sum of elements in H is a line

bundle on X of order ≤ 2 which represents the Steinitz module StY/X .

Proof. Since Y is an unramified Galois covering of X with Galois group

G, the sheaf OY thought of as an OX -module is a regular representation

of G over OX . Since the order of G is invertible in k, we have a canonical

direct sum decomposition of OY , thought of as a vector bundle on X, as a

direct sum of line bundles

OY =
∑

α∈Ĝ

Lα,

where Ĝ is the group of homomorphisms of G into k∗ and Lα is the α

eigenspace of the action of G on OY . We check that the line bundles Lα on

X become trivial when pulled back to Y . We do this by proving that the

vector bundle OY over X becomes trivial when pulled back to Y , and is in

fact isomorphic to OY [G] as G-bundles. To prove this claim, represent the

scheme X locally as Spec(A) and its inverse image in Y as Spec(B). This

gives B the structure of an étale algebra over A with Galois group G, i.e.

we have an isomorphism

B ⊗A B ∼=
∑

g∈G

B = B[G],

given by b⊗ 1 → ∑
g∈G g · b, proving our claim. Clearly we have an isomor-

phism

k[G] ∼=
∑

χ∈Ĝ

k,

given by g → ∑
χ∈Ĝ χ(g). Tensoring this isomorphism by OY , we have an

isomorphism

OY [G] ∼=
∑

χ∈Ĝ

OY .

This proves that the line bundles Lχ are trivial when pulled back to Y .
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Since the order of Ĝ is the same as the order of G, it follows that we

have at least as many line bundles on X as the order of G which become

trivial when pulled back to Y . From the functorial identification of line

bundles of finite order on X with Hom[π1(X),Q/Z] it follows that the line

bundles on X which become trivial on Y (which corresponds to a normal

subgroup of π1(X) with quotient G) are in bijective correspondence with

the homomorphisms from G to Q/Z which has the same order as the order

of G. So we have found all the line bundles on X which become trivial on

Y . Since the determinant line bundle associated to L1 ⊕ · · · ⊕ Ln is
∏Li,

this completes the proof of the proposition.

§4. The number field case

We will mostly be working in the situation where OL is unramified over

OK , in which case, as noted earlier, since the discriminant ideal is trivial,

the Steinitz class is an element of order ≤ 2 in the class group of K. One

knows by class field theory that unramified abelian extensions are in bi-

jective correspondence with the subgroups of the class group ClK of K;

a subgroup H of the class group ClK of K corresponds to an unramified

abelian extension of K with Galois group ClK /H. We would have liked to

describe the Steinitz class in terms of the pair (ClK ,H). However, exam-

ples below suggest that the Steinitz class of the corresponding unramified

extension cannot be described in terms of the pair (ClK ,H) alone.

As we have seen above, in the function field case, there is a strong

link between the Steinitz class StL/K and the ideals which capitulate in the

extension. We begin by recalling a few well-known results on capitulation.

4.1. Capitulation

Let L be a finite extension of a global field K. An ideal A in OK is

called a capitulation ideal for the extension L of K if Ae, the ideal in OL

generated by A is principal. There is still no satisfactory understanding

of which ideals capitulate even for unramified abelian extensions. In this

paragraph we recall a result of Iwasawa [I] and deduce some consequences.

We also refer to the paper of Cornell and Rosen [CR] for related matters.

Proposition 2. Let L be a finite unramified Galois extension of a

global field K. Let EL denote the units of OL if L is a number field, and

globally invertible functions on the smooth projective curve XL if L is a

function field. Then the elements in the class group of OK if K is a number

field and elements in the Picard group of XK , if K is a function field,
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which become trivial when extended to OL (resp. under pull back to XL) is

a subgroup of the class group of OK (resp. Picard group of XK) isomorphic

to H1(Gal(L/K), EL).

Proof. We will write the proof assuming that K is a number field. The

same proof works for function field too.

Let A be an ideal in OK which becomes principal in L, say Ae = (x).

Since A = Aσ = (xσ) = (x), xσ = uσ · x for a unit uσ in EL where σ is an

arbitrary element of the Galois group of L over K. Clearly σ → uσ is a 1-

cocycle of Gal(L/K) with values in EL. So, every ideal in K which becomes

principal in L gives rise to an element in H1(Gal(L/K), EL). Conversely, if

φ = {φσ} ∈ H1(Gal(L/K), EL), then by Hilbert’s theorem 90, φ becomes

trivial in H1(Gal(L/K), L∗). So, one can write φσ = tσt−1 for some t ∈
L∗. Since φσ is a unit, the fractional ideal generated by t, tOL, is Galois

invariant. Since L is unramified over K, it is easy to see that all Galois

invariant ideals in OL come from ideals in OK , completing the proof of the

proposition.

Corollary 2. The order of any ideal in the ideal class group of OK

which becomes principal in OL divides the degree of the field extension

[L : K].

Remark 2. We remark that Hilbert’s Satz 94 (as generalized in [Su])

says that for an unramified, abelian extension L/K, the order of the sub-

group of ClK which capitulates in L is divisible by the degree of the exten-

sion of L over K.

Corollary 3. If H is the Hilbert class field of K with E as the group

of units, then

H1(Gal(H/K), EH ) ∼= Gal(H/K) ∼= ClK .

Proof. This follows from Proposition 2 together with the following well

known theorems:

(a) The Galois group of the Hilbert class field H of K is canonically

isomorphic to the class group of K.

(b) The principal ideal theorem which states that every ideal in K

becomes principal in L.
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Remark 3. Corollary 3 is in fact equivalent to the principal ideal the-

orem!

Corollary 4. Let L be an unramified abelian extension of K of degree

m and let the class group of K be of order mn with (m,n) = 1. Let M and

N be the unique subgroups of orders m and n in the class group ClK of K.

We have Gal(L/K) ∼= ClK /N ∼= M . Then the ideals in the class group of

K which become principal in L are precisely those which correspond to the

elements in the subgroup M of ClK .

Proof. The ideals in the class group of K which become principal in

L are certainly annihilated when multiplied by m. All such elements of the

ideal class group are contained in M . On the other hand, if the ideals in

the class group of K which become principal in L were a proper subgroup

of M then the cardinality of the set of ideals in the class group of L which

come from K will be of the form a · n, a > 1, (a, n) = 1. By the principal

ideal theorem, this subgroup of order a · n in the class group of L will have

to become principal in the Hilbert class field of K, contradicting Corollary

2.

Corollary 5. Assume that K and L are function fields of curves such

that the constant functions in K form an algebraically closed field of charac-

teristic p ≥ 0. Then the line bundles on XK which become trivial on XL are

in bijective correspondence with H1(Gal(L/K), k∗) ∼= Hom(Gal(L/K), k∗).
If k has characteristic p > 0, k∗ has no non-trivial elements of order p

and therefore no element of order p on the Picard group of XK can become

trivial on XL for any unramified extension L of K. Also, if Gal(L/K) is a

p group, the mapping from Pic(XK) to Pic(XL) is injective.

Remark 4. Unlike in the function field case, it may not even be true

that for an invertible ideal in the ring of integers of order n in the class

group of a number field, there is an unramified, abelian extension of degree

n in which the extension of the invertible ideal becomes trivial. There is

certainly an extension of order n (which may even be chosen to be abelian

if the nth roots of unity are contained in the number field) such that the

extension of the invertible ideal is trivial, but one may not be able to have

it unramified and abelian. We elaborate this point. Given a number field K

containing the nth roots of unity, and an ideal I of OK of order n in the class

group, we can construct an extension L of K with the property that L is
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abelian over K, and I capitulates in the extension L/K. To construct L we

simply put In = (α), for α ∈ OK , and define L to be K adjoined an nth root

of α. This is an abelian extension in which I capitulates. It is unramified at

all finite places not dividing n. Note that the choice of α is ambiguous up to

units, and that L depends on the choice. However, even with this freedom

of multiplying α by a unit, we may not be able to construct an unramified

abelian extension in which I capitulates. For instance if K = Q(
√−p), with

p a prime > 0, and is congruent to 1 modulo 4, the ideal I above 2 in K is

non-trivial in the ideal class group of K with I2 = (2). The only units in

K being ±1, the extensions L constructed above are K(
√

2) and K(
√
−2),

neither of which is unramified over K. It is true on the other hand that the

ideal I does capitulate in the unramified quadratic extension of K, but its

construction does not follow any general rule. By Hilbert’s Satz 94 (cf. [Su]),

if the n-primary part of the class group of K is cyclic then one can always

construct an unramified abelian extension of degree n in which any given

element of order n in the class group of K capitulates. There is an example

in [HS] of imaginary quadratic extensions with class group isomorphic to

Z/3⊕Z/3, such that there is an element of order 3 in the class group which

does not capitulate in any unramified abelian extension of degree 3.

4.2. Steinitz modules

As noted during the course of the proof of Proposition 1, if L is an

unramified Galois extension with Galois group G of a number field K with

ring of integers B in L and A in K, one has the isomorphism

B ⊗A B ∼=
∑

g∈G

B.

This implies that the Steinitz module for the extension L of K becomes

trivial when extended to L. We note this in the following proposition.

Proposition 3. If L is an unramified Galois extension of a number

field K then the Steinitz module of the extension L of K becomes trivial

when extended to the ring of integers of L.

This proposition when combined with Corollary 2 yields the following.

We are grateful to Marcin Mazur for pointing this corollary to us as a

consequence of the methods in [Na] for calculating the Steinitz module.

Corollary 6. Let L be an unramified Galois extension of K of odd

degree. Then the Steinitz module of L over K is trivial.
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Partly the difficulty in understanding Steinitz modules lies in the fact

that the ideals which capitulate are not well understood. However, we have

seen in Corollary 4 that there is one situation in which the ideals which

capitulate in an extension of number fields is well understood. So, keeping

in mind the situation of curves, we may ask the question:

Question 1. Let K be a number field with ClK as its class group. Let

L be an unramified abelian extension of K whose Galois group is identified

to ClK /H by the class field theory. Suppose that the orders of H and ClK /H

are coprime. Then ClK = H × H ′ for a unique subgroup H ′ of ClK . Then

is the Steinitz module the sum of elements in H ′?

We will see in the next section that even under such restrictive condi-

tions, the question has negative answer.

We ask another general question but for which we have no answer.

Question 2. Which elements of order 2 in the class group of K arise

as the Steinitz module of a degree 2 unramified extension of K? We note

that by class field theory, there are exactly as many elements of order 2 in

the class group of K as the number of unramified abelian extensions of K

of degree 2.

4.3. Quadratic fields

We will look at Question 1 in the simplest case of unramified quadratic

extensions of quadratic fields, and show that it fails even in this case.

The counter-example to Question 1 is provided by looking at K =

Q(
√−p) where p ≡ 1 mod 4 is a prime in Z which is > 0. By genus theory,

there is a unique copy of Z/2 in the class group of K, and the unique

unramified degree 2 extension of K is obtained by attaching
√

p. In the

next lemma we will show that StK(
√

p)/K is the prime ideal in K over p.

Since the prime ideal in K above p is principal, this gives a negative answer

to Question 1.

Lemma 4. Let K = Q(
√

D) be a quadratic extension of Q with D

square-free. Let p ≡ 1 mod 4 be a prime dividing D, and let L = K(
√

p) be

a quadratic unramified extension of K. Then the Steinitz class StL/K of L

over K is the prime ideal in K above p.
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Proof. We will compute the Steinitz class StL/K using Lemma 3. The

computation of the ring of integers of L is given in exercise 42 on page 51 of

[M]. We write D = p · q, and divide the proof of the lemma into two cases.

Case 1 : q ≡ 2, 3 mod 4. In this case, the ring of integers of L is the

free Z module generated by

1, (1 +
√

p)/2,
√

q, (
√

q +
√

D)/2.

It follows that the module generated by 1 and (1+
√

p)/2 over Z[
√

D], which

is the ring of integers of K, is of index p in the ring of integers of L. By

Lemma 3, the Steinitz class StL/K is the class of the prime ideal in K lying

above p.

Case 2 : q ≡ 1 mod 4. In this case the ring of integers of L is the free

Z module generated by

1, (1 +
√

p)/2, (1 +
√

p +
√

D + p
√

q)/4, (1 +
√

q)/2.

We denote these generators by a, b, c, d. The free OK module generated by

1, (1 +
√

p)/2 is the free Z module generated by

1, (1 +
√

p)/2, (1 +
√

p +
√

D + p
√

q)/4, (1 +
√

D)/2.

We denote these generators by a, b, c, d′. Because d′ = 2c−b+a(1+p)/2−pd,

it has index p in the ring of integers of L. In this case again we conclude

that StL/K is the prime ideal in K above p.

4.4. Another example

We present one more calculation of Steinitz module and of capitulation,

one in which the Steinitz module is non-trivial, but the sum of capitulating

ideals is trivial.

Let K = Q(
√
−21),OK = Z(

√
−21). The class number of K can be

seen to be 4, and the Hilbert class field of K seen to be K(
√
−3,

√
−7). We

take L = K(
√
−3). It follows from exercise 42(c), page 51, of Marcus’ book

that the ring of integers in L is the free Z module generated by

1,
1 +

√
−3

2
,
√

7,

√
7 +

√
−21

2
.

It is easy to see that the free submodule of OL generated by 1 and 1+
√
−3

2

over Z[
√
−21] is of index 3 in OL: Z[

√
−21](1, 1+

√
−3

2 ) is a free Z module
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generated by 1, 1+
√
−3

2 ,
√
−21,

√
−21+3

√
7

2 , or by, 1, 1+
√
−3

2 , 3
√

7,
√
−21+3

√
7

2 . It

has index 3 in the submodule generated by 1, 1+
√
−3

2 ,
√

7,
√
−21+3

√
7

2 which

is the same as that generated by 1, 1+
√
−3

2 ,
√

7,
√

7+
√
−21

2 which is OL. From

Lemma 3, the Steinitz module for OL is the prime ideal in OK above 3.

The class group of Q(
√
−21) can be checked to be Z/2 ⊕ Z/2. The

primes 2 and 3 are ramified, say

(2) = ℘2
2

(3) = ℘2
3.

So, ℘2 and ℘3 are elements of order 2 in the class group of K. These

are linearly independent as Nm(℘2℘3) = 6 is not the norm of any integral

element of Z[
√
−21].

Claim 1. ℘2 and ℘3 become principal in Z[
√
−21,

√
−3].

Proof. We first prove that ℘2 becomes principal in OL. For this we

note that (3 +
√

7)2 = (2) as ideals in Z[
√

7], and therefore as ideals in OL.

Since ℘2
2 = (2) as ideals in Z[

√
−21], so also as ideals in OL. Therefore we

have

2 = (3 +
√

7)2 = ℘2
2.

By unique factorization of ideals,

(3 +
√

7) = ℘2

as ideals in OL. This proves that ℘2 becomes principal in OL.

We now check that ℘3 also becomes principal in OL. For this it suffices

to observe that

(3) = (
√
−3)2 = ℘2

3,

and again ℘3 = (
√
−3) as ideals in OL.

Remark 5. The extension Q(
√
−21,

√
−3) of Q(

√
−21) gives an exam-

ple of a situation in which all the ideals of a number field become principal

in a proper subfield of the Hilbert class field. First example of this kind was

constructed by Iwasawa.
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