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1. INTRODUCTION

It is a classical theorem in the representation theory of semisimple
algebraic groups (or, of compact connected Lie groups) that there exists an
element 4 in the center of such a group of order < 2 which acts by 1 in an
irreducible self-dual representation if and only if the representation is
orthogonal, cf. Lemma 79 in [10]; in particular, any self-dual representa-
tion of an adjoint semisimple group is orthogonal. It is the purpose of this
article to prove such a theorem in the context of finite groups of Lie type,
and also to provide a counterexample to such a possibility in some cases as
for instance SL(4n + 2, Fq) for ¢ =3 mod4 treated in Section 8. The
results in this article depend in an essential way on the uniqueness of
Whittaker models, and work only for representations which have Whit-
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taker models (called generic representations). There is a lot of literature
on the calculation of Schur indices of finite groups of Lie type as the
author found out by searching through Mathscinet. Out of the many
articles, we quote [2,3,6,7, 8] as containing results especially close to our
own. Most of the results proved in this article for generic representations
are actually known for all representations of classical groups except for
the case of SL(n,Fq), cf. [2,3,6]. Our methods are more uniform and
perhaps more transparent. The counterexample we construct seems not to
have been noticed. The question remains whether the results proved here
for generic representations remain true without the genericity hypothesis.
The works [2, 3, 6] for classical groups suggest that the answer may be yes.

2. PRELIMINARIES

Let G be a connected reductive algebraic group defined over a finite
field F,. By Lang’s theorem, G contains a Borel subgroup B defined over
F,. Let 7T; be a maximal split torus in B and let 7" be a maximal torus in B
containing 7; and which is defined over F,. Let U be the unipotent radical
of B. One can decompose U by the adjoint action of 7, and get the root
spaces U, defined over F,, and the notion of simple root spaces. These
root spaces are also invariant under T and define an F, rational represen-
tation of T on these U,. Denote by 7, the image of T under the
representation of 7T defined on U,. In this way we get a mapping P:
T — TIT,, the product taken over the simple roots « in U. The kernel of
® is the center of G which is denoted by Z. The mapping ® plays an
important role in this article. In each 7, there is the element —1,_, which
operates on the root space U, by multiplication by —1. Consider the
element T1(— la) € I'lT,, the product taken over simple roots in U. The
methods of this article work as long as this element in ['17,, is the image of
an element in 7(F,) under ®.

A character : U(Fq) — C* is called nondegenerate if its restriction to
all the simple root subspaces of U with respect to 7, is nontrivial, and its
restriction to all nonsimple root spaces is trivial. We fix such a nondegen-
erate character 4 on the unipotent radical of a Borel subgroup in all that
follows.

The following basic theorem was proved by Gelfand and Graev for
G = SL,, and was proved by Steinberg in general in [10, Theorem 49].

THEOREM 1. Let 7 be an irreducible representation of G(Fq). Then m has

an at most one-dimensional subspace on which U(Fq) acts via the nondegener-
ate character .
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3. THE MAIN LEMMA

Our analysis of self-dual representations depends on the following
lemma. This lemma was used in [9] several times without explicitly stating
it in this generality.

LEMMA 1. Let H be a subgroup of a finite group G. Let s be an element of
G which normalizes H and whose square belongs to the center of G. Let :
H — C* be a one-dimensional representation of H which is taken to its
inverse by the inner conjugation action of s on H. Let 7 be an irreducible
representation of G in which the character  of H appears with multiplicity 1.
Then if  is self-dual, it is orthogonal if and only if the element s* belonging
to the center of G operates by 1 on .

Proof. Fix a nondegenerate bilinear form B on the vector space V'
underlying the representation . Let v, be a vector in V' such that
h-v, = ¢(hv, for all h belonging to H. Because s normalizes H and
takes ¢ to its inverse,

hsvy = ' (h)sv,.

Assume ' # . In this case, v, and sv, are linearly independent
isotropic vectors which generate a two-dimensional nondegenerate sub-
space of V. The nondegenerate bilinear form B on V' is symmetric if and
only if its restriction to this two-dimensional subspace is symmetric.
Because v, and sv, are isotropic vectors, B(v,, sv,) must be nonzero. We
have

B(vy,500) = B(sv,,5%0,).

This implies that B is symmetric if and only if s? acts by 1.

If the character ¢ is of order 2, then the one-dimensional subspace on
which H operates via ¢ is a nondegenerate subspace of V, forcing the
bilinear form to be symmetric.

Remark. 1f i is of order 2 in the preceding lemma, then there is no
need to consider the element s (or, one could take it to be the identity
element), and in the presence of such a character ¢ of multiplicity 1 in a
self-dual representation 7, 7 is forced to be orthogonal.

QUESTION. Is the Lemma 1 true for p-adic groups, where one works with
linear forms on  which transform under H by a character instead of vectors
in 7 transforming under H by a character? If the lemma holds in p-adic
groups, we are again able to give a criterion as to when a self-dual generic
representation is orthogonal or symplectic depending on the action of an
element in the center of the group of order < 2. Such a question was asked for
p-adic groups by Serre, cf. [4, the question on p. 938].
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4. THE MAIN THEOREM

THEOREM 2. Let G be a connected reductive algebraic group defined over
a finite field F,. Let Z be the center of G. Let B = TU be a Borel subgroup of
G defined over F,. Let s € T(F,) be such that it operates by —1 on all the
simple root spaces of U. (Such an s may or may not exist). Then t = s*
belongs to Z(F,), and t = s acts on an irreducible, generic, self-dual repre-
sentation by 1 if and only if the representation is orthogonal.

Proof. The proof of this theorem is a trivial consequence of Lemma 1
for the subgroup H = U(F,) of G(F,) and ¢ is a nondegenerate character
of U(Fq). The inner conjugation action of s on H takes ¢ to # !, and
therefore Lemma 1 yields the theorem.

As a corollary to the previous theorem, we obtain the following.

THEOREM 3. Let G be a connected reductive algebraic group defined over
a finite field F,. Assume that either

(a) the center of G is connected,
or,
(b) the center of G is of odd cardinality.

Then there exists an element t in G(F,) belonging to the center of G such
that an irreducible, generic, self-dual representation of G(F,) is orthogonal if
and only if t acts by 1 on the representation space.

Proof. We have an exact sequence of algebraic groups,

1572 ->T3]T, - 1.
Taking F, rational points, we have
1 - Z(F,) > T(E,) - [IT(F,) » H(Gal,Z) - 1.

By hypothesis, either Z is connected, in which case by Lang’s theorem
H'(Gal, Z) = 0, or Z is of odd cardinality, in which case H'(Gal, Z) has
no elements of order 2. If we let A[2] denote the elements of order a
power of 2 in any abelian group A, we have an exact sequence,

L= 2(F,)[2] - T(F,)[2] - 11, (F,)[2] - 1.

It follows that there exists an element s in 7(F,) whose image in T17,(F,)
is TI(—1,). Clearly, s* € Z(Fq), and it follows from the previous lemma
that ¢ = s acts by 1 on an irreducible, self-dual, generic representation
if and only if 7 is orthogonal.
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Remark. 1n the following cases the center of G is of odd order, cf. [10,
p. 227].

(a) G adjoint group.
(b) F, of characteristic 2.
() G oftype A4,,,E¢, Eg, F,,G,.

5. SELF-DUAL REPRESENTATIONS FOR GL(n,Fq)

Observe that for GL(n,F,), B=T-U with T the diagonal subgroup
and U the strictly upper triangular subgroup of GL(n,Fq), one can take s
in Theorem 3 to be

Therefore s? = 1. It follows from Theorem 3 that any self-dual generic
representation of GL(n,F,) is orthogonal. In the case of GL(n,F,) we can
actually prove a theorem for all the irreducible representations.

THEOREM 4. Any irreducible self-dual representation of GL(n,F,) is
orthogonal.

Proof. We recall that given any irreducible representation 7 of
GL(n,F,)), there exists a partition of n as n=an, + - +a,n,, irre-
ducible cuspidal representations ; of GL(nl-,Fq), such that 7 is contained
in I(a,m,,...,a,m), the representation of GL(n,F ) obtained by parabolic
induction of the representation,

Ty X Xy Xy Xooos Xy X, X == X,

T re

(the representation r; is repeated a; times) of the Levi component,
GL(n,,F,) X --- X GL(n,,F,) X GL(n,,F,) X - X GL(n,,F,) X -
X GL(n,,F,) X - X GL(n,,F,),

r>-q r>-q

(the factor GL(n;,F,) is repeated a; times) of the standard parabolic in

GL(n,F,) with this as the Levi component. Moreover, the partition of n as
n=an, + - +a,n,, and the representations ; are unique up to permu-

rere 4
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tation. This implies that if 7 is self-dual, the set of representations r; is

invariant under the involution 7; = 7, and the multiplicity associated to

m; and 7" is the same. There is a representation of the product of

symmetric groups &, X.7, X -+ X.%,  via intertwining operators on

I(aym,,...,a,m) commuting with the GL(n,F,) action such that as a

representation space for GL(n,F) X (¥, X%, X - X.%), a7,
., a,m,) decomposes as

LV, W,
where the W, are the irreducible representations of
(Sﬂal ><§oa2 X eee X‘er’

and the V; are irreducible representations of GL(n,F,). The proof now
follows from the well-known fact that the representations of a symmetric
group are defined over Q, orthogonality of cuspidal self-dual representa-
tion of GL(m,F,), combined with the following lemma. (The following
lemma is used to prove that if 7 is self-dual, then the induced representa-
tion I(a,m,,...,a,m) is defined over R, and therefore by the foregoing
multiplicity 1 decomposition, each irreducible component, and so 7, is also

defined over R which is equivalent to orthogonality of 7r.)

LEMMA 2.  For any cuspidal representation w of GL(n, Fq), the representa-
tion I(w, 7w*) of GL(2n,F,) obtained by parabolic induction of the representa-
tion m X w* of the Levi subgroup GL(n,F,) X GL(n,F,) of the standard
parabolic in GL(2n,F,) with this as the Levi component is defined over the
field of real numbers.

Proof. We have not been able to find a “pure thought” proof of this
lemma. Here is one argument anyway. Look at the restriction of I(7, 7*)
to the subgroup GL(n,F,:) € GL(2n,F,). Clearly I(m, 7*) contains

GL(n,F,) *
IndGL(n,F‘;)Tr ® 7*,

which in turn contains the trivial representation of GL(n,qu) with multi-
plicity 1. By a calculation of double cosets, GL(n,F,2)\ GL(2n,F,) /P(n, n),
where P(n, n) is the standard parabolic in GL(2n, Fq) with Levi GL(n,Fq)
X GL(n,F,), one can see that it is the unique copy of the trivial represen-
tation of GL(n,qu). Therefore, because I(m, 7*) is clearly self-dual, it is
orthogonal, and therefore it is defined over R.
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6. CALCULATION OF THE ELEMENT s AND CONSEQUENCES

SL(4n,F,): In this case the diagonal matrix,

belongs to SL(4n,F ), and operates by —1 on all the simple root
spaces. Because s2 = 1, we conclude that for SL(4n,Fq), all the self-dual,
generic representations are orthogonal.

SL(4n + 2,F)), g = 1 mod 4: In this case the diagonal matrix,

belongs to SL(4n + 2,F,) and operates by —1 on all the simple root
spaces. Because s? = —1, we conclude that a self-dual, generic represen-
tation of SL(4n + 2, Fq), g = 1 mod4 is orthogonal if and only if the
element —1 in the center of SL(4n + 2,F, ) operates by 1.

SO(2n,F,): The simple roots are {e, —e,, e, —e;,...,e, | —e,,
e,_; + e,}. It is clear that in this parametrization, the element s = (1, —1,
1,+++) (n entries) operates by —1 on all the simple root spaces. Because
s =1, any irreducible, self-dual, generic representation of SO(2n,Fq) is
orthogonal.

SO(2n + 1,F,). This is an adjoint group, therefore any irreducible,
self-dual, generic representation of SO(2n + 1,F,) is orthogonal.

Sp(2n,F,), ¢ =1 mod4: The simple roots are {e, —e,,...,e, | —
e,2e,}. If ¢ =1 mod4, the element s = (i, —i,i, —i,--) (n entries)
operates by —1 on all the simple root spaces. Because s> = —1, any
irreducible, self-dual, generic representation of Sp(2n,F,) for ¢ = 1 mod 4
is orthogonal if and only if the element —1 in the center of Sp(2n,Fq)
operates by 1. We take up the case of Sp(2n,F,) when ¢ = 3 mod 4 in the

next section by a method which works for all finite fields.
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7. SYMPLECTIC GROUPS

In this section we prove that an irreducible, generic, self-dual represen-
tation of a symplectic group is orthogonal if and only if the element —1 in
its center operates by 1 on the representation. The proof of such a result is
not a direct consequence of Theorems 2 and 3 but instead we need a slight
modification using the symplectic similitude groups.

For a vector space ' of dimension 2n over F, equipped with a nonde-
generate alternating bilinear form B, let GSp(V') denote the subgroup of
GL(V) which preserves the bilinear form B up to scaling,

GSp(V) = {g € GL(V)|B(gv, gv,)
= X\B(v,.0,), A, € Ff forall v,,0, € V}.

The mapping g = A, defines a homomorphism A: GSp(V) - G,,. Note
that there is an inclusion of G,, in GSp(}') as the subgroup of scalar
matrices, and therefore for any irreducible representation of GSp(V') one
obtains a character, to be denoted by w, and to be called the central
character of 7, by which this central subgroup operates on 7.

It is a classical result that if g, is a fixed automorphism of V' with the
property that B(gyw, gow) = —B(v,w) for all v,w €V, then for any
g <€ Sp(V), g~' is conjugate to g,g¢, ' in Sp(v). In the following proposi-
tion we state a generalization of this classical result to the similitude group
GSp(V') which is essential to us. A proof of such a generalization can be
given following the proof of the result for Sp(}V') given in [5].

ProrosiTION 1. Let GSp(V') be the symplectic similitude group over an
arbitrary field together with the homomorphism A: GSp(V) — G,, as in the
previous text. Then for any g in GSp(V), g is conjugate to N(g)-g~ "' where
Mg) denotes the element of G,, sitting inside GSp(V') via the natural
inclusion G,, = GSp(V).

COROLLARY. For any irreducible representation 7w of GSp(V) for a
symplectic space V over a finite or p-adic field,

* o~ -1
T =T w,,

where one abuses notation to also denote by w,_ the one-dimensional represen-
tation of GSp(V') obtained by composing o, (the central character of 7) and
the map \: GSp(V') — G,,,.

Remark. The preceding corollary is a well-known result for GL(2) of
finite and p-adic fields.

In the proof of the following proposition characterizing orthogonal and
symplectic representations of a symplectic group, we need to look at the
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root space decomposition for the symplectic group explicitly. For this
purpose, suppose that the symplectic form on the 2n-dimensional vector
space V' on which Sp(2n,F ) acts, is given by

X ANY + X, ANY,+ - +X, ANY,.
Let B be the Borel subgroup in Sp(2n,Fq) stabilizing the isotropic flag,
(X)) c(X,,X,) C - c(X,X,,....X,).
This Borel subgroup stabilizes the complete flag
(X)) c (X, X;) € C(X),.... X,) € (X,,....X,.Y)
c(Xy,....X,,Y,Y,_)c - c(X,....X,,Y,....Y}),

n? 4 n’—-n?

and realizes this as the subgroup of the group of upper triangular matrices,
and the subgroup of diagonal elements in Sp(Zn,Fq) as the maximal torus;
the simple roots are

tot t
Lty
in the standard parametrization,

(ty, ) (X X, Y, 00 7)) = (06X, ..., X, 0,1,

s Yoo a1,
PROPOSITION 2. An irreducible self-dual generic representation mw of
Sp(2n,E)) is orthogonal if and only if the element —1 € Sp(2n,F,) acts

trivially on .

Proof. Let 7r be an irreducible representation of GSp(2n,Fq) contain-
ing the representation 7 of Sp(2n,F,). From the previous proposition we
have

-1
PO

[N

TF=TQw

It follows that there is a bilinear form,
B: 7 X 7 — C,
such that
B(gv,, gv,) = w%()\g)B(Ulavz)-
The bilinear form B with the foregoing properties is unique up to scalar
multiples. Therefore B is either symmetric or skew-symmetric.
It is easy to see that the automorphism s € GSp(2n,F,) given by
X - (_I)H—l)(i’

1

Y, - (-1,
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normalizes the Borel subgroup B introduced just before this proposition,
and acts by —1 on all the simple root subspaces of the unipotent radical U
of such a Borel. We also note that A, = —1. Because 7 is assumed to be
generic, there exists a vy, € 7 such that nv, = (v, for all n in U(F,)
for a nondegenerate character .

We have

B(svg.5705) = @, (A) B(vy. 50,).
Because A, = —1, this simplifies to
B(s04,0) = @ (—=1)B(v,,50).

This implies that B is symmetric or skew-symmetric depending on whether
w,(—1)=1or —1.

Next we observe that the restriction of 7 to Sp(}') is multiplicity free as
follows from the uniqueness of the Whittaker model (for GSp(V)!).
Therefore if 7 is self-dual, the restriction of B to 7 is nondegenerate, and
is symmetric or skew-symmetric depending on whether m(—1) = 1, or
— 1, proving the proposition.

8. SELF-DUAL REPRESENTATIONS FOR SL(n,Fq)

We proved in Section 4 that any irreducible self-dual generic represen-
tation of SL(2n + 1, Fq) and SL(4n,F,) is orthogonal, and that a represen-
tation of SL(4n + 2,F) for ¢ = 1 mod4 is orthogonal if and only if the
element —1 in its center acts by 1. These results together with what we
proved in the last section about representations of symplectic groups might
suggest that an irreducible, generic, self-dual representation of SL(4n +
2, Fq) is orthogonal if and only if the element —1 in its center acts by 1.
However, we see in the next section that this is not the case. In this section
we prove some positive results in this direction.

THEOREM 5. A cuspidal irreducible self-dual representation of SL(4n +
2,F,) is orthogonal if and only if the element —1 in its center acts by 1.

The proof of this theorem follows exactly the same lines as the proof of
the corresponding theorem for Sp(2n,Fq), and depends on the next theo-
rem. We omit the proof of the previous theorem except to say that one
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takes the matrix s to execute the proof, the matrix,

THEOREM 6.  Let V be an irreducible cuspidal representation of GL(n,F,),
n > 2 such that for a character p of EX,V = V* ® u. Then n must be even
n=2m,and u" = w,. Here w, denotes the central character of V, and we
are doing the usual abuse of notation to identify characters of Fq"< and
GL(Zm,Fq).

2m

Proof. From the isomorphism, V' = I'* ® p, it follows that 0} = u
So, the main part of the theorem fixes the square root of this equation.

We recall that cuspidal representations of GL(n,F,) are parametrized
by characters of F(;kn which are not fixed by any nontrivial element in the
Galois group of F» over F,. Two characters of Fq*n give rise to isomorphic
representations of GL(n,Fq) if and only if they are Galois conjugate. This
correspondence is equivariant under twisting and taking duals. Therefore
if the representation V' is associated to a character y of Fq*n, the isomor-
phism V' = I'* ® u implies that there is an element 7 in the Galois group
of F,» over F, such that

x(x) x(rx) = p(Nm x), (*)

for all x € F), where Nm denotes the norm mapping from F} to F.
Replacing x by 7x in this equation, we find that

x(x) = x(7°x).

Because the character y is not fixed by any nontrivial element of the
Galois group, this means that 72 = 1. So, either 7 = 1, or 7 is of order 2. If
7 is of order 2 then 7 is even equal to 2m, and we let E; by the subfield of
F,. fixed by 7. The equation x(x-7x) = uw(Nm x) together with the
surjectivity of the norm mapping from F} to E} implies that x|g; =
w{(Norm), where the norm this time is from Ef to F;‘. Therefore X|F; = u",
completing the proof of the theorem in this case. If 7 in Eq. () is trivial,
we find that y*(x) = w(Nm x), and therefore x>(x) = x’(nx), for any n
in the Galois group. Because there is a unique character of order 2 on Fq*n,
we find that » must be < 2 which is omitted from the theorem, complet-
ing the proof of the theorem.
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Remark. Since GL(n, F,)/SL(n, F,) is a commutative group, if V" is an
irreducible representation of GL(n, Fq) containing an irreducible self-dual
representation of SL(n, Fq), then V' = VV* ® u for a character u of Fq*.

9. THE COUNTEREXAMPLE FOR SL(6,F,), ¢ = 3 mod4

In this section we construct an irreducible generic self-dual representa-
tion of SL(6,F,) for ¢ = 3 mod4 which is symplectic (resp., orthogonal)
even though —1 in its center operates trivially (resp., nontrivially) on the
representation. The idea for the construction is to use a cuspidal represen-
tation for GL(2, Fq) for which the conclusion of Theorem 6 does not hold
well. This does not yield a counterexample for SL(2, Fq) as the restriction
to SL(2,F,) of such a representation is not irreducible. However one can
use this representation on a part of Levi in a parabolic in GL(4n + 2,F,)
and parabolic induction to construct a representation of GL(4n + 2, Fq)
(n > 1) whose restriction to SL(4n + 2, Fq) is irreducible.

Let 7, be a representation of GL(2,F,) such that 7, = 7, ® w for the
unique nontrivial quadratic character w of F;‘. Such a representation 7, is
known to exist; these are exactly the representations which when restricted
to SL(2,F,) are sums of 2 irreducible representations (which are dual to
each other if ¢ = 3 mod4). We take two other cuspidal representations
7y, w3 of GL(2,F,) such that the central character of 7, and m; is the
same as the central character of 7, multiplied by the unique quadratic
character w of Fq*,

(U,n_z = (.l)ﬂ_3 = w"* wm.

We choose 7,, 7, in such a manner that the triple (77, 7,, 7;) is not
invariant under any nontrivial permutation. In that case the representation
I(mr,, m,, ;) of GL(6,F,) parabolically induced from the Levi subgroup
GL(2, Fq) X GL(2, Fq) X GL(2, Fq) of GL(6, Fq) with this as the Levi sub-
group is an irreducible representation of GL(6,F ). Moreover, using
T, = m, ® w we have

* ~ ¥ ok k) ~ -1 -1 —1
I(my,my,my) = 1(7f, 75, 7%) =I(77'l Qw ', m,®w, 7 ® a)m)

=[(m,m,y,m;) ® w"w;ll.

So we have the isomorphism, I(m, m,, m3) = I(m, 7,, )" ® wa, .
On the other hand, the central character of I(ar, m,, ;) is W, W O
= ;. Because (w- o, )’ is not equal to (w, ), we therefore see that the
conclusion of Theorem 6 goes wrong. We finally need to note the following
simple lemma, cf. Lemma 2.1 in [1], which is used to prove irreducibility of

1(7,, m,, ;) restricted to SL(6, Fq).
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LEMMA 3. For an irreducible representation m of GL(n,F,), the cardinal-
ity of the set of characters v of Fy such that w® v = m is equal to the
number of irreducible representations in w when restricted to SL(n,F,). In
particular an irreducible representation w of GL(n,F,) remains irreducible
when restricted to SL(n, Fq) if and only if there are no nontrivial characters v

of Fq* such that m ® v is isomorphic to .

Remark. 1In the earlier lemma we used the fact that any irreducible
representation of GL(n,Fq) decomposes with multiplicity 1 when re-
stricted to SL(n, Fq). This follows because SL(n, Fq) is normal in GL(n, Fq)
and the quotient is a cyclic group.

From this lemma it follows that one can choose 7, and m; such that
I(sr,, 7,, ;) remains irreducible when restricted to SL(6, Fq). From the
isomorphism, (7, ,, m;)* = I(7,m,,7;) ® 0 'wo ' we find that the
restriction of I(w,w,,m;) to SL(6,F,) is self-dual. Thus I(w,m,, ;)
restricted to SL(6, Fq) is an irreducible, self-dual, generic representation of

SL(6,F,) for which (arguing as in the proof of Proposition 2) the element
— 1 acts trivially on the representation but the representation is symplec-
tic, or —1 does not act trivially but the representation is orthogonal, and
both the possibilities can be ensured depending on the value of wm(— 1).
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