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On the Self-dual Representations of a p-adic Group

Dipendra Prasad

In an earlier paper [P1], we studied self-dual complex representations of a finite

group of Lie type. In this paper,we make an analogous study in the p-adic case. We begin

by recalling the main result of that paper.

LetG(F) be the group of F rational points of a connected reductive algebraic group

G over a finite field F. Fix a Borel subgroup B of G, defined over F, which always exists

by Lang’s theorem. Let B = TU be a Levi decomposition of the Borel subgroup B. Suppose

that there is an element t0 ∈ T (F) that operates by −1 on all the simple roots in U with

respect to the maximal split torus in T . It can be seen that t20 belongs to the center of G.

We proved in [P1] that t20 operates by 1 on a self-dual irreducible complex representation

π,which has a Whittaker model, if and only if π carries a symmetric G-invariant bilinear

form. If π carries a symmetric G-invariant bilinear form, then we call π an orthogonal

representation.

If π is an irreducible admissible self-dual representation of a p-adic group G,

then there exists a nondegenerate G-invariant bilinear form B: π × π→ C. This form is

unique up to scalars by a simple application of Schur’s lemma, and it is either symmetric

or skew-symmetric. The aim of this paper is to provide for a criterion to decide which

of the two possibilities holds in the context of p-adic groups similar to our work in the

finite field case in [P1]. This partly answers a question raised by Serre (see [P1]). We are

able to say nothing about representations not admitting a Whittaker model. Our method,

however,works in some cases even when there is no element in T which operates on each

simple root by −1. This is the case, for instance, in some cases of SLn and Spn, where we

work instead with the similitude group where such an element exists; then we deduce

information on SLn and Spn.
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We also provide some complements to [P1], which were motivated by a similar

result for algebraic representations of reductive groups (see [St, Lemma 78]). The criterion

in [P1] and [St] therefore give two elements in the center of G such that the action of one

of them determines whether a self-dual algebraic representation of G(F) is orthogonal,

whereas the other element determines whether a self-dual complex representation ofG(F)

is orthogonal. We prove that these two elements in the center of G are actually the same.

This also gives us an opportunity to give a proof of the result for algebraic representations

ofG(F) following the methods of [P1]. Finally,we extend another observation of the author

from the context of finite groups to p-adic groups, which gives a method of checking

whether a representation is self-dual.

1 Orthogonality criterion for algebraic representions

We recall that the theorem characterising self-dual representations of finite groups of

Lie type in [P1] was proved using the following elementary result whose proof we sketch

for the sake of completeness.

Lemma 1. Let H be a subgroup of a finite group G. Let s be an element of G which

normalises H, and whose square belongs to the center of G. Let ψ: H → C∗ be a 1-

dimensional representation of H which is taken to its inverse by the inner conjugation

action of s on H. Let π be an irreducible representation of G in which the character ψ

appears with multiplicity 1. Then, if π is self-dual, it is orthogonal if and only if the

element s2 belonging to the center of G operates by 1 on π.

Proof. Let v be a vector in π on which H operates via ψ. Clearly, H operates via the

character ψ−1 on the vector sv, and the space spanned by v and sv is a nondegenerate

subspace for the unique G-invariant bilinear form on π. It has dimension 1 or 2. The

inner product of v with sv must be nonzero, but since the inner product is G-invariant,

and in particular, s-invariant, the conclusion of the lemma follows.

Remark. In the context of G = G(F), the lemma is used with H = U(F) and ψ a nonde-

generate character on U. The character ψ appears with multiplicity ≤ 1 by a theorem of

Gelfand and Graev for G = GLn(F), which was generalised by Steinberg to all reductive

groups.

Lemma 2. Let G be a reductive algebraic group over an algebraically closed field k.

Then there exists an element z0 in the center of G of order ≤ 2, which operates on an

irreducible, self-dual algebraic representation π ofG by 1 if and only if the representation

π is orthogonal.
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Proof. We offer two proofs: one is in the spirit of the proof of the earlier lemma, and

the other is more classical.

Let B = TU be a Levi decomposition of a Borel subgroup B in G. The choice of

the Borel subgroup defines an ordering on the set of roots of G with respect to T . Let

w0 be an element in G representing the element in the Weyl group, which takes all the

positive roots to negative roots. By the theory of highest weights, irreducible algebraic

representations of G are in bijective correspondence with dominant integral weights.

It follows that an irreducible representation π corresponding to dominant weight λ is

self-dual if and only if λ = −w0(λ).

We apply Lemma 1, or rather its analogue for algebraic representations of alge-

braic groups, to the highest weight λ of T in π. Let v0 be a vector in π on which T operates

via λ. The vector v0 is unique up to scalars. The square of the Weyl group element w0,

which takes all the positive roots to negative roots, is the identity element in the Weyl

group of G; and in fact, we can choose a representative for w0 in G such that w2
0 belongs

to the center of G. (The author thanks Hung Yean Loke for confirming this for the group

E6.) If w0 = −1, then it is easy to see that for any choice of a representative x in G for

w0 ∈ N(T )/T, where N(T ) is the normaliser of T, x2 is independent of x, and belongs to the

center of G. We let w2
0 = t0, where t0 is an element in the center of G.

Clearly w0(λ) = −λ is also a weight of π. Therefore, by the complete reducibility

of π as a T module, the subspace generated by v0 and w0(v0) is a nondegenerate subspace

of π for the unique G-invariant bilinear form on π. We have

〈v0, w0(v0)〉 = 〈w0(v0), w2
0(v0)〉 = 〈w0(v0), t0v0〉.

It follows that t0 operates by 1 on an irreducible self-dual representation π if and only if

π is an orthogonal representation.

We now turn to the second proof,which is the standard proof given, for example,

in Bourbaki.

Let u0 be a regular unipotent element inU (i.e., an element inUwhose component

in each Uα, α simple, is nontrivial). Let j: SL2 → G be a principal SL2 in G that takes

the element
(
1 1
0 1

)
to u0 and the diagonal torus in SL2 to T . (The mapping j need not be

injective.)

An irreducible representation π ofGwith highest weight λ,when restricted to SL2

via the mapping j, is a sum of certain irreducible representations of SL2. It can be seen

that the representation of SL2 with highest weight the restriction of λ to the diagonal

torus in SL2 appears with multiplicity 1. Therefore, if π is self-dual, then it is orthogonal

or symplectic depending exactly on whether this representation of SL2 is orthogonal or

symplectic.
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Let k =
(
i 0
0 −i

)
,where i is a fourth root of 1. The inner conjugation action of k on

the unique positive simple root of SL2 is by −1. This implies that the inner conjugation

action of k on every simple root of G is by −1. This proves that j(k2) belongs to the center

of G, and its action on a self-dual irreducible representation of G is by 1, if and only if

the representation is orthogonal.

Since the two proofs must define the same element in the center of the group,

we obtain the following corollary. (It needs to be noted that, under the assumption of

Corollary 1 below, since w0 = −1, all the algebraic representations of G are self-dual.

In particular, for any element of order 2 in the center of G, there is a faithful self-dual

representation of G nontrivial on that element.)

Corollary 1. LetG be a simple algebraic group with center Z for whichw0 = −1. For any

choice of w0 as an element in G, w2
0 is an element in the center of G and is independent

of the representative in G for wo. Let T be a maximal torus in G, and let t0 be an element

in T which operates on all the simple roots of G by −1. Then t20 is also in the center of

G, and it is a well-defined element in Z/Z2. The two elements w2
0 and t20, thought of as

elements in Z/Z2, are equal.

The following corollary is clear from the second proof of the lemma above.

Corollary 2. The element in the center of G that determines whether a self-dual alge-

braic representation of G is orthogonal, is the same as the element in the center of G that

determines when a self-dual generic complex representation of G(F) is orthogonal. Both

the elements in the center are considered up to squares in the center.

2 Orthogonality criterion for p-adic groups

LetG = G(k) be the group of k-rational points of a quasi-split reductive group over a local

field k. Let B = TU be a Levi decomposition of a Borel subgroup of G. Fix a nondegenerate

characterψ: U(k)→ C∗. By a theorem of Gelfand and Kazhdan forGLn and Shalika [Sh] for

general quasi-split reductive groups, there exists at most one dimensional space of linear

forms `: π → C on any irreducible admissible representation π of G(k) that transforms

via ψ when restricted to U(k). Assume that there is an element t0 ∈ T (k) such that the

inner conjugation action of t0 is by −1 on all the simple roots in U. Therefore, the inner

conjugation action of t0 on U takes ψ to ψ−1. Since the group U(k) is noncompact, one

cannot use Lemma 1 in this context. However, a very nice idea of Rodier enables us to

work with a compact approximation of (U,ψ), which we briefly describe now. We refer

the reader to Rodier’s article [R] for details.
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Let U− denote the unipotent radical of the Borel subgroup B− of G which is

opposite to B. Fix an integral structure on G so that one can speak about G(pn), where

p is the maximal ideal in the maximal compact subring O in k generated by an element

π ∈ p. If G is a quasi-split group over k which splits over an unramified extension of k,

then G has a natural integral structure whose reduction modulo p is reductive. However,

for our purposes, all we need is for the groups G(pn) to have the Iwahori factorisation,

G(pn) = U−(pn)T (pn)U(pn).

We assume that the character ψ on U(k) has been so normalised that it is trivial on O-

rational points of every simple root, but not on π−1O-rational points of any simple root.

Define a character ψn on G(pn) by

ψn(u−tu) = ψn(u) = ψ(π−2nu),

where we leave the task of making the meaning of π−2nu precise to the reader. Rodier

proves the following result in [R]. Actually, Rodier works only with split groups, but his

work extends easily to quasi-split groups.

Proposition 1. Let π be an irreducible admissible representation of G(k). Then,

dim HomG(pn)(π,ψn) ≤ dim HomG(pn+1)(π,ψn+1) ≤ dim HomU(π,ψ).

Moreover, dim HomG(pn)(π,ψn) = dim HomU(π,ψ) for all n large enough. Therefore, if π

has a Whittaker model, then for some n, dim HomG(pn)(π,ψn) = 1.

Now the analogue of Lemma 1 can be applied to the subgroup H = G(pn) with the

character ψn on it to deduce the following proposition. (We note that since the element

t0 ∈ T (k) operates by −1 on all the simple roots of G, it preserves G(pn) = U−(pn)T (pn)U(pn)

and takes the character ψn to ψ−1
n .)

Proposition 2. LetG be a quasi-split reductive algebraic group over a p-adic field kwith

B = TU a Levi decomposition of a Borel subgroup of G. Assume that T (k) has an element

t0 which operates by −1 on all the simple roots in U. Then z0 = t20 belongs to the center

of G and operates on an irreducible, self-dual generic representation π of G by 1 if and

only if the representation π is orthogonal.

3 Examples

In this section, we list some groups for which Proposition 2 applies to give a criterion

for orthogonality of self-dual generic representations. As observed in [P1] for the case of

finite fields, here is what the proposition says for the split groups.
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(1) GLn: In this case, all the self-dual generic representations are orthogonal.

(2) SLn: If n 6≡ 2 mod 4, then all the self-dual generic representations are

orthogonal; if n ≡ 2 mod 4, and the local field k has a 4th root of 1, then a self-dual

generic representation is orthogonal if and only if −1 operates by 1.

(3) Sp(2n): In this case, a self-dual generic representation is orthogonal if and

only if −1 operates by 1.

(4) SO(n): In this case, a self-dual generic representation is always orthogonal.

(5) Simply connected exceptional groups: In all cases except for E7, all self-dual

generic representation is orthogonal. In the case of E7, a self-dual generic representation

is orthogonal if and only if the center, which is Z/2, operates trivially.

Remark. In the case of Sp(2n), Proposition 2 does not directly apply, as there may not

be an element in the group which operates on all simple roots by −1. However, as in

[P1], one can give a proof by going to the symplectic similitude group, and again using

Rodier’s method of approximating (U,ψ) by compact groups.

Remark. In the case of GLn(Fq),we were able to prove that any, not necessarily generic,

self-dual representation of GLn(Fq) is orthogonal. We have not been able to do this here in

the p-adic case, though we believe it should be true. We also remark that there is another

proof about the orthogonality of self-dual representations of GLn in the p-adic in [PRam]

that depended on the theory of new forms due to Jacquet, Piatetski-Shapiro, and Shalika.

But the theory of new forms is also available only for generic representations.

Remark. In [P1], we constructed an example of a self-dual representation of SL(6,Fq)

with q ≡ 3 mod 4 for which −1 acts trivially, even though the representation is sym-

plectic. We also constructed an example of a self-dual representation of SL(6,Fq) with

q ≡ 3 mod 4 for which −1 acts nontrivially, even though the representation is orthog-

onal. This construction remains valid for any p-adic field of residue field cardinality

q ≡ 3 mod 4, and it works for any SL(4m+ 2).

4 A criterion for self-dual representations

The following lemma was observed in [P2].

Lemma 3. If G is a finite group, and H is a subgroup of G such that g→ g−1 takes every

double coset of G with respect to H to itself, then every irreducible representation of G

with an H fixed vector is self-dual, and is in fact an orthogonal representation.
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Proof. Let π be an irreducible representation of G with an H fixed vector v ∈ π. Fix a

G-invariant Hermitian form on π, and consider the matrix coefficient

f(g) = 〈gv, v〉.

Clearly, f(h1gh2) = f(g) for all h1, h2 in H. Therefore, since g → g−1 takes every double

coset of G with respect to H to itself, it follows that f(g) = f(g−1). However, f(g−1) is a

matrix coefficient of π∗, and by orthogonality relations, matrix coefficients of distinct

representations are orthogonal. Therefore, π ∼= π∗.
Since g→ g−1 takes every double coset of G with respect to H to itself, it follows

that (G,H) is a Gelfand pair, and the space of H-invariant vectors is a 1-dimensional

nondegenerate subspace of π, and hence π, must be an orthogonal representation.

We extend this lemma to p-adic groups as follows. We have not been able to prove

the last part of the previous lemma, which deals with orthogonal representations.

Lemma 4. Let H be a closed subgroup of a p-adic group G. Assume that any distribu-

tion on G that is H-bi-invariant, is invariant under the involution g → g−1. Then every

irreducible admissible representation π of G with an H-invariant linear form on both π

and π∗ is self-dual.

Proof. Let

`: π→ C

`′: π∗ → C

be nonzero H-invariant linear forms on π and its dual.

Let f be a locally constant, compactly supported function onG. The space of such

functions operates on π in the standard way and operates also on the space of all linear

forms on π. In particular, it makes sense to talk about π(f)`. It is easy to see that π(f)`

in fact belongs to the smooth dual π∗ of π, and therefore it makes sense to define the

distribution B on G by

B(f) = `′(π(f)`).

The distribution B is easily seen to be H-bi-invariant. The distribution B is called the

relative character of G with respect to H. It was introduced by H. Jacquet.

Reversing the roles of π and π∗, one can define another distribution B′ on G by

B′(f) = `(π(f)`′).
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If for a function f on G, we define f∨ to be the function

f∨(g) = f(g−1),

it can be seen that

B′(f) = B(f∨).

However, by hypothesis, an H-bi-invariant distribution on G is invariant under the invo-

lution g→ g−1, and therefore, B(f) = B(f∨). So,

B′(f) = B(f).

Now we appeal to the following proposition,which says that the relative character

of a representation of G characterises the representation to deduce that π ∼= π∗.

Proposition 3. Let π1 and π2 be two irreducible admissible representations of a p-adic

group G. Assume that for a subgroup H of G, all the representations π1, π
∗
1, π2, π

∗
2 have

H-invariant linear forms. Then if a relative character of π1 is equal to a relative character

of π2, then π1 is isomorphic to π2.

Proof. We give a proof of this result, as it does not exist in the literature. (The author

thanks J. Hakim for supplying this proof.) We prove that π1 and π2 are isomorphic by

using a variant of the theorem that two irreducible representations are isomorphic if

and only if a matrix coefficient of π1 is also a matrix coefficient of π2. The variant we use

is to look at the distribution v′1(fv1),where f belongs to the space S(G) of locally constant,

compactly supported functions on G, and v1 and v′1 are nonzero vectors in π1 and π∗1; the

vector fv1 is the result of the natural action of f ∈ S(G) on v1 ∈ π1. We call this distribution

a generalised matrix coefficient of π1. The variant we use is that if a generalised matrix

coefficient of π1 (which is a distribution on G) is the same as for π2, then π1 and π2 are

isomorphic. We outline the simple proof of this. For this, let Fv1,v
′
1
(g) = v′1(gv1) be the

corresponding matrix coefficient on G. Clearly, the distribution we called a generalised

matrix coefficient is given by

φ→
∫
Fv1,v

′
1
φdg, φ ∈ S(G).

Now it is clear that if a generalised matrix coefficient of π1 is the same as one for π2, then

π1 and π2 share a matrix coefficient, and hence they are isomorphic.
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Let

`1: π1 → C

`′1: π∗1 → C

`2: π2 → C

`′2: π∗2 → C

be nonzero H-invariant linear forms. We assume that

`′1(π1(f)`1) = `′2(π2(f)`2)

for all f in the space S(G) of locally constant, compactly supported functions onG. Observe

that for any f1 ∈ S(G), v′1 = π1(f1)`1 ∈ π∗1 and for any f2 ∈ S(G), v1 = π∗1(f2)`′1 ∈ π1. Therefore,

it makes sense to talk about
[
π1(f)v′1

]
(v1). We choose f1 and f′1 so that v1 and v′1 are nonzero.

We have

[
π1(f)v′1

]
(v1) = [π1(f)π1(f1)`1

]
(π∗1(f2)`′1)

= [π1(f∨2 ∗ f ∗ f1)`1
]

(`′1).

Similarly, define v′2 = π2(f1)`2 ∈ π∗2 and v2 = π∗2(f2)`′2 ∈ π2. We have as before,[
π2(f)v′2

]
(v2) = [π2(f∨2 ∗ f ∗ f1)`2

]
(`′2).

Therefore, for all f ∈ S(G),[
π1(f)v′1

]
(v1) = [π2(f)v′2

]
(v2),

where v1 and v′1 are nonzero vectors in π1 and π∗1. From the remark at the beginning of

the proof of this proposition, π1 and π2 are isomorphic.

Corollary 3. An irreducible admissible representation of GL2(D), where D is a division

algebra over a local field k that has a nonzero invariant form for the subgroupH = D∗×D∗
sitting diagonally in GL2(D), must be self-dual and orthogonal.

Proof. It was proved in [P2] that a distribution on Gwhich isH bi-invariant is invariant

under the involution g→ g−1. It therefore suffices to check that whenever a representa-

tion of GL2(D) has an H-invariant linear form, its contragredient also has an H-invariant

linear form. This is a simple consequence of the Kirillov theory developed in [PR].

We now prove that a self-dual representation π of GL2(D) containing an invariant

form for the subgroupH = D∗×D∗ must be orthogonal. For this,we use the result proved
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in [PR] that if π has a D∗ × D∗ invariant form, then it also has a Shalika form which is

unique up to scalars. We recall that π is said to have a Shalika form `: π→ C if ` is left

invariant by the diagonal matrices of the form (x, x), x ∈ D∗, and transforms under the

upper triangular unipotent matrices
(
1 X
0 1

)
by ψ(tr(X)),where ψ is a nontrivial character

on k. The method of Rodier, as also observed in [PR], applies to GL2(D), and gives a

compact approximation to the pair (U,ψ · tr), and therefore for some compact group Un,

there is a character ψn that appears in π with multiplicity 1. This implies orthogonality

of π by Lemma 1.

We end the paper with the following question.

Question. Letπbe an irreducible admissible orthogonal representation of GL2(D),where

D is a division algebra over a local field k. Does π have an invariant form for the subgroup

H = D∗ ×D∗ sitting diagonally in GL2(D), and therefore a Shalika model?
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