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Abstract. Let X be a compact Riemann surface and M?(X) the moduli space of stable
parabolic vector bundles with fixed rank, degree, rational weights and multiplicities. There
is a natural Kdhler metric on M?(X). We obtain a natural metrized holomorphic line bundle
on M?(X) whose Chern form equals mr times the Kihler form, where m is the common
denominator of the weights and r the rank.
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1. Introduction

In a foundational paper [18] in 1985, Quillen studied determinants of d-operators
over a compact Riemann surface. Suppose X is a compact Riemann surface whose
genus g is at least 2. If E is a C*® vector bundle of rank r and degree d on X, the
space &/ of all holomorphic structures (or 8-operators) in E is a complex affine space.
For each De.s/, the object

Zp = A(ker D)* ® i(coker D),

where A denotes the top exterior power, is a well-defined line and, as D varies in
these lines form a holomorphic line bundle .% on &, which is called the determinant
line bundle. Using the theory of analytic torsion, Quillen defined a smooth Hermitian
metric in the determinant bundle and proved that its curvature equals a natural
Kihler form on «.

The theorem of Quillen has an immediate application to moduli spaces. The
collection ./ of stable holomorphic structures is an open subset of .o/ and the complex
gauge group 29 = Aut(E)/C* acts freely on <. The orbit space of this action is the
moduli space M, of stable bundles of rank r and degree d on X. When d =r(g — 1),
the action of 2¢ on &, lifts to an action on £ and, hence, the determinant %
descends to a holomorphic line bundle L over M;. The Quillen metric in % induces
a metric in the bundle L on M,. It can be shown, as a corollary to Quillen’s theorem,
that the curvature of this metric in Lis a naturally defined Kihler form on the modulj
space M,. In particular, the metric in L is positive. In the above argument the

* After this paper was written we came across an announcement of similar results by Witten [22].
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restriction d =r(g — 1) is purely technical and can be bypassed. Thus a modification
of the above construction yields a positive line L on M; for all arbitrary r and d.
When r and d are coprime, M, is known to be compact, so Kodaira’s embedding
theorem implies that the positive line bundle L is ample on M,. :
There is another interesting interpretation of the above corollary to Quillen’s
theorem. A well known result of Narasimhan and Seshadri [16] shows that the
moduli space is isomorphic to a certain variety R of irreducible projective unitary
representations of the fundamental group =, (X). For each p:my(X)—PU(r), in R let
adp:m, (X)— Aut(g) denote the composition with p of the adjoint representation of
PU(r) on g = Lie PU(r) and let W(ad p) denote the local system of real vector spaces
on X defined by ad p. Then the real tangent space to R at p is isomorphic
to the de Rham group H'(X, W(ad p)).
Define

Q :H'(X, W(adp)) x H*(X, W(adp))— R
by p

Q, (e, f) = f tr(a A B).

¢

As p varies, the family Q, gives a 2-form Q on R. This 2-form Q is symplectic structure
on R. One can ask wether Q represents an integral cohomology class in H? (R,R). Yes
is the answer to this question: under the isomorphism R ~ M, Q corresponds to the
Kihler form on M, which, in turn, equals the Chern form of the metrized line bundle
L on M,. Since all Chern classes are integral cohomology classes, Quillen’s theorem
implies that the symplectic form Q on R is integral.

In this paper, we extend these results to the case of stable parabolic bundles on
Riemann surfaces. Parabolic bundles are vector bundles over marked Riemann
surfaces with weighted flags in the fibres at the marked points. There are two ways
to study parabolic bundles: one way is to approach parabolic bundles directly; an
alternative approach is through n-bundles. A z-bundle is an equivariant vector bundle
over a Riemann surface provided with an action of a finite group n. The above results
casily go through for n-bundles and define a metrized n-determinant. The more
difficult part is to interpret this n-determinant in terms of the parabolic structure.
Reserving the relevant definitions till later, we just state the main results here.

Theorem 1.1. Let Ybea compact Riemann surface and 7 a finite group acting effectively

on Y. Denote by M™(Y) the moduli space of stable n-bundles of rank r and fixed local
typeon Y. Then there exists on M{(Y)ametrized line bundle L* whose Chern formequals
r times the natural Kéhler form ©F.

Using a formalism of Deligne, Beilinson and Manin [3,5] we interpret the above
theorem in terms of parabolic structures as follows.

Theorem 1.2. Let X be a compact Riemann surface and J a finite subset of X. Denote
by M?(X) the moduli space of stable parabolic bundles of rank r and degree d with
parabolic structure concentrated on J and having fixed rational weights, fixed
multiplicities and fixed top exterior power. Then there exists on M?(X) a metrized line
bundle L? whose Chern form equals mr times the natural Kihler Jorm, where m is the
common denominator of all the weights. ‘
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Now we sketch the outline of the paper. In §2 we recall the basic notions about
parabolic bundles and n-bundles, and display the relation between them. The
determinants of n-bundles form the topic of §4 and here Theorem 1.1 is proved. The
n-determinant is expressed in terms of parabolic structures in §4. The proof of
Theorem 1.2 is contained in § 5 and, finally, in § 6 we give an application of our results.

2. Parabolic bundles and n-bundles

In this section we define parabolic bundles and 7n-bundles and describe how the two
notions are related to each other. The two basic references for this section are
Seshadri [20] and, Mehta and Seshadri [13].

Let X be a compact Riemann surface and E a holomorphic vector bundle over X.

DEFINITION 2.1

A quasi-parabolic structure on E at a point xeX is a strictly decreasing flag
E.,=F'E,2FE,...... 2F*E.2F**"1E=0

of linear sub-spapes in E,. We define
r;=dim F/'E_— dim FI*1E

The integer k is called the length of the flag and the sequence (ry,...,r,) is called the
type of the flag. A parabolic structure in E at x is, by definition, a quasi-parabolic
structure at x as above, together with a sequence of real numbers 0 < a, <... < oy < 1.
The a; are called the weights and we set

k
dx(E)z Z rjaj.
j=1

DEFINITION 2.2

Fix a finite set I of points in X. We say that E is a parabolic bundle with parabolic
structure on I if we are given a parabolic structure in E at each point xel. The
parabolic degree, pdeg(E), is defined by

pdeg(E) = deg(E) + }. d,(E),

xel
where deg(E) denotes the topological degree of E, and we put
Pu(E) = pdeg(E)/rank (E).
The points in I are called the parabolic points.

DEFINITION 2.3
Let E and F be parabolic bundles of the same type over X (i.e. E and F have the

- same parabolic points, the same types of flags, same weights etc.). A morphism from
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E to F is a homomorphism of vector bundles f:E—F, which preserves the flags at
the parabolic points.

DEFINITION 2.4

Let E be parabolic bundle with parabolic locus I. A parabolic subbundie of E is a
parabolic bundle F with parabolic locus I, such that:

(a) F is a subbundle of E: and

(b) for each point xel and for every je{l,...,k.}, we have a, (F)= a, ;(E), where i
is the largest integer such that F'F_ < F'E, and k, is the length of the flag in F,.

DEFINITION 2.5

A parabolic bundle E is said to be semistable if for every proper subbundle F of E,
we have

Pu(F) < pu(E). (2.1)

In case strict inequality holds in (2.1), for all F, we say that E is stable.

In [13], Mehta and Seshadri construct the modulj space M?(X) of semistable
parabolic bundles over X with fixed rank, degree and parabolic type, and show that
MP*(X) is a projective variety. They also prove that the set M?(X) of stable parabolic
bundles is an open smooth subset of MP(X).

We now proceed to define n-bundles. Consider a compact Riemann surface Y and
let 7 be a finite group acting holomorphically and effectively on the left of Y, Then
X =m\Y has a natural structure of a Riemann surface such that the canonical
projection p:Y— X is a ramified covering. The ramification points of pin Y are
exactly those points y where the isotropy subgroup 7, of y in 7 is non-trivial. Note
that m, is a cyclic subgroup of = for every yeY.

DEFINITION 2.6

A 7m-bundle over Y is a holomorphic vector bundle E over Y such that:
(a) the bundle projection p:E— Y is m-equivariant;
(b) if yeY and yen, the map E,~E_ given by Ersy-£, is a linear isomorphism.

DEFINITION 2.7

A m-subbundle of a n-bundle E is a subbundle F of E which is invariant under the
action of n on E.

Notation2.8. If E is a vector bundle over Y (which need notbe a n-bundle), we denote

v _ degree(V)
" rank(V)

DEFINITION 2.9

A n-bundle E is said to'be semistable if for every proper subbundle F of E (note that
we do not assume that F is a n-subbundle of E), we have

W(F) < u(E). 22)
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We say that a n-bundle E is stable if for every proper n-subbundle F of E, we have
a strict inequality

u(F) < u(E). 2.3)

Remark 2.10 Given a n-bundle E of rank r over Y and a point yeY, there exists a
m,-invariant neighbourhood U of yin Y such that E|, is defined by a representation
p:m,—GL(r), and p is unique up to 2quivalence (cf. Seshadri [20], Proposition 2 of
§2). The equivalence class of the representation p is called the local type of E at y
and is completely determined by: (a) an integer k such that 1 <k < r; (b) a sequence
of integers 0</, <1, <... < Lk<n—1, where n= |7y l; and, (c) positive integers ris
25...,nsuch thatry + ... 4+r, =7 In fact, given the above data, we can define p as
the block matrix

exp(2mia,)-I, . 0
p(0)= '
0 exp(2nioy,)- I,
where { is a generator of T, i =—1,0 j=1I;/nand I, is the identity matrix of order ;-

In [20] Seshadri constructs the moduli space M™(Y) of semistable n-bundles of
fixed rank, degree and local type over Y and shows that M*(Y)is a projective variety.
It is proved by him that the set MZ(Y) of stable n-bundles is a smooth open subset
of M*(Y).

We now describe the connection between n-bundles on Y and parabolic bundles
on X =7\Y. Let E be a n-bundle over Y. Consider the invariant direct image P, O(E)
of O(E). This is the Oy-module defined on each open set U < X by

P, O(E) = {rn-invariant sections of E on p~H(U)}.

Since p is a proper map, Py O(E) is a coherent ¢y-module and is clearly torsion-free.
Since dim(X) = 1, it follows that p; O(E) is a locally free Oy-module of the same rank
as E, and we denote the corresponding vector bundle on X by E™.

Denote by J the ramification set of pin X. For each xeJ choose a point y(x)ep~!(x)
and let n, = |7, |- Let E be a n-bundle of rank r over Y. Suppose that the local type
(cf. Remark 2.10) of Y is given by the integers 0<1, ; <1 ,<...< lv.<n.—1and
(,15-- 5744 )- We then have the following result for which we refer to Bhosle (4]
and Mehta—Seshadri [13]. '

PROPOSITION 2.11

There exists a natural parabolic structure in the bundle E* on X with parabolic set
I=p(J). For each xel, the type of the flag in E? is (rx,l"“’rx,kx) and the weights at
x are («, ,,. -5 8, ), where ;=1 ,;/n.. Conversely, given a parabolic bundle F on X
of the above parabolic type, there exists on Y a n-bundle E, unique up to isomorphism
such that E* ~ F as parabolic bundles. The correspondence E— E” takes stable n-bundles
on Y to stable parabolic bundles on X and semistable n-bundles to semistable parabolic
bundles. The resulting bijection between the semistable moduli spaces M™(Y) and M?(X)
Is an isomorphism of varieties.
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3. The determinant bundle on M(Y)

Consider a compact Riemann surface Y and let 7 be a finite group acting holomorphi-
cally and effectively on Y. Let u be a Hermitian metric on Y which is invariant
under the action of . Denote by 477 the space of all C* (p,q)-forms on Y and set
A'=% , _,AP% Let weA'! be the fundamental (1, 1)-form of the metric x4 and
assume that y is normalized so that [, = 1.

Fix a C* n-vector bundle E of rank r and degree d over Y. Let h be a n-invariant
Hermitian metric in E. Denote by A”4(E) the space of C* (p, g)-forms on Y with
values in E and let A’(E)=Ep +¢=rA7%(E). There is a natural linear action 9f v
on each of the spaces 474 and AP4(E). We denote the corresponding subspaces of
m-invariant forms by (474)* and (A»(E))™.

DEFINITION 3.1

A holomorphic structure in E is a C-linear map D:A°(E)— A%!(E) which satisfies e
the Leibnitz identity !

D(fs)=f.D(s) + of ®s

for all feA° and seA°(E).
If D, and D, are holomorphic structures, the difference

22

o= DI "‘"DZ:AO(E)"‘)AO,I(E)

is an A°-linear map, ie., xc4%1 (End E). Conversely, if D, is a holomorphic structure
and if xe4%!(End E), the sum D,=D, +ais again a holomorphic structure. Thus
the set &/ of all holomorphic structures in E is an affine space modelled after the
C-vector space 4%!(End E).

Let ¢ denote the group of C*® automorphisms of the bundle E. Given De.s/ and
ge¥, we define a new holomorphic structure D-gesf by the prescription

D-g=g 1cDog.

Any holomorphic structure D in E induces a holomorphic structure, also denoted D,

D:A°(End E)— A%'(End E)
f—=[D,f1=Def — foD.

Having made this definition, we can write D- g=g"'o(Dg)+D.
Anyway, we now have a map

A X G of
(D,g)—D-g.

This map is clearly an affine linear right action of 4 on .

The multiplicative subgroup C* is embedded in % as the normal subgroup
consisting of constant multiples of the identity automorphism of E. This subgroup
C* acts trivially on . Hence the above action induces an action of the group
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P4 =%/C* on of. We now state a well-known integrability theorem, whose proof
can be found in Donaldson [6].

PROPOSITION 3.2

Given a holomorphic structure Desz, there exists q unique structure of a holomorphic
vector bundle Ey, in E such that the 5-operator of Ep equals D.
Now we have the trivial

PROPOSITION 3.3

Let D, and D, be holomorphic structures in E. Then Ep, and E,, are isomorphic as
holomorphic vector bundles if and only if D, and D, lie in the same %-orbit of .

Proof. The bundles E p, and E, are isomorphic as holomorphic vector bundles if
and only if there is a C® isomorphism 9:Ep,— Ej, which commutes with the
d-operators of the bundles, i.e., such that geD,=D,og. This means precisely that
ge¥ and D, =D,-g.

DEFINITION 3.4

A holomorphic structure D in E is called a holomorphic n-structure if the map
D:A°(E)— A*'(E) is m-equivariant. .

The set /™ of all holomorphic n-structures in E is an affine subspace of < in
bijection with the subspace 4°! (End E)™ of A%*(End E). Let 9" denote the subgroup
of ¢ consisting of n-automorphisms of E. It is easily seen that o/ is invariant under
the action of ¢* on «. Further C* is contained in ¢*, hence we get an action of
PG =Y. on A"

Remark 3.5. If V and W are C* n-bundles on Y of the same rank, degree and local
type (cf. Remark 2.10), then ¥ and W are isomorphic as C* n-bundles. Thus the set
™ [PF" can be thought of as the set of isomorphism classes of holomorphic 7-bundles
on Y of rank r, degree d and of the local type as E.

DEFINITION 3.6

We say that a holomorphic n-structure D is stable if the corresponding holomorphic
n-bundles E;, on Y is stable. '

Let /7 denote the subset of .o#™ consisting of stable holomorphic z-structures.
Then it is obvious that &3 is a %™invariant subset. We know from Seshadri [20]
that the isotropy subgroup of ¥~ at any Desf7 is exactly C*. Thus the group ¥~
acts freely on 7. Let M¥(Y) = A {54 We state without proof.

PROPOSITION 3.7
The canonical projection Q:AT>MX(Y)isa holomorphic principal P%*-bundle.

Remark 3.8. We have not defined any topology or complex structure on &7 and
M7 (Y), so Proposition 3.7, as it stands, is meaningless. But using Sobolev spaces it
is possible to give a natural complex manifold structure to M7 (Y) and to make sense
of Proposition 3.7. Since there are many accounts now of this kind of argument using
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Sobolev spaces, we omit all the details and make a blanket reference to Narasimhan
and Ramadas [23], Donaldson [6], Liibke and Okonek [12], Kim [10] and, Atiyah

and Bott [1].

PROPOSITION 3.9

Ir @:Z T~ M7(Y) denotes the quotient projection and if Desd?, then the tangent space
to M(Y) at the point (D) is naturally isomorphic to H' (Y, n, End Ep).

Remark 3.10. If V is a n-sheaf on Y, define H(Y,x, V) to be the set of all n-invariant
sections of V on Y. The correspondence

Vi>~H°(Y,, V)

is then a left exact additive covariant functor from the abelian category of n-sheaves
on Y to the category of abelian groups. For i > 1, the cohomology group H(Y,x, V)
is, by definition, the ith right derived functor of the above functor. It is known (cf
Seshadri [20]) that H'(Y,x, V) is naturally isomorphic to H(X, p;O(V)), where
X =7\ Y and p: Y- X is the canonical projection.

Proof of Proposition 3.9. Fix Deo/T and define
0: PG > AT
gr—D.g.

The Lie algebra of 9" is PO" = A°(End E)". The differential of ¢ at the identity
element of %" is given by

D":A°(End E)*— A%'(End E)
fr=>Df.

Thus the tangent space along the fibre of ¢ at D is precisely Im(D™). The Hodge
theory implies that

A%!(End E)* =Im(D")@® ker(D*™),

where D*" is the Hermitian adjoint of D*. Hence the tangent space to M7(Y) at ¢(D)
is given by

Tan.spacetos/7atD  A%!(End E)*
Vertical tan. space Im(D%)

~ ker(D*"),

As usual, let X =7\ Yand p:Y— X the canonical projection. Let «”4(End E) denote
the sheaf of C*(p,q)-forms on Y with values in End E. Consider the sequence

Dl
0->p, O(End Ep)->p}o’(End E)— p}a® (End E)-0.

By averaging over =, this sequence is easily seen to be a fine resolution of p,O(End Ep)

g
 a
b
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on X. Hence the sheaf theory implies that
H'(X,prO(End Ep))= coker(D™: A°(End E)*— 4%!(End E)")
=ker D*"
= T, (M(Y)).
On the other hand, we know (cf. Remark 3.10) that
H'(X,pr0(End Ep))~H'(Y,n, End E,).
Thus we conclude that
T, 5 (M¥(Y))=H'(Y,n, End Ep). B

We recall now the definition of the determinant bundle on « as in Quillen [18].
For each Dew, define a complex line %, by

Zp = A(ker D)*® A(coker D),

where 1 denotes the top exterior power. Since each D is an elliptic operator, the
kernel and cokernel of D are finite dimensional, so % p is well-defined. We thus have
a family

=) 2, (3.1)

Deo

of lines parametrized by . It is a fact, proved by Quillen [18], that % is actually
a holomorphic line bundle over <. There is a right -action on & given by

(D,(s¥A ... ASF)®(t A..At)) xg
=D, A AgTHEN®@GE) A ... Ag(t,))

where (s},...,s¥) is a basis of (ker D)* and (z,,...,t,) is a basis of coker D. Ifg=2A-id,
where AeC*, then D'g =D and gactson Zpas
E=EFA AU A... A t)
(AT sF) AL A AR (At ) A ... A (At))
= }J~k.f._._;'—x(E).é ' ,
where y(E) =index(D) which by Riemann-Roch, equals d+r(1 —g), d being the
degree of E, r the rank of E and g the genus of Y.

_ We would like to modify the line bundle % on & in order to obtain a line bundle
< on which the action of C* is trivial. To do this, fix a point yeY such that the

isotropy subgroup n, of y in = is trivial. Define
% =% ® (s x E,)®, (3.2)

where %" denotes the rth tensor power of &£ and o x E, is the trivial vector bundle
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on o/ with fibre E;. The computation of the previous paragraph shows that C* acts
trivially on & and, hence, & becomes a #%-line bundle on /. We denote the
restriction of & to &/ by the symbol & itself. Since the natural projection

Q:AT>MI(Y)

is a holomorphic principal 2%"-bundle, the #%"-line bundle .Z on /7 descends to a
holomorphic line bundie L" over MZ(Y).

DEFINITION 3.11
The line bundle L" is called the determinant bundle on the moduli space MX(Y).

Remark 3.12. If x(E) =0, then the above argument shows that C* acts trivially on
the initially unmodified line bundle % (cf. equation (3.1)). Thus & itself descends to
M?(Y) when the index of E is zero. '

In the earlier part of this section we have constructed certain holomorphic objects.
We would now like to study their metric properties. To do this we need the space
of unitary connections and the unitary gauge group. Recall that we have fixed a
n-invariant Hermitian metric 4 in the C* vector bundle E.

DEFINITION 3.13

A unitary connection in E is a connection
V:A°(E)— AX(E)

such that for all s, te 4°(E), we have
d(h(s,1)) = h(Vs, ) + h(s, V)

Let End(E, h) denote the C* R-vector bundle of skew-Hermitian endomorphisms
of (E, h). It is easily checked that the set € of all unitary connections in E is an affine
space modelled after the R-vector space 4'(End(E, k). If V is a unitary connection
in E, the (0, 1)-part Dy of V is a holomorphic structure in E.

Let % denote the subgroup of ¢ consisting of unitary automorphisms of (E, h).
Given Ve¥ and ge%, we define V-ge¥ by '

Vig=g~toVog.

This gives a right action of % on %. There is a natural embedding A A-idy of U(1)
in %. This subgroup U(1) of % acts trivially on % and hence we get an action of

PU =Y juy On €. The proof of the following simple proposition can be found in
Kobayashi [11].

PROPOSITION 3.14
The (0, 1)-part map
€ — o
V= Dy = (0, 1)-part of V

is a PU-equivariant affine R-linear isomorphism.

3
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DEFINITION 3.15

A unitary connection V in E is called a unitary n-connection if the map
V:A%(E)—» A*(E) is n-equivariant.

The set €™ of all unitary n-connections in E is an affine subspace of ¢ isomorphic
to the real subspace 4'(End (E,h))" of A'(End (E, h)). Let %™ denote the subgroup
of % consisting of unitary m-automorphisms of (E, k). It is easily seen that €™ is
invariant under the action of %™ on ¥, Further U(1) is contained in X", hence we
get an action of 2™ = Uy, on ™.

DEFINITION 3.16

A unitary n-connection V in E is said to be reducible if there exists proper C*®
n-subbundles E, and E, of E together with unitary z-connections V, and V, such
that E=E @ E,and V= V,®V,.If Vis not reducible we say that Visirreducible.

DEFINITION 3.17

A unitary n-connection V is said to be Einstein-Hermitian if the curvature R(V) of
V satisfies the identity

_ 2mu(E),

R(V)=—
|z

0 idg

where w is the Kahler form on (Y, u), || is the order of the group 7 and

E)= degree(E).
rank(E)

DEFINITION 3.18

A holomorphic n-structure Des/™ is said to be FEinstein~-Hermitian if the
corresponding connection is so. A holomorphic n-structure is called indecomposable
if there are no proper holomorphic n-subbundles E, and E, of Ej such that
E,=E, ®E,.

The following theorem is a special case of an important theorem of Simpson [21].
This also follows from Seshadri [20].

Theorem 3.19. An indecomposable holomorphic n-structure De of™ is stable if and only
if there exists an Einstein-Hermitian holomorphic -w-structure in the P%™-orbit of D.
Further if D, and D, are two Einstein-Hermitian holomorphic r-structures in the
PG -orbit of D, then D, and D, lie in the same PU-orbit.

Let 47 denote the subset of ¥~ consisting of irreducible Einstein—Hermitian
m-connections. Then it is obvious that €5 is a U™invariant subset. It can be easily
checked (cf. Kobayashi [117]) that the stabilizer in %" at any Ve®T is exactly U(1).
Thus the group 2%~ acts freely on @r. Let N*=%"/2U". Then we have

PROPOSITION 3.20
The canonical projection Y: 47> NTisa C® principal PU™-bundle.
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Remark 3.21. The comments made in Remark 3.8 apply to the above Proposition

too. We will assume Proposition 3.20 as proved and quote the same references as in -
Remark 3.8.

et

Let V be an Einstein—Hermitian holomorphic n-connection in E. Then the curvature
R(V): A°(End(E, h))— A%*(End(E, h)) of the induced connection V in End(E, h) is given
by _

RWV)(f)=[R(V).f]1=[¢®idg.f], acA’?
=a® [idg,f1=0.

Thus V is a flat z-connection in the real vector bundle End(E, h). We denote V also x
by V. The vector bundle End(E, i) together with the flat connection V =V becomes '
a local system of real vector spaces on Y which we shall denote by End &y. In
Seshadri [19], the de Rham and Hodge theories are developed for C* forms with
values in local systems. We denote the de Rham cohomology groups of Y with values

o

in End &y by H(Y,End &). These cohomology groups are finite dimensional vector ¥
spaces. The n-invariants in H:(Y,End &y) are denoted by H(Y, =, End &y).
We now compute the tangent space of the space NT.
Lemma 3.22: The tangent space to €7 at a point Ve~ equals the group of cocycles
Zi(Y,n,End &y) = Ker {V*: A'(End(E, h))" — A*(End(E, h))"}
Proof. Let €7 denote the set of irreducible n-connections. €7 is an open set in €™
Let V be the R-subspace of A%(End(E, h)) given by
V={a®idg/ine A"},
where AL denotes the space of real (1, 1)-forms on Y. Let
2 ; n
B: A*(End(E, by 2 EnA(E RN .

V
denote the natural projection and define -

A2(End(E, h))*
%
Vo= B(R(V,)).

9:‘5’59

We now have the Hodge decomposition

A*(End(E, b))" = Im(V%) @ ker(VE™).

‘We claim that ker(Vi")=V. To see this, suppose V¥"(@)=0 for some
. aeA*(End(E, h))". Then *~*oVyox(x) = 0. But the irreducibility of V,, implies that the
parallel sections of V, in End(E, h) are exactly the scalars. Therefore () = A-idg for
some AeC. Hence #*(¢) = L- 0w ®idg ie., a = — Ao ®idy. Since a is skew-Hermitian,
ileR. This proves that ker(V#™) = V. Therefore, the Hodge decomposition above
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implies that

A2(End (E, b))

7 ~ Im(V7).

We conclude from this that § is a submersion on €7§. Clearly €7 = 0" 1(0). Thus the

tangent space to 7 at any point V is given by the kernel of df at V, ie., equals

ker(V™). This is precisely Z}(Y,n,End &y). ]
Recall that y: 47 — NT is the canonical quotient projection.

PROPOSITION 3.23

The tangent space to N7 at a point ¥ (V), Ve%T, is given by H;(Y,n, End &y).

Proof. As in the proof of Proposition 3.9, we can check that the vertical tangent
space at Ve®%? is

Bl(Y,n,End &) = {Va/ac A°(End(E, h))"}
Thus the tangent space to N7 at y(V) is

Tan.spaceto#7atV  Z'(Y,n,End &y)
Vertical tan.sp.atV ~ B;(Y,7,End &y)

= H;(Y,n,End &y). |

We shall identify the real tangent space of M?Z(Y) with its holomorphic tangent
space. Theorem 3.19 implies that if Ve47, then the (0, 1)-part Dy of V belongs to /7
and the map 47— 7, Vi—Dy induces a bijection I:N}—M7(Y) between the
quotients. Clearly I is C*. The differential of I at ¥/(V), Ve#%7, is given by

dI:H(Y,7,End Ey) » H'(Y,7n,End E, ) = ker(D*™),

"

ar->o

where « is the harmonic representative of the class a and «” is the (0, 1)-part of a.
Clearly dI is an isomorphism. Thus I:NT— M?(Y) is a local diffeomorphism, hence
a diffeomorphism.

We now define a Hermitian metric on M7(Y). If ¢:/7—> MZ(Y) denotes the
canonical projection and De./7, define a Hermitian inner product

‘<-,->¢(D)rT(,,w)(J“VI"(Y)) X T(D)(ﬁ\ffl‘(Y))*C

ker(D*™) x ker(D*")—C

By =" f tro A ).
Ly

As ¢ (D) varies <{., D o(D) gives a smooth Hermitian metric on M7(Y). We shall denote
its fundamental (1, 1)-form by O™
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Define a real 2-form Q on 7 by
ﬁﬂmm=ftﬂaAm,
Y

where Ve%”™ and «, fe A (End(E, h))". It .is easily seen that Q is a P9" invariant
symplectic form on %™. Restricted to the submanifold 7, the form Q vanishes along

the vertical direction of . This can be seen as follows: any vertical vector « at Ve®%?
is of the form a = Vf where feA°End(E, h)"; so if feZ;(Y,n,End &y), we have

Qo py=| tr(Vf AP
Y

o/

=| trv( fVﬂ)—J tr(fVB)
Y Y

= P dtr(ff)—0 (since VB =0)

o

=0 (by Stokes theorem)

Thus O descends to a symplectic form Q on NE.

PROPOSITION 3.24

The Hermitian metric on MZ(Y) is Kdihler.

Proof. It is easily seen that I*(®) =, hence © is closed, as Q is closed and I is a
diffeomorphism. '
Consider the determinant bundle ¥ and </ (cf. equation 3.1). Foreach De.«/, let

0< Ay, <hp, <.t

be the eigenvalues of the Laplacian
Op:=D*oD:A°(E)— A°(E),
and define the zeta function
HE= Y ()
Ap,j>0

This series converges for Res > 1 and the function {,(s) extends to a meromorphic
function on C which is holomorphic at 0. Define a Hermitian inner product

hQ:gp X gD*‘)C,
by hg=exp(—{,(0).<.,->r*

where {.,.>,? is the I?-inner product in .}, induced by the metric in E. It is proved
in Quillen [18] that hy is a smooth Hermitian metric in %.
There is also a natural Hermitian inner product on the affine space o ~ A%!(End E)

i
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which is given by
(o0, By =~ J tr(x A B*)
i Jy

for o, fe A**(End E). This gives rise to a Kihler metric in o whose Kihler form is
denoted here by ©. We state the following theorem of Quillen [18].

Theorem 3.25. The Chern form of the canonical connection in the holomorphic
Hermitian line bundle (&, hy) on o equals the Kihler form ©.
Consider the two principal bundles

I

Gr— AT
vl lo
N™— M™(Y). ‘ (3.3)
I

On the line bundle & (cf. equation 3.2) we have a metric given by the tensor product
of the Quillen metric hy in .# and the given metric in E,. Since A(E,) is a flat unitary
bundie on .7, the Chern form of the metrized line bundle ££ is r times the Chern
form of # and, hence, by Theorem 3.25, equals r. ©. Let .4 be the pull-back of .#
to €7 by the map I. Then . is a C* 2% -line bundle on €7 and the pull-back metric
and the pull-back connection in the line bundie M are 1nvar1ant under the action of
PU™ on €7. Thus A descends to a C® Hermitian line bundle M on N7 with a
Hermitian connectxon This bundle M is naturally isomorphic to I*(L") (cf. deﬁmtlon
3.11) as a Hermitian line bundle. It follows from this that L* naturally gets a metric
and a connection. This connection is easily seen to be compatible with the metric
and the holomorphic structure in L™. We denote the metric in L™ by g.

DEFINITION 3.26
We call g the Quillen metric in L™

Theorem 3.27. The Chern form of the Quillen metric in the holomorphic line bundle
L¥ equals r times the Kdhler form ®" on MZ*(Y).

Proof. Consider the commutative diagram (3.3). We have

(Teyp)*e (L7, g) = ey (T=y)* L™, (I=Y)*g)

=C, (/7 ,I*V), where V = canonical connection in &

=T*¢-®) (cf. the remarks following the commutative
diagram 3.3)

= (IoY)*(r@).
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Since =y is a submersion, this implies that

CI(L,Q)T—T'@- -

4. The relation between the n-determinant and the parabolic determinant

In this section we show that the isomorphism from the moduli space of n-bundles
to the moduli space of parabolic bundies carries the n-determinant L” (cf. Definition
3.11) to a multiple of an “intrinsic” line bundle on the parabolic moduli. By “intrinsic”
we mean that the line bundle depends only on the parabolic data and not on the
choice of the m-structure. We refer to this intrinsic line bundle as the parabolic
determinant bundle. Here we consider only the bundle structures and leave the
comparison of the metric structures to the next section. The main results we use here
are the Grothendieck—Riemann—Roch theorem and a theorem of Deligne et al ([5]
and [3]) on the determinant of the tensor product of two families of line bundles.

Consider a compact Riemann surface Y and let 7 be a finite group acting effectively
and holomorphically on Y. Let X =, Y be the quotient Riemann surface and
p:Y— X the canonical projection. The map p is a ramified covering. Let I be the set
of ramification points of p in Y and let J = p(I) be the set of critical values of p in
X. Both I and J are finite sets. For each xeJ, choose a point y,ep~'(x) and let n,
be the order of 7., the isotropy subgroup of « at y,. Fix once and for all, for each
xeld, a set C, < of left coset representatives of 7.

DEFINITION 4.1

A holomorphic family of compact Riemann surfaces is a proper surjective holomorphic
submersion f:% — T of complex manifolds such that for each teT, the submanifold
X,=f"*(t) is a Reimann surface. '

Let f:4 — T be a family of Riemann surfaces and let # be a coherent ¢;-module.

Then, by the Proper Mapping Theorem, all the higher direct images R'f, & are
coherent (r-modules so,

HF)=X(-YRfF
is a well defined element of K(T). Therefore
AF)= A\ F)

is a holomorphic line bundle over T, called the determinant bundle of #. The fibre
of d(#) at teT is canonically isomorphic to

AH (X, FN*@AHN X, F ),
where # =F|, .
Remark 4.2. Suppose f: & — T is a family of Riemann surfaces. Then, the determinant
construction defined above enjoys several nice properties. For instance, if

0-F >F >F"->0
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[
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is an exact sequence of coherent ¢J,-modules, then
AdF)=d(FVQAF")=d(F DF").

Hence, when we consider the determinants d(#) we will assume that all short exact
sequences of 0 ,-modules split. :

DEFINITION 4.3

A family of vector bundles on the Riemann surface Y parametrized by a complex
manifold T is, by definition, a holomorphic vector bundle over Y x T. A family of
n-bundles on Y parametrized by T is a holomorphic n-bundle on Y x T, where the
action of = on T is trivial.

DEFINITION 4.4

A family of parabolic bundles on X parametrized by a manifold T is a holomorphic
vector bundle F on X x T together with the following data: for each xeJ, we are
given a filtration of the vector bundle F* = F| by subbundles

xxT
FF=FlF*o F2F*D. D FF*p Fht1px (.

We denote Gr' F*= F/F*/Fi*1F*, _

Suppose E is a family of n-bundles on Y parametrized by a manifold T. Let r be
the rank of E. For each teT, the local type of the n-bundle E, = E|,,, on Y at each
point y, is independent of ¢ and is given by integers

0<l,  <...<l , <n,—1land(r
such that

Ng

x,12°°° x,kx)

kx

Y re ;=T

i=1

Define o, =1, i/he and n_=n-o J where n=|rn|. Let F-X x T be the family of
parabolic bundles 1nduced by E (cf. Proposition 2.11), namely, F =E™ is the
holomorphic vector bundle on X x T corresponding to the locally free 0, , .
(p x 1)} O(E) together with an induced parabolic structure. We now compute the
determinant of E in terms of F and the parabolic structure of F:

PROPOSITION 4.5

Consider a family E of n-bundles on Y parametrized by a complex manifold T and let
F = E" be the induced parabolic family on X x T, as above. Then as line bundles on
T, we have

d(F)=d((p><1T)*F)®< X i(Ger")'"xd)

Proof. We first note that for each xeJ andj=1,..., k,, Gr/ F * = E7 as vector bundles

on T where E*=E| and F*=F)| and E*= Z E7 is the eigenspace

i=

yx X T xxT

-module -
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decomposition of E¥, i.e, on each E7, 7, acts as a character of weight | ;. We prove
this by producing a natural homomorphism

h:Gr! F*— E¥.

The map h; is defined as follows: Given 0 # ve GriF*, let D F* represent v. Now take
any section s of F over some open set containing x which satisfies the condition that
s(x)=1. Let § be the invariant section E over an open set containing y,, which
represents s. If § is the image of t®1; where t is a section of E such that t(y,) #0
and 1, is the canonical section of O(— iy,), under the morphism of sheaves

0-E®0O(—iy,)—E,
define
hj = t(yx)

From the correspondence between n-bundles and parabolic bundles as described by
Mehta and Seshadri [13] it follows that h; is an isomorphism.
Therefore to prove the proposition, we need to verify that

d(E)=d((p><1)*F)( @ A(E;.‘)‘"x’f) (4.1)

We have a canonical 0, .-module monomorphism
0—(p x 1)O(F)— O(E).

The cokernel 4 of this monomorphism is a torsion @, , .-module supported on
I x T where I denotes the ramification locus in Y. We thus have an exact sequence
of 0, ~-modules

yxT
0-(p x V*O(F)—» O(E)—> T —0. . 4.2)
By Remark 4.2, we get

d(E) = d((p x )*F)-d(7T)

=d((p x 1)*F)'(®1(9'y)'1> ' ‘ (4.3)
yel
where 77 =7 |, . But 7 is a m-sheaf on Y x T, hence for each yeY and yen, 7

is canonically isomorphic to Z?” on T. If xeJ and yep™!(x), there is a unique yeC,
such that y =9-y, (recall that we have fixed a section C, = of n—mn/x,); hence we
have a canonical isomorphism 7 & J7*. Thus for each xeJ,

® MT?) = M(T=)in=
yep~ 1(x)
so that

RMT”) = QU™

L yel ' xeJ

7

A.gi;ﬁ;
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Using this (4.3) becomes

d(E)=d((p x 1)*F)-<®,1(mx)‘"/"x). (4.4)

xeJ

From (4.1) and (4.4) we see that it suffices to show that for each xeJ,
ke
MTr=yin = (Q) A(ET)™s. 4.5)
j=1
Since n, ;=n-l_./n,, this amounts to verifying that

kx
MT ) = K MEF)=. (4.6)

j=1

Proving (4.6) for a fixed xeJ is a local problem at y.. By Remark (2.10), using a
n-compatible coordinate chart at y, we are reduced to the following situation: Let =
be the group of nth roots of unity acting on the unit disc D by multiplication and let
p:—D = D be the quotient map p(z) =z". Let V be a vector bundle on the variety
T and define an action of x on ¥ by {(v) = {*-vfor each {em and veV, where 0 <I<n— 1
is a fixed integer. Consider the n-bundle W =p%V on D x T where py:— T is the
projection map and let 7~ denote the cokernel of 0—(p x 1)*(p x 1)5 O(W)— O(W).
Now, prove that

MTo)= V), @.7)

where o is the centre of D. Let us check that (4.7) is true. We can easily see that
(px D*(p x 1)’;(0(W)=m’-@(W) where m is the ideal sheaf of ox T in Dx T.
Therefore the sheaf  is isomorphic to the cokernel of

0=>mh-O(W)— O(W).
Now we have an exact sequence

O-»m-0 - -0,

DxT

i

where & = (,,, ./m. Tensoring this short exact sequence with m' "' O(W),j=1,...,1,
we get a system of exact sequences

0—»m O(W) >~ LO(W)»mi ™ O(W)® F >0, j=1,...,1.

1
By general functionality, it follows that A(7°)= ® A(7}) where 7 ;=m'" ' O(W)® &
j=1

and 7 ;=7 , . But T5= (L°Y~'® V where Lis the line bundle on D x T associated
to the sheaf mand L° = L|_ .. Since L° is trivial on T, we get Ji=Viorj=1,...,l
Thus A(7°) = A(V) which is precisely (4.7). This proves the proposition.

We now construct parabolic determinants. For a more detailed description of these
determinant bundles we refer the reader to Narasimhan and Ramadas [15]. Let X
be a compact Riemann surface and J< X a finite set. Fix integers k, and
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(FyyseeisTyy,)Such that iz v =r.Let0<a, .<a,, '<1berational numbers
for each er Let M?(X ) denote the moduli space of stable parabohc bundles of rank
r and degree d with welghts a, ., and multiplicities r,

Suppose F»X x T is a famlly of parabolic bundles of type {«, 2 xers 1€
rk(Gr'F*)=r, ; and the weights are a_.. Then a possible candidate pd(F) for the
parabolic determinant is the usual dctermmant minus a factor involving the flags and

the weights; thus, we define pd(F) to be the element of Pic( T)q = Pic(T) ® Q given by

pd(F)=d(F)~ Y a,  AGIF).

Now if L is a line bundle on T and G = F ® p¥(L) where pr:X x T is the projection,
then F and G are, by definition, equivalent families. Therefore we would like to have

pd(F) pd(G) in Pic(T)q. But d(G) = d(f) — x(E)-L and i(Gr’G") /I(Gr’F")—I— T,
in Pic(T)gwhere x(E)=x(E,) is independent of t. Hence pd(G) = pd(F) Xp(F)
where

LE) =xF)+ X r o

We thus see that the definition of ;J_d-(F) has to be modified to get an invariant
determinant. Fix once and for all a point x,e X\J.

DEFINITION 4.7

Let F— X x T be a family of parabolic bundles of type {rx j»%;} on X parametrized

by a variety T. Then the parabolic determinant pd(F), of F is the element of
Pic(T)q = Pic(T)® Q defined by the formula

EE(F)=d(F)— Y ocx’j/l(GrfF")+x”—£F—)A(F"°)
where

Xp(F) F)+Zocxlx1

The above discussion shows that if F and G are equivalent families of parabolic
bundles on X x T, then pd(F) = pd(G) in Pic(T)g.

We would like to think of the parabolic determinant as a concrete line bundle
representing an element of Pic(T), rather than as an abstract entity in Pic(T)g. To
achieve this we have to multiply the pd(F) of Definition 4.7 by an integer to remove
the denominators from the rationals «_; and x,(F)/r. Write a_ ;=p,_ J/qx ; where p_
and g, ; are relatively prime positive 1ntegers ifa, ;>0and g, ;=1ifa, ;=0. Denote
bymthelemof{q, ,/xeJ,1<j<k,}andletm, ,=m-a Then0<m <m_,<.
<m_ _<m-—1are 1ntcgers for each xeJ.
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DEFINITION 4.8

Let F— X x T be a family of parabolic bundles of type {«, ;,, ;}- Then the parabolic
determinant bundle, pd(F), of F is the line bundle on T defined by

pd(F) = d(E)""{ ® ;.(Gerx)_m"vf"}-}h(FxO)'"'lP(m_

Note that in Pic(T)g, pd(F) = rm-pd(F).

Remark 4.9. The above arguments again imply that pd(F)=pd(G) if F and G are
equivalent families of parabolic bundles on X x T.

We recall a proof from Narasimhan and Ramadas [15, § 2.c] that there is a parabolic
determinant bundle on the moduli space M?(X). By tensoring with a fixed line bundle
we may assume that the degree d is large enough to ensure that for every Ee M?(X),
H°(E) generates E and H!(E)=0. Let Q denote the Quot scheme of coherent
Oy-modules which are quotients of (%, k=d +r(1 —g), with Hilbert polynomial
Pmy=d+r(m—g+1) Then there is a Poincaré family of sheaves on X x Q. Denote
by R the open subset of Q consisting of locally free sheaves E such that
HO(¢%)— H°(E) is an isomorphism. Let # denote the restriction of the Poincaré
famlly to X x R.Foreach xeJ, let Flag #* denote the flag bundle of type (N 1)

associated to the vector bundle #* on R; Flag &~ is a fibre bundle over R Let R
denote the fibre product R = H Flag #*. Then R parametrizes a family & of parabolic

er
bundles on X. Let R, denote the subset of R corresponding to stable parabolic
bundles. There is a natural action of PGL(k) on R, and the canonical map R —- MF(X)
is a holomorphic principal PGL (k)-bundle. Let pd( %) denote the determlnant bundle
(cf. Definition 4.8.) on R, defined by the family & — X x R.. Clearly the action of
GL(k) on R, lifts to an action on pd(%). Let us see how the scalars C* < GL(k)
act on pd(#). From Definition 4.8 and the properties of R, we see that

pd(F) = 1(0z )_,,.,,{ & /I(Grfﬁ")—'mx’j}"l(g oy (),

Thus a scalar 1eC* acts on pd(%) as multiplication by i°, where

c=—rmk—r Y, mx,j-rx1j+rmxp(9'~');

xeJ

on s1mphfy1ng the right side, we see that ¢ =0. Therefore pd(¥) is a PGL(k)-line
bundle on R, and hence descends to a holomorphic line bundle L? on M?(X).

DEFINITION 4.10

The above line bundle L? on M?(X) is called the parabolic determinant bundle on
M:(X).
Consider a family of parabolic bundles on X, F — X x T, parametrized by a variety
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T. Choose a compact Riemann surface Y and a group = of order n acting on Y such
that (i) the quotient , Y is biholomorphic to X; and (ii) if p: Y~ X denotes the
quotient projection, then for each xeJ and yep~*(x), the order of the isotropy.
subgroup of 7 at y equals m. Then n is a multiple of m and we let a = n/m. Define

n=na=am, forxeJandj=1,...,k

X.J x,J X"

By Proposition 2.11, the family F induces a family of n-bundles on Y, E— ¥ x T,
parametrized by T. Let nd(E) denote the determinant bundle of E as in §3. Fix a
point yep(x). Since xeX\J, y is not a ramification point of p and

nd(E) = d(E)® A(E°)X®

where y(E) = y(E,) is independent of t. The two line bundles pd(F) and nd(E) on T
are related by

PROPOSITION 4.11
Let F and E be as above. Then as elements of Pic(T)g = Pic(T)®@ Q

{rd(E) pd(F)™*}* = Q{A(FX)A(F™)~H}ram= .

xeJ

Before proving the above proposition we make a simple observation whose proof
is due to V. Balaji:

Lemma 4.12. Let f:% — T be a family of compact Riemann surfaces and suppose that
F and G are holomorphic vector bundles on & with ranks r and n, respectively. Then

d(F ® G)d(F)™"d(G)™" = d(A(F)- A(G))d(A(F)) " 1d(A(G))™}
in Pic(T)® Q. ‘

Proof. Denote by A*(T)= », A'(T) the Chow ring of T and for any aeA*(T), let
i=0

{a}; denote the degree i component of a in 4*(T). Also let f,:4*(%)— A*(T) denote
integration along the fibre. Then the Grothendieck—Riemann—-Roch (G-R-R) theorem
implies that for any vector bundle V on &,

¢;(d(V) = f({ch(V)1d(T()},),

where T, denotes the tangent bundle of & along the fibres of f. Note that T} is a line
bundle on & Let ay,...,o, be the Chern roots of F and §;,...,, the Chern roots of
G. Then («; + f;) are the Chern roots of F ® G. Using the splitting principle (cf. Fulton
[81, page 54) we formally compute

2 2=

{ch(F)- zd(Tf)}z-,———+<i ) + = Za

where p=c;(T). Similarly

{ch(F)-td Tf)}z"'“_“"( i )2+2 Y B
. =1 =t

”’:@%

ST ———
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Finally,
{ch(F@G)md(T,)}z—-nm <Z S (@+8) )g
i=1j=1
i een)
T ey r @) b @)+ Y o2
=yt )T+ (2B + (26 + 2;%
+ g T B2 + (Za)(Z6;)
ie.,

{ch(F ® G)-td(T)} = {nch(F)-td(T,) + rch(G)td(T,)},

2

nry
+ ¢ (F) ¢y (G) — —.
¢1(F)¢;(G) 15

Applying G-R-R and noting that f, (4?) =0, we get

‘ ¢ (d(F®G))=n-c,(d(F))+rc,(d(G)) + £, (c,(F) ¢, (G)),
ie., .
¢, (d(F® G))-d(F)™"d(G)™") = f,(c,(F) ¢, (G)).

Replacing F by A(F) and G by A(G) in the above relation, we get
¢, (d(A(F) A(G))-d(A(F)) ™1 d(AG) ") = fy(c1(F) ¢, (G))
since ¢, (A(F)) = c,(F). Thus
¢1(d(F®G)-d(F)™"d(G)™") = ¢, ([d(A(F)A(G))d(L(F) ™ d(A(G) ™).

Since ¢, :Pic(T) ® Q — A*(T) ® Q is an isomorphism (Fulton [8], page 294) our lemma
is proved.

We now recall a formalism due to Deligne [5]; we quote below Proposition 2.5
and Lemma 2.6 from Beilinson and Manin [3] as a brief summary of this formalism.
PROPOSITION 4.13

Let f-% — T be a holomorphic family of compact Riemann surfaces. Then for each pair
L, M of line bundles on Z, there is a line bundle {L,M) on T with the following
properties:

(i) There are canonical isomorphis;ns .
(LOg>=0r, <Ly® Ly, M) =(Ly, M){Ly, M,
(L,My={M,L), {LM™')= (L My !

@) If M O_.(D), where D is a relatively posmve divisor on Z, locally free on T, then
(L,M) =d(L® 0p)™"-d(0p).

(i) There is a canonical isomorphism

(LMY~ =d(L®M)-d(Og)-d(L) " d(M) 1.
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Now we proceed to the Proof of Proposition 4.11. Using Proposition 4.5 we see that

d(E) = d((p x 17)*F)- Q) A(GrI F*) "=, (4.3)

xeJ
But H'(X,p, V)= H'(Y, V) canonically, so
d((p x 17)*F)=d((p x Dy(p x D)*F) | (44)
Now, by the projection formula

px 1) (px)*F=F® G,
where
G=(px1),0,,r=0%p.0y®p70r,

and py:X x T— X and pr:X x T— T are the projections. Thus (4.4) becomes
d((p x 1)*F)=d(F ® G). 4.5)
We now prove from Lemma 4.12 that
d(F @ G)-d(F)™"d(G)™" = (A(F), A(G))> ~*-d(A(F))~ *d(4(G)) ™"
in Pic(T)q. Using Proposition 4.13 (iii), we write this as
d(F ® G)d(F)™"d(G)™" = (AF), AG)> ™+ d(Ox , 1) ™"
But d(G) and d(0,, ;) are trivial on T. Thus
{AMF),AG)y ™ =d(F®G)-d(F)™" . (4.6)
in Pic(T)q. Squaring both sides of (4.6) and using Proposition 4.13, we get
(AF),A(G)*> = {d(F ® G)d(F)™"}*. | 4.7)
But A(G) = A(p%p, Oy)-p*(O)". Therefore, |
CUF), A(G)? ) = (AF), Alp%py Oy (93 O1)*")
= CA(F), A(Dyp £ Oy)* > CAF), pEO1>*"
= CA(F), 3 A(py Oy PV |
because {A(F), p¥0r) is trivial by virtue of Proposition 4.13. Now Mp,Oy)? = Ox(D)
where D= — Y a(m—1)-x (cf. Béauville ei al [2], §2.5). Therefore, by Proposition
4.13(ii) ™

. (A(F), AM(G)*y = (A(F), p5 Ox(D)> = d(A(F) @ p% 0p) ™' d(p} Op)
ie.,

CAF),AGP> = Q AFX)m= D | (4.8)

xeJ

=
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where we drop d(p% 0p) asit is trivial on T. Combining (4.7) and (4.8), and using (4.5),

{d((p X 1)*F)‘d(F)""}2 = ®A(Fx)a(m—1).

xeJ

Now apply (4.3) we obtain

xeJ

. 2
{d(E)-@A(GrlF*)"x-f-d(Fr"} = QAF=ymD),

Raising the above equation to the rth power and noting thatn_.=a-m_.andn=a-m,
we see that ? y

{md(E)-A(E*)"*®)-(pd(F)~*- A(F=)rP™)}? = QQA(F¥y=tm~ Y. (4.9)

xeJ

Since y, is not a ramification point of p and p(y,) = x,, we have F*° = E*, So we can
write (4.9) as

{md(E) pd(F) =} A(F=*)2ms0)=22® = R J(Fym=D), 4.10)

xeJ

The Riemann—Hurwitz formula gives
2ny,(F) — 2x(E) = |J|ra(m — 1).

So we may express (4.10) as

{nd(E) pd(F)~*}? = QA(F*)A(F=) "t yetm=D

xeJ

in Pic(T)q. This completes the proof of Proposition 4.11.

Let us see what Proposition 4.11 implies for our moduli spaces. Fix a line bundle
d of degree d on X and let M?(X,d) be the smooth subvariety of M?(X) consisting
of parabolic bundles F such that A(F)=x¢. Similarly, let MZ(Y, 6) be the smooth
submanifold of M7T(Y) consisting of n-bundles E such that A(E*)~d. Then
Proposition 2.11 gives a natural isomorphism 6:M?(X, 0)—>MZ*(Y,9). In §3, we
constructed a m-determinant L™ on M?(Y,9) using Quillen’s theorem. In this section
we defined the parabolic determinant bundle L” on M¥(X, 0). These determinants are
related to each other by

PROPOSITION 4.14

The two line bundles 6*(L*) and (L), where a is the integer defined in the paragraph
following Definition 4.10, are isomorphic on M?*(X, ).

Proof. Consider the variety R, mentioned earlier on; R, sits as a principal
PGL(k)-bundle over M?(X) and parametrizes a family & of parabolic bundles on X.
Let 7 be the corresponding family of n-bundles on Y parametrized by R,. For each
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pair of points x, ye X, let Gw be the line bundle on R; given by

- ~ ~ =Y
G, =,1(3°°")l(.97")“1 ) gff
We easily see that G yisa PGL(k)-line bundle and descends to a line bundle G,, ’i
on M?(X). By Proposmon 411,
(V) pd(F) ™) = @G,y """ (4.11)
in Pic(R,)® Q. But (cf. Drezet and Narasimhan [7], Lemma 4.2) Picg(R,)— Pic(R,)
is injective, where Pch(R ) is the group of PGL(k)-isomorphism classes of PGL(k)-line
bundles on R,. Therefore, since all the bundles in (4.11) lie in Picg(R,), we see that
(4.11) holds in Pch(R )® Q. By descending to M?(X), we get
(6* L*(LP)~%)? = 8. N i) 4.12) %
Consider a fixed xeX. As y varies in X, G, varies in a continuous family; since
Pic, MP(X,0) is trivial, we conclude that G , 18 trivial on M?(X,5)Vx,yeX. Thus
(3.12) implies that
(O*L(LP) ) =1

in Pic(M?(X,))® Q. Since PicM?(X, §) is torsion-free, we conclude that
g*L" = (LF)
on M?(X,d). |

5. The metric on the parabolic determinant

In this section we define a Hermitian metric on the parabolic determinant bundle
and give a proof of Theorem 1.2. '

Let M?(X) and M?(X,¢) be as in §4. Again, choose a covering p: Y- X of degree
n. We continue using the notation of §4.

Suppose EeM?. Then End E is local system on X, = X\J. We denote this local
system by EndE. Let H!(X,,EndE) denote the compactly supported de Rham
cohomology of X, with values in the local system End E. The real tangent space to
M?(X) at E is canonically isomorphic to the image I of the natural map

H!(X,,End E)— H!(X,,End E),

where H} denotes usual de Rham cohomology. We shall prove this fact in Lemma 5.5
below; for the moment let us assume it.
We define a sympletic form Q2 on Tg(M. f(X )b

Qg(a{ b)= .[ tr(x A ﬁ),

Xo

2

f::
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where a,bel; and o, f are compactly supported forms representing a and b. As E
varies over M?(X), QF vary to define a C* symplectic form QF on M?(X).

Recall that we have an isomorphism 6:M?(X )->M7(Y). In §3 we defined a
symplectic form, which we now denote as Q", on MZ3(Y). The two forms Q" and Q”
are related as follows.

Lemma 5.1 6*%(Q") = n-Q°.

Proof. Recall that the tangent space to MZ(Y) at a point EeM™(Y) is given by
H;(Y,n,End E) where EndE is the local system defined by the Einstein-Hermitian
connection in E. Let F = E™. Then the differential of 6 at E is described as follows,
Let aeT, g(M7(Y)). Choose a n-invariant 1-form « on y with values in EndE
representing a. Then ocl‘y\ ; descends to a form on X, = X\J which is cohomologous
to a compactly supported form ay on X, with values in End E. Thus oy defines an
element ay in I = Tp(M?(X)). The differential of 6! at E is given by

0™ Te(MF(Y)) - Tp(M?(X))

a—»a#.
Now, let a,be Tg(M?(Y)). Then
(671 )*(©Q)(a,b) = Q*(d6~ ! (a), dO~ (b))

= Qp(a#, b#)
Xo )
1
= —f tr(x A f)
njy
= -1~Q"(a, b).
n
Thus
-1y =lor,
n
ie.,
QF = 10*0". |
n

Let us now state the obvious.

Lemma 5.2. Let V and W be two complex manifolds and suppose f:V-W is a
biholomorphism. Let B: T(W)e x T(W)c - C be a real positive (1, 1,)-form on W and
let B denote Bl ey x rowy- Suppose . T(V) x T(V)— R is a real 2-form on V such that
f*Br = o. Then the complexification o of « is a real, positive (1, 1)-form on V.

Thus the complexification ®” of the 2-form QF on M?(X) is real, positive and of
type (1, 1), so it defines a Kahler structure on MP?(X).

In §3, we defined a natural Hermitian metric h* in the determinant bundle L® on
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MP(Y). This metric induces a metric §*h" in the pull-back 6* L™ over M?(X). But
Proposxtlon 4.14 implies that 6* L™ =(L?)* on M?(X,9). Thus we have obtained a
metric in (LP)* on MP(X, 8). This defines a metric h? in L?. We now have Theorem 1.1
of the Introducnon

Theorem 5.3. The Chern form of the metrized line bundle (L2, hp) equals mr times the
Kdihler form @° on M?(X, ).

Proof. Since both ¢, (L?,h?) and mr-©F are real (1, 1)-form, it suffices to show that
they are equal on the real tangent space of M?(X, ). But as real forms

a-c,(L?, hP)g = ¢, ((LP)°, (h*)*) = ¢, (6* L™, 0* h™)g = 6* ¢, (L™, h™)g
= 0*(r- Q") =rn-QF - rn-OF,
using Theorem 3.27. Dividing by a and noting that m-a =n, we get
cy (L h)g =rm-OF.
This proves the Theorem. N

The metric a priori depends on the choice of the covering (Y, ). But we now see that
in fact it is independent of % up to a positive constant.

PROPOSITION 5.4

Let (Y;,7,) and (Y,,7,) be two ramified coverings of X with the properties of Y as
above. Let h%¥ and h% be the induced metrics in LP. Then there is a constant ¢ >0 such
that h% = c-h% in L¥ over M?(X, d)..

Proof. Since h? and k% are two Hermitian metrics in the same line bundle L?, there
exists a positive ¢® function f:MP?(X,8)—>R™ such that h, = f- h,. By theorem 5.3,
hy and h, have the same curvature. So, locally, 86logh, = ddlogh,, and hence,
dologf = O Thus log f is a plurisubharmonic function on M?(X, 6). Now the moduli
. space MP(X,J) of semistable parabolic bundles is a normal projective variety and
codim of the complement of M?(X, ) >2, so logf extends to a plurisubharmonic
function on the whole of M?(X, d). Since M?(X, ) is compact, log f = a is constant,
and h, = ch, where c = ¢". ; [ |

In the rest of the section we prove.

~ Lemma 5.5.. The real tangent space to M?(X) at E is canonically isomorphic to the
image Iy of the natural map

H!(X.,EndE)-> H}(X,,EndE).

Proof. 1t is enough to prove the lemma in the case where parabolic degree is zero.
If the parabolic degree is not zero then choose sufficiently large number of points

ai,...,a,e€X, and include them among the parabohc points and give on the fibre of

each a; the trivial quasi-parabolic structure; ie. the only flag is the whole fibre (cf.

P
¢
t
i%
f
!




Parabolic determinants on Riemann surfaces 69

Mehta and Seshadri [13], Remark 1.17). Assign non-zero weights to the flags so that
the new parabolic degree is zero. This gives an isomorphism of M?(X) to some other
moduli of parabolic stable bundles with parabolic degree 0. Let V denote the image
of E under this isomorphism. Stable bundles of parabolic degree 0 arise as
representations of the fundamental group of the complement of the parabolic points
in U(n). So, as V is a degree O stable bundle End V has a structure of a local system.
But around each g; the monodromy is trivial; scalars are in the kernel of the adjoint
representation. So End E and End V are naturally isomorphic on X,; in particular
End E has a structure of a local system on X,. Now onwards we will assume the
parabolic degree to be zero.

So, let X be a compact Riemann surface of genus g > 2 and J < X a finite set. Fix
integers deZ and r=1. Let us recall our earlier notation. For each xeJ, let

O<a, <o, Sy, < 1 be rational numbers and let (r r.x.) D€ positive
integers such that ), r_.=r. Assume that
=1

X107

d+ ) a_,r .=0.

x,J x]
xeJ .

Let M?(X)° denote the moduli space of stable parabolic bundles of rank r, degree d
and weights o . with multiplicities r_,. For each xeJ, define a function

cxi{l,...,r} > [0, 1] by

c.()=u ifrx,1+~--+rx,j,_1+1<rx,1+~--+rx,j.

x,j?

Let W, denote the conjugacy class in U(r) of the diagonal matrix

eZnicx(l) 0
0 e21|:l't:x(r)
Express the o . with a common denominator m, o« .,;/m- Then there exists a

discrete subgroup I" of PSL,(R) acting on the upper half—plane H with the following
properties: (i) I" has no parabolic fixed points; (ii) I'\H = X; (iii) I" is generated by
2g +|J| elements {a,...,a,,by,...,b,,c,,xeJ} with the relations

,
( [1 [aubi])(n cx> =1land c"=1, xeJ.
i=1 xeJ

Let R denote the manifold of irreducible unitary representations p:I" — V(r) such that
p(c.)e W, for all xeJ. Then by Mehta and Seshadri [13], R = MP(X)°.

" The real tangent space to R at a representation p is equal to H!(I",adp) where
ad:U(r)— Lie U(r) is the adjoint representation. Using an argument of Prasad [17],
we shall identify this group cohomology with compactly supported cohomology.
From Prasad [17, Lemma 3 and §6] we get H*(T',adp) = H(X, A) where A is the
invariant direct image of the constant sheaf Lie U(r) on H. Let X, = X\J and let
i:X,— X denote the inclusion map. It is easily seen that i, (A|y,) = A. Therefore the
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edge homomorphism associated to the Leray spectral sequence of i implies that the
canonical map g: H* (X, A)— H'(X,, A) is injective. On the other hand Theorem 4.10.1 : /
of Godement [9] applied to the closed set J gives an exact sequence ;t»*“’

,}\r
&

A ey
.

> HYX,, A)—>H (X, A)» H'(J, A)> -

where H! denotes cohomology with compact supports. But J being a finite set, we -
get H*(J, A) = 0. Thus the map f:H!(X,, A)—» H*(X, A) is surjective. Let

h:H:(XmA)_)Hl(XOaA)

denote the canonical map. Then we have a commutative diagram

HI(X, 4) > B (X, 4)
h] lg L

HY(X,, A) H'(X,, A) Y
0 0> |

identity

Since f is surjective and g injective, we conclude that H'(X, 4) =Im(h), i.e., T,(R)
is the image of H!(X,, 4) in H*(X,, A) under the canonical map h. This completes
the proof of the Lemma. [ |

6. An application

¢ In this section we deduce a finiteness statement from our earlier results.

Let Y be a compact Riemann surface of genus at least 2. Fix two relatively prime
integers r and d with r > 1. Let M(Y) denote the moduli space of stable bundles of
rank r and degree d on Y. Suppose a finite group 7 acts holomorphically and effectively
on Y. Let M™(Y) denote the moduli space of stable z-bundles of rank r, degree d and
fixed local type on Y. Then both M(Y) and M™(Y) are projective algebraic manifolds
and there is a canonical forgetful map '

2: M*(Y)— M(Y).

PROPOSITION 6.1

The morphism o is a finite map.

Proof. As in § 3, we can construct a determinant line bundle L on M and show that
L is positive (cf. Theorem 3.27). In fact, to see this we put = to be the trivial group
everywhere in §3. Since M(Y) is compact, the Kodaira embedding theorem implies
that L is ample. But the determinant bundle L™ on M™(Y) is exactly equal to a*(L).
Thus a pulls back the ample line bundle L on M(Y) to an ample line bundle on
M™(Y). As a result « is a finite morphism. |
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