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1. Introduction

Let G be a connected split reductive group defined over a finite field Fq, and
G(Fq) the group of Fq-rational points of G. For each maximal torus T of G defined
over Fq and a complex linear character θ of T (Fq), let RGT (θ) be the generalized
representation of G(Fq) defined in [DL]. It can be seen that the conjugacy classes in
the Weyl group W of G are in one-to-one correspondence with the conjugacy classes
of maximal tori defined over Fq inG ([C1, 3·3·3]). Let c be the Coxeter conjugacy class
of W , and let Tc be the corresponding maximal torus. Then by [DL] we know that
πθ = (−1)nRGTc(θ) (where n is the semisimple rank ofG and θ is a character in ‘general
position’) is an irreducible cuspidal representation of G(Fq). The results of this paper
generalize the pattern about the dimensions of cuspidal representations of GL(n,Fq)
as an alternating sum of the dimensions of certain irreducible representations of
GL(n,Fq) appearing in the space of functions on the flag variety of GL(n,Fq) as
shown in the table below.

Dimension of dim(Stn,n)− dim(Stn,n−1)
n cuspidal representation +dim(Stn,n−2)− · · · + (−1)n−1dim(Stn,1)

2 q − 1 q − 1

3 (q2 − 1)(q − 1) q3 − (q2 + q) + 1

4 (q3 − 1)(q2 − 1)(q − 1) q6 − (q5 + q4 + q3) + (q3 + q2 + q)− 1

5 (q4 − 1)(q3 − 1)(q2 − 1)(q − 1) q10 − (q9 + · · · q6)+
(q7 + q6 + 2q5 + q4 + q3)− (q4 + · · · q) + 1

Here Stn,i is an irreducible representation of GL(n, Fq) appearing in the space of
functions on the flag variety of GL(n, Fq); Stn,n is the Steinberg representation, and
Stn,1 is the trivial representation of GL(n, Fq). We are using the well known formula
for the dimension of a cuspidal representation ofGL(n,Fq) as (q−1) . . . (qn−1−1). We
could easily check that this equality remained true for characters of all unipotent
elements too for these small values of n by looking into character tables. The aim of
the paper is to give a proof of this for GL(n,Fq) as well as generalizations for other
classical groups. For GL(n,Fq) it seems that this result is well known and can be
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proved by methods as given in [L], but we include a proof in this case too for the
sake of completeness.

An irreducible representation ρ of G(Fq) is called unipotent if it arises as
a component of RGT (1) for some T . If T is a split torus then RGT (1) = IndG(Fq)

B(Fq)(1)
where B is a Borel subgroup containing T , defined over Fq. It is well known that
EndG(Fq)(IndG(Fq)

B(Fq)(1)) can be identified with the group algebra C[W ]. Therefore the

irreducible representations of G(Fq) occurring in IndG(Fq)
B(Fq)(1) are in one to one

correspondence with the irreducible representations of W over C. It is known ([S,
14]) that the exterior powers of the reflection representation of W , to be denoted
by E throughout this paper, are irreducible and mutually inequivalent. Let πi be
the irreducible component of IndG(Fq)

B(Fq)(1) corresponding to the ith exterior power
representation of the reflection representation of W .

By [L2] it is known that if G is a classical group, then it can have at most one
unipotent cuspidal representation. The groups of type An do not have any unipotent
cuspidal representation; groups of type Bn, Cn have exactly one if and only if n =
s2 +s for some integer s > 1 and Dn have one if and only if n is an even square. Thus
groups of type B2 = C2, and D4 have unique unipotent cuspidal representations,
and in these cases they occur as a component of RGTc(1), where c is the Coxeter
conjugacy class of the corresponding root systems. Let us denote these unipotent
cuspidal representations by πuc.

Let G = Gn be either Sp2n, SO2n+1 (n > 2), or the split orthogonal group in even
number of variables SO2n defined over Fq. For each partition n = r1 + r2 + · · · +
rk + s (0 6 s < n) we have the standard parabolic subgroup P defined over Fq with
Levi subgroup L defined over Fq and isomorphic to GLr1 ×GLr2 × · · · ×GLrk ×Gs.
For G = Sp2n, or SO2n+1 take the partition n = 1 + · · · + 1 + 2, with the cor-
responding Levi subgroup (Gm)n−2 × Sp4, or (Gm)n−2 × SO5. We know that Sp4

and SO5 have a unique unipotent cuspidal representation πuc. Extend the represen-
tation πuc trivially across (Gm(Fq))n−2 = (F∗q)n−2 to construct a representation of
(F∗q)n−2×Sp(4,Fq), or (F∗q)n−2×SO(5,Fq), as the case may be. We abuse notation to

denote this representation of Levi subgroup L(Fq) again by πuc. Let ρ = IndG(Fq)
P (Fq)(π̃uc),

where π̃uc is the representation of P (Fq) obtained by composing πuc with the natural
homomorphism from P (Fq) to L(Fq). By [L2, L5] we know that EndG(Fq)(ρ) can be
identified with C[W (Bn−2)]. Therefore the irreducible representations of G(Fq) oc-
curring in ρ are in one-to-one correspondence with the irreducible representations
of W (Bn−2). Let ρi be the irreducible component of ρ corresponding to the i-th ex-
terior power representation of the reflection representation of W (Bn−2). Similarly,
when G = SO2n (n > 4), take the Levi subgroup L% (Gm)n−4×SO8. We know that
SO(8,Fq) has a unique unipotent cuspidal representation πuc. Let ρ be constructed as
above. It follows by [L2, L5] that EndG(Fq)(ρ) can be identified with C[W (Bn−4)]. Let
ρi be the irreducible component of ρ corresponding to the ith exterior power represen-
tation of the reflection representation of W (Bn−4). Here is the main theorem of this
paper.

Theorem 1·1. Let G be a split classical group, and let Θπ denote the character of a
representation π. Let u be a unipotent element of G(Fq). With the notation as above, we
have the following
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(a) For G(Fq) = GL(n + 1,Fq) (n > 0),

Θπθ (u) =
i=n∑
i=0

(−1)iΘπn−i(u). (1·1)

(b) For G(Fq) = Sp(2n,Fq), or SO(2n + 1,Fq) (n > 2),

Θπθ (u) =
i=n∑
i=0

(−1)iΘπn−i(u) +
i=n−2∑
i=0

(−1)iΘρn−2−i(u). (1·2)

(c) For G(Fq) = SO(2n,Fq) (n > 4),

Θπθ (u) =
i=n∑
i=0

(−1)iΘπn−i(u) +
i=n−4∑
i=0

(−1)iΘρn−4−i(u). (1·3)

To prove the theorem above we shall need some results about the characters of the
classical Weyl groups, and their values at the Coxeter conjugacy class. We prove that
the character values of irreducible representations of the classical Weyl groups at its
Coxeter conjugacy class is 1,−1, or 0 (Theorem 2·1). We also need the decomposition
of R[χ] (see Theorem 4·1) in terms of irreducible unipotent representations of G(Fq)
(Theorem 4·4).

Remark 1·1. In general, the restriction to unipotent elements of cuspidal represen-
tation coming from other maximal tori, can not be expressed as an alternating sum,
as in Theorem 1·1. The reason for getting such a small number of representations
in Theorem 1·1 is that there are just h (= Coxeter number) irreducible characters of
Weyl group that are non-zero at the Coxeter element, and these are either 1 or −1.
This is not true in general for other elements of the Weyl group.

2. Characters of classical Weyl groups

In this section we shall establish some basic results about the characters of classical
Weyl groups.

Let W be the Weyl group corresponding to an irreducible root system Σ in a Q-
vector spaceE (spanned by Σ) with a fixed set of positive roots. ThenE is in a natural
way an irreducible Q[W ]-module, said to be the reflection representation of W . Let
∆ = {e1, e2, . . . , en} be the system of simple roots of Σ. Then ∆ is a basis for E. Let
si ∈ GL(E) be the reflection with respect to ei ∈ E. Then W has a presentation as
a finite Coxeter group W = 〈s1, s2, . . . , sn | si2 = 1, i = 1, . . . , n, (sisj)nij = (sjsi)nij =
1, nij < ∞〉. The element of the form c = s1 · · · sn is called a Coxeter element of W .
The conjugacy class of c does not depend either on the ordering s1, . . . , sn, or on the
choice of the generating reflections, and therefore defines a well-defined conjugacy
class in W , called the Coxeter class. Weyl groups of root systems of type An (n > 1),
Bn (n > 1) and Dn (n > 2) are called the classical Weyl groups. (The Weyl group of
Cn is same as that of Bn.) We will briefly describe these Weyl groups.

(1) Let the root system be of type An (n > 1). Then W (An) = Sn+1 (the symmetric
group on n + 1 elements). In this case, one can take the transpositions (i, i + 1)
(1 6 i 6 n), to be a set of simple reflections. Therefore, the Coxeter element
c = s1 · · · sn is the (n + 1)-cycle (1, 2, . . . , n + 1). We denote the (n + 1)-cycle by
σn+1.
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(2) Let Wn, (n > 1) be the group of all permutations of the set {1, 2, . . . , n,

n′, . . . , 2′, 1′} which commute with the involutions i → i′, i′ → i (1 6 i 6 n).
For each j, 1 6 j 6 n − 1 let sj ∈ Wn be the permutation which interchanges j
with j + 1 and also j′ with (j + 1)′ and leaves the other elements unchanged. Let
sn ∈ Wn be the permutation which interchanges n with n′ and leaves other entries
unchanged. Then Wn = 〈s1, s2, . . . , sn〉 is the Weyl group of type Bn. A permutation
in Wn defines a permutation of the n element set consisting of the unordered pairs
{(1, 1′), (2, 2′), . . . , (n, n′)}. Thus we have a natural homomorphism of Wn onto Sn. It
can be seen that Wn = {±1}n o Sn. The Coxeter element is c = (1, 1, . . . , 1,−1) · σn,
where σn is the n-cycle in Sn.

(3) Let ε : Wn → {±1} be the homomorphism defined by the condition that

ε(si) = 1 (1 6 i 6 n− 1),

ε(sn) = −1.

}
(2·1)

Let W̃n = ker(ε). When n > 2, let s′n = snsn−1sn. Then W̃n = 〈s1, s2, . . . , sn−1, s
′
n〉

is the Weyl group of type Dn. The Coxeter element is c = (1, 1, . . . , 1,−1,−1) · σn−1,
where σn−1 is the (n− 1)-cycle in Sn.

Lemma 2·1. A Coxeter element commutes only with its powers.

Proof. See proposition 30 of [C].

Let c be a Coxeter element of W and let h be its order, called the Coxeter number
ofW or of the underlying semisimple groupG. Then by the above result h = |ZW (c)|,
where |ZW (c)| denotes the cardinality of the centralizer of c in W .

Theorem 2·1. Let W be a classical Weyl group. Then the value of all the irreducible
characters of W at its Coxeter conjugacy class is 1,−1 or 0.

The proof of the theorem above essentially reduces to the case of W (An−1). So we
will first prove this for W (An−1).

Let {v1, . . . , vn} be the standard basis for Qn. Let E = En = {(u1, . . . , un) ∈
Qn|∑ui = 0} be the n − 1 dimensional subspace of Qn. For the Weyl group
W (An−1) = Sn, the generators si are the transpositions (i, i + 1), 1 6 i 6 n − 1,
acting as reflections in GL(E) with respect to the root-vectors αi = vi − vi+1. Thus
En affords the reflection representation of W (An−1) = Sn. The order h of the Coxeter
element c = s1 · · · sn−1 = σn is n. The eigenvalues of σn = (1, 2, . . . , n) on E are

ζi, i = 1, 2, . . . , n− 1, (2·2)

where ζ is a primitive nth root of unity. It is easy to see that ∧iEn, i = 0, 1, . . . , n−1
are mutually inequivalent irreducible representations of Sn. Let χi = Θ∧iEn denote
the character of ∧iEn, and Ŵ denote the set of irreducible characters of W .

Proposition 2·1. Let W = W (An−1) = Sn. Let χ ∈ Ŵ . Then

χ(σn) =
{

(−1)i if χ = χi, i ∈ {0, 1, . . . , n− 1},
0 otherwise.

(2·3)

Proof. From (2·2) we know that the eigenvalues xi of σn on E satisfy the following
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equation:

xn−1 + xn−2 + · · · + x + 1 = 0. (2·4)

Therefore,

χi(σn) =
∑

16r1<r2<···<ri6n−1

xr1 · xr2 · · ·xri . (2·5)

The expression on the right-hand side is the sum of the product of i distinct roots of
(2·4), which is (−1)i times the coefficient of xn−1−i. Therefore

χi(σn) = (−1)i, i = 0, 1, . . . , n− 1. (2·6)

We now need an elementary result about the characters of a finite group, according
to which for any finite group H and any element g ∈ H,∑

χ∈Ĥ
χ(g)χ(g) = |ZH(g)| (2·7)

where Ĥ denotes the set of isomorphism classes of irreducible characters of H, χ(g)
denotes the complex conjugate of χ(g), and |ZH(g)| denotes the cardinality of the
centralizer of g. Applying (2·7) in the situation of W we obtain∑

χ∈Ŵ
|χ(σn)|2 = n. (2·8)

On the other hand, we have∑
χ∈Ŵ
|χ(σn)|2 =

∑
χ^{χi| i=0,1,...,n−1}

|χ(σn)|2 +
i=n−1∑
i=0

|χi(σn)|2

=
∑

χ^{χi| i=0,1,...,n−1}
|χ(σn)|2 +

i=n−1∑
i=0

1 (by (2·6))

=
∑

χ^{χi| i=0,1,...,n−1}
|χ(σn)|2 + n.


(2·9)

Applying (2·8) we obtain ∑
χ^{χi| i=0,1,...,n−1}

|χ(σn)|2 = 0. (2·10)

Therefore χ(σn) = 0 if χ ^ {χi | i = 0, 1, . . . , n− 1}. Hence the proof.

Irreducible characters of Sn are in one-to-one correspondence with the partitions
of n. A partition of n is any finite sequence

λ = [λ1, λ2, . . . , λr, . . . ]

of non-negative integers in increasing order

0 6 λ1 6 λ2 6 · · · 6 λr 6 · · ·
such that the sum of the parts of λ (denoted by |λ| and equal to λ1 +λ2 + · · ·+λr+ · · · )
is n. We shall find it convenient not to distinguish between two such sequences which
differ only by a string of zeroes at the beginning. Note that the irreducible character
χi of Sn corresponds to the partition [1i, n− i].
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Lemma 2·2. Let µi = [1i−1, 2, n − 1 − i], i = 1, . . . , n − 3 be a partition of n, and

let χµi be the corresponding irreducible character of Sn. Let σn−1 be an (n− 1)-cycle in
Sn. Then χµi(σn−1) = Θ∧iEn−1 (σn−1) = (−1)i, where ∧iEn−1 is the ith exterior power
representation of the (n− 2)-dimensional reflection representation of Sn−1. Moreover, for
any irreducible character χ of Sn, χ(σn−1) = 0 unless χ = χµi , or χ = 1, or χ = sgn.

Proof. It follows from the Murnaghan–Nakayama rule (see [M, I·7, ex. 5]) that

χµi(σn−1) =
∑

χν(σn−1), (2·11)

where the sum is over the three partitions ν1 = [1i−1, 2, n − 2 − i], ν2 = [1i, n − 1 −
i], ν3 = [1i−2, 2, n− 1− i]. Now applying Proposition 2·1 in (2·11), we obtain

χµi(σn−1) = Θ∧iEn−1 (σn−1) = (−1)i, i = 1, . . . , n− 3. (2·12)

As |ZSn(σn−1)| = n− 1, by applying (2·7) we get that χ(σn−1) = 0 unless χ = χµi , or
χ = 1, or χ = sgn. Hence the proof.

Proof of Theorem 2·1
Proof. The proof follows by using (2·7), as soon as we have enumerated h = |ZW (c)|

irreducible characters of W which take value 1 or −1 at the Coxeter class c. The case
of W (An) is done in Proposition 2·1. We now do this for the Weyl groups of type Bn
and Dn.

(1) The case of W (Bn). We know that Wn = W (Bn) = {±1}n o Sn and its Cox-
eter element is c = (1, . . . , 1,−1) · σn. The Coxeter number is h = 2n. The irre-
ducible characters χ of Wn are in one-to-one correspondence with the ordered pairs
(χ1, χ2) of irreducible characters of Sk, Sl (k + l = n). The correspondence is defined
as follows. The subgroup of Wn consisting of all permutations in Wn which map
{1, 2, . . . , k, k′, . . . , 2′, 1′} into itself and hence also map {k+ 1, . . . , n, n′, . . . , (k+ 1)′}
into itself can be regarded in a natural way as a product Wk ×Wl. The characters
χ1, χ2 of Sk, Sl can be regarded as characters χ̄1, χ̄2 of Wk,Wl via the projections
Wk → Sk, Wl → Sl. Consider the character χ̄1 ⊗ (ε |Wl

⊗χ̄2) of Wk ×Wl where ε is
as defined in 2·1. We induce it to Wn; the resulting character is irreducible. It is the
character corresponding to the ordered pair (χ1, χ2). Now the irreducible character
χ1 of Sk corresponds to a partition λ of k, and the irreducible character χ2 of Sl
corresponds to a partition µ of l. Therefore the irreducible characters χ of Wn are
in one-to-one correspondence with the ordered partition (λ, µ) of n.

Let (λ, 0) be an ordered partition of n. Then the corresponding irreducible char-
acters of W (Bn) are χ̄λ, where χλ is the irreducible character of Sn corresponding
to partition λ of n. Take λ = λi = [1i, n− i], (i = 0, . . . , n− 1). Applying Proposition
2·1, we get

χ̄λi(c) = χλi(σn) = (−1)i, i = 0, . . . , n− 1. (2·13)

Now consider the ordered partitions (0, λ) with λ = λi = [1i, n− i], (i = 0, . . . , n−1).
Then ε⊗ χ̄λi are the irreducible characters of Wn. Therefore

ε⊗ χ̄λi(c) = (−1) · χλi(σn) = (−1)i+1, i = 0, . . . , n− 1. (2·14)

Thus we have enumerated 2n characters of Wn

{χ̄λi , ε⊗ χ̄λi | i = 0, . . . , n− 1} (2·15)
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with character values 1 or −1 at the Coxeter element. As the Coxeter number is 2n,
using (2·7) we get that these are all the irreducible characters with non-zero value
at the Coxeter element c.

(2) The case of W (Dn). We know that W̃n = W (Dn). The Coxeter element is c =
(1, . . . , 1,−1,−1) ·σn−1. The Coxeter number is h = 2(n−1). It is easy to see that the
irreducible characters of Wn = W (Bn) corresponding to the ordered partition (λ, µ)
of n remain irreducible when restricted to W̃n except when λ = µ, and the restriction
of characters corresponding to (λ, µ) and (µ, λ) are the same. Thus the irreducible
characters of W̃n are in one-to-one correspondence with the unordered partition
(λ, µ) of n except when λ = µ. When λ� µ, we call the corresponding irreducible
character of W̃n non-degenerate. The irreducible character ofWn corresponding to the
partition (λ, λ) decomposes into two distinct irreducible components when restricted
to W̃n. We call these characters degenerate.

Let µi = [1i−1, 2, n − 1 − i], (i = 1, . . . , n − 3) be a partition of n. Let χµi be the
corresponding character of Sn. Then the irreducible character of Wn corresponding
to the ordered partition (µi, 0) is χ̄µi , whose restriction to W̃n is irreducible. By
Lemma 2·2 we get that

χ̄µi(c) = χµi(σn−1) = (−1)i, i = 1, . . . , n− 3. (2·16)

Now let us take the unordered partitions (µ0, 0) and (µn−2, 0), where µ0 = [n] and
µn−2 = [1n]. Then the corresponding irreducible characters of W̃n are χ̄µ0 , and χ̄µn−2

respectively. We have,

χ̄µ0 (c) = χµ0 (σn−1) = 1,

χ̄µn−2 (c) = χµn−2 (σn−1) = (−1)n−2.

}
(2·17)

Therefore we obtain n− 1 irreducible characters of W̃n

{χ̄µi | i = 0, . . . , n− 2} (2·18)

with their character values at the Coxeter element 1 or −1.
Let Θ∧iEn−1 be the character corresponding to the ith exterior power represen-

tation of the (n − 2)-dimensional reflection representation of Sn−1. Then Θ∧iEn−1

corresponds to the partition λ′i = [1i, n− 1− i] of n− 1. Let χ(λ′i,1) be the irreducible
character of Wn corresponding to the ordered partition (λ′i, 1). That is,

χ(λ′i,1) = IndWn

Wn−1×W1
(χ̄λ′i ⊗ ε |W1 ). (2·19)

Let n > 2. Then λ′i� 1, and therefore the restriction of χ(λ′i,1) to W̃n is irreducible.
Now using Proposition 2·1 we get that

χ(λ′i,1)(c) = (−1)i · ε |W1 (−1) = (−1)i+1, i = 0, . . . , n− 2. (2·20)

We have enumerated n− 1 more irreducible characters

{χ(λ′i,1) | i = 0, . . . , n− 2} (2·21)

of W̃n with values at the Coxeter element 1 or −1. Thus we have obtained 2(n − 1)
irreducible characters of W̃n with values 1 or −1 at the Coxeter element c. As the
Coxeter number is 2(n − 1), by applying (2·7) we conclude that these are all the
irreducible characters with non-zero value at the Coxeter element c. Hence the proof.
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Remark 2·1. We have been informed by Professor T. A. Springer that the Theorem

2·1 has been known for all Weyl groups by looking at their character tables.

3. Symbols and unipotent representations

In this section we introduce the formalism of symbols due to [L2] which gives a
simple combinatorial parameterization of all unipotent representations of classical
groups. A symbol is an unordered pair Λ =

(
S
T

)
of finite subsets (including the empty

set6) of {0, 1, 2, . . . }. The rank of Λ is defined by

rk(Λ) =
∑
λ∈S

λ +
∑
µ∈T

µ−
[(

a + b− 1
2

)2]
, (3·1)

where a = |S|, b = |T |, and for any real number z we denote by [z] the largest integer
m such that m 6 z. The defect of Λ is defined by def(Λ) = |a − b|. There is an
equivalence relation on such pairs generated by the shift(

S

T

)
∼
({0} t (S + 1)
{0} t (T + 1)

)
.

We shall identify a symbol with its equivalence class. The function rk(λ) and def(λ)
are invariant under the shift operation, hence are well-defined on the set of symbol
classes. A symbol Λ =

(
S
T

)
is said to be reduced if 0 ^ S w T ; it is called degenerate if

S = T , and non-degenerate if S� T .The entries appearing in exactly one row of Λ
are called singles. Now we shall define special symbols in the sense of [L4] and [L5].
We first consider the case of symbols of rank n and defect 1. Let

Λ =
(
z0, z2, . . . , z2m

z1, z3, . . . , z2m−1

)
(3·2)

be a symbol of rank n and defect one. We arrange z’s in such a way that 0 6 z0 <
z2 < · · · < z2m, 0 6 z1 < z3 < · · · < z2m−1. The symbol Λ is said to be special, if the
inequalities

z0 6 z1 6 z2 6 z3 6 · · · 6 z2m−1 6 z2m (3·3)

are satisfied. It is easy to see that in this case the number of singles is odd.
Let us consider the case of symbols of rank n and defect 0. Let

Λ =
(
z2, z4, . . . , z2m

z1, z3, . . . , z2m−1

)
(3·4)

be a symbol of rank n and defect 0. It is so arranged that 0 6 z1 < z3 < · · · < z2m−1,
and 0 6 z2 < z4 < · · · < z2m. A non-degenerate symbol Λ is special if and only if{

z1 6 z4 6 z3 6 · · · 6 z2m, or if,

z2 6 z1 6 z4 6 · · · 6 z2m−1.
(3·5)

It is easy to see that in this case the number of singles is even.
We know that the irreducible characters of W (Bn) are in one-to-one corres-

pondence with the ordered partitions (α, β) of n. Let α = [α1, α2, . . . , αm′],
β = [β1, β2, . . . , βm′′] with 0 6 α1 6 α2 6 · · · 6 αm′ and 0 6 β1 6 β2 6 · · · 6 βm′′ .
Since m′ and m′′ can be increased at our will (by adding zeroes) we may assume that
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m′ = m′′ + 1. We now set λi = αi + i− 1, (1 6 i 6 m′), µi = βi + i− 1, (1 6 i 6 m′′).
Let S = {λ1, . . . , λm′}, T = {µ1, . . . , µm′′}. Therefore for each irreducible character
χ of W (Bn) corresponding to an ordered partition (α, β) we can associate a symbol
Λ =

(
S
T

)
given as above. We know that the non-degenerate irreducible characters of

W (Dn) are in one-to-one correspondence with the pair of unordered partitions (α, β).
In this case we set m′ = m′′, and define Λ as above.

Let Φn,d (d > 0) be the set of symbol classes of rank n and defect d, and Φn,0 be the
set of symbol classes of rank n and defect 0 with each degenerate symbol repeated
twice. The following lemma is due to [L2, 2·7].

Lemma 3·1. The above map defines a one-to-one correspondence between the irreducible
characters of W (Bn) (resp.W (Dn)) and the set Φn,1 (resp.Φn,0).

For any integer m > −1, we denote the set {0, 1 . . . ,m} by [0,m]. Thus [0,−1] is
the empty set. The following proposition is due to [L2, 3·2].

Proposition 3·1. Let d be an integer > 1. The correspondence

Λ =
(
S

T

)
−→ Λ̄ =

(
[0, d− 2] x (S + d− 1)

T

)
(3·6)

(where |S| = b + 1, |T | = b) defines a bijection

j : Φn,1 ←→ Φn′,d

where n′ = n +

[(
d

2

)2
]
.

(3·7)

Let

Φn =
⊔

d≡1 (mod 2)

Φn,d,

Φ+
n =

 ⊔
d≡0 (mod 4)

d>0

Φn,d

⊔Φn,0.


(3·8)

The following theorem due to [L2, 8·2] gives a bijection between symbols and all
the unipotent representations of G(Fq) when G is of type Bn, Cn or Dn.

Theorem 3·1. (a) Let G be of type Bn, or Cn (n > 1). There is a natural one-to-
one correspondence Λ ↔ ρ[Λ] between the set Φn and the set of isomorphism classes of
unipotent representations of G(Fq), extending the correspondence between Φn,1 and the
unipotent representations appearing in the principal series IndG(Fq)

B(Fq)(1) given by Lemma
3·1.

(b) Let G be of type Dn (n > 2). There is a natural one-to-one correspondence
Λ ↔ ρ[Λ] between the set Φ+

n and the set of isomorphism classes of unipotent repre-
sentations of G(Fq), extending the correspondence between Φn,0 and the unipotent repre-
sentations appearing in the principal series IndG(Fq)

B(Fq)(1) given by Lemma 3·1.
The correspondence Λ↔ ρ[Λ] is such that ρ[Λ] is cuspidal if and only if

n = rk(Λ) =

[(
def(Λ)

2

)2
]
. (3·9)
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4. The Decomposition of R[χ]

Let χ be an irreducible character of the Weyl group W of G. We associate a class
function R[χ] of G(Fq) as follows

R[χ] =
1
|W |

∑
w∈W

χ(w)RGTw (1). (4·1)

This is a Q-linear combination of unipotent representations of G(Fq). The decom-
position of R[χ] is an important and difficult question in general which has been
studied extensively by Lusztig ([L6]). In this section we decompose R[χ] for those χ
which are non-zero at the Coxeter class. This does not seem to be explicitly available
in the literature but follows easily from ([L4, L5]).

It follows from the orthogonality of RGTw (1) [DL, 6·8] that

{R[χ]|χ ∈ Ŵ} (4·2)

forms an orthonormal set of class functions ofG(Fq). We have the following inversion
relation

RGTw (1) =
∑
χ∈Ŵ

χ(w)R[χ]. (4·3)

Let E be the reflection representation of W , then ∧nE = sgn, where n is the
semisimple rank of G. By [DL, 7·14] we know that,

R[Id] = Id, R[∧nE] = R[sgn] = St, (4·4)

where St denotes the ‘Steinberg’ representation of G(Fq).
We know that the principal series unipotent representations of G(Fq) are in bijec-

tive correspondence with the irreducible representations of its Weyl group W . The
theorem below says that in the case of the groups of type An the R[χ]’s are exactly
these representations.

Theorem 4·1. Let G(Fq) = GL(n + 1,Fq), and let π[χ] be the irreducible principal
series unipotent representation of G(Fq) corresponding to an irreducible character χ of
W = Sn+1. Then R[χ] = π[χ].

Proof. By [A, 2·3·1] it follows that

〈π[χ], RGTw (1)〉 = χ(w).

Let χ, χ′ ∈ Ŵ . Then using (4·1) we get

〈R[χ], π[χ′]〉 =

{
1 if χ = χ′,

0 otherwise.
(4·5)

Since R[χ] is a Q-linear combination of unipotent representations of G(Fq), we
have

R[χ] =
∑
ρ

aρρ, (4·6)

where aρs are rational numbers and the sum is over the set of all unipotent repre-
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sentations of G(Fq). By (4·5), (4·6) and (4·2), we obtain

aπ[χ] =1,∑
ρ�π[χ]

a2
ρ =〈R[χ]− π[χ], R[χ]− π[χ]〉

=0.

 (4·7)

Therefore, we have aρ = 0 for all ρ � π[χ]. Thus we have R[χ] = π[χ] for all
χ ∈ Ŵ . We remark here that this proves a result in [LS] that R[χ] are all the
unipotent representations of groups of type An. Hence the proof.

When G(Fq) is a group of type other than An then the R[χ] are more complicated.
They need not be irreducible representations, nor even integral linear combination
of irreducible representations. We shall briefly describe the method of decomposition
of R[χ] as outlined in [L4] and [L5]. We shall first discuss the case of Bn, Cn. In
the sequel we shall denote the irreducible characters of the Weyl groups by their
corresponding symbol classes.

Let Z be a special symbol of rank n, and let Z1 be the set of singles of Z. Define
d by 2d + 1 = |Z1|. We can write Z1 = Z∗1 x (Z1)∗, where Z∗1 is the set of entries of
Z1 appearing in the first row of Z, and (Z1)∗ is the set of entries of Z1 appearing in
the second row of Z. We have |Z∗1 | = d + 1, |(Z1)∗| = d. Let Z2 be the set of elements
which appear in both rows of Z. Thus,

Z =
(
Z2 x Z∗1
Z2 x (Z1)∗

)
. (4·8)

Let

SZ =
{

ΛM =
(
Z2 x (Z1 −M )

Z2 xM

)∣∣∣M ⊆ Z1, |M | ≡ d (mod 2)
}
. (4·9)

Clearly |SZ | = 22d. Associating M to the set M# = (M x (Z1)∗) − (M w (Z1)∗),
defines a bijection between SZ and the set VZ1 of subsets of Z1 of even cardinality.
The set VZ1 has a natural structure of F2-vector space of dimension 2d, defined by
M#

1 +M#
2 = (M#

1 xM
#
2 )− (M#

1 wM
#
2 ), with Z as the 0 element. The vector space VZ1

has a natural non-degenerate symplectic form 〈, 〉 : VZ1 × VZ1 → F2, given by

〈M#
1 ,M

#
2 〉 = |M#

1 wM
#
2 | mod 2. (4·10)

We can regard this also as a symplectic form on SZ , via the bijection between
SZ and VZ1 . Let

FZ =
{
ρ[ΛM ]

∣∣∣ΛM ∈SZ

}
. (4·11)

Then {FZ | Z special of rank n} defines a partition of the set of irreducible unipo-
tent representations of G(Fq) into disjoint families. The following theorem is due to
[L4, 5·8].

Theorem 4·2. Let G = Sp2n, or SO2n+1 (defined over Fq). Let Z be a special symbol
of rank n, and let d be such that 2d+1 is the number of singles of Z.Then for any Λ ∈SZ
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of defect one, we have

R[Λ] = 2−d
∑

Λ′∈SZ

(−1)〈Λ,Λ
′〉ρ[Λ′]. (4·12)

We now consider the case of symbols for W (Dn). Let Z be a special symbol of rank
n, and let Z1 be the set of singles of Z. Define d by 2d = |Z1|. We define Z∗1 , (Z1)∗,
Z2 and SZ as before. Also we have |(Z1)∗| = |Z∗1 | = d.

SZ =
{

ΛM =
(
Z2 x (Z1 −M )

Z2 xM

)∣∣∣M ⊆ Z1, |M | ≡ d (mod 2)
}
. (4·13)

Clearly |SZ | = 22(d−1). Associating M to the set M# = (M x (Z1)∗)− (M w (Z1)∗),
defines a bijection between SZ and the set VZ1 of F2-vector spaces of dimension
2(d− 1). As before, we can endow SZ with a non-degenerate symplectic form. Let

FZ =
{
ρ[ΛM ]

∣∣∣ΛM ∈SZ

}
. (4·14)

Then {FZ | Z special of rank n} defines a partition of the set of irreducible unipo-
tent representations of G(Fq) into disjoint families. The following theorem is also due
to [L5, 3·15].

Theorem 4·3. Let G = SO2n (defined over Fq). Let Z be a special symbol of rank n,
and let d be such that 2d is the number of singles of Z. Then for any Λ ∈ SZ of defect
zero, we have

R[Λ] = 2−(d−1)
∑

Λ′∈SZ

(−1)〈Λ,Λ
′〉ρ[Λ′]. (4·15)

Theorems 4·2 and 4·3 were initially proved by Lusztig for large q, but later on the
restriction on the order of q was removed by him in [L6].

Let Λ be the symbol corresponding to the irreducible character χ of W. As we are
interested in decomposing R[χ] for those χ ∈ Ŵ which are non-zero at the Coxeter
class, we first determine the corresponding symbol classes.

From the proof of Theorem 2·1 we know that the symbols corresponding to the
irreducible characters of W (Bn) which are non-zero at the Coxeter element are

Λ0 =
(
n

�

)
, Λi =

(
1, 2, . . . , i, n

0, 1, . . . , i− 1

)
(1 6 i 6 n− 1),

Λ′0 =
(

0, 1
n

)
, Λ′i =

(
0, 1, . . . , i + 1
1, 2, . . . , i, n

)
(1 6 i 6 n− 1),

 (4·16)

where Λ0 corresponds to the ordered partition (n, 0), Λi corresponds to the ordered
partition (λi, 0) where λi = [1i, n − i], (1 6 i 6 n − 1), while Λ′0 corresponds to the
ordered partition (0, n) and Λ′i corresponds to the ordered partition (0, λi). Therefore,
we have

Λ0(c) = 1, Λi(c) = (−1)i (1 6 i 6 n− 1),
Λ′0(c) = −1, Λ′i(c) = (−1)i+1 (1 6 i 6 n− 1).

}
(4·17)

Similarly, the symbol classes corresponding to the irreducible characters ofW (Dn)
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which are non-zero at the Coxeter element are

Λ0 =
(
n

0

)
, Λn−2 =

(
1, 2, . . . , n

0, 1, . . . , n− 1

)
,

Λi =
(

1, 2, . . . , i− 1, i + 1, n− 1
0, 1, . . . , i

)
, (1 6 i 6 n− 3),

 (4·18)

and

Λ′0 =
(
n− 1

1

)
, Λ′i =

(
1, 2, . . . , i, n− 1

0, 1, . . . , i− 1, i + 1

)
(1 6 i 6 n− 2), (4·19)

where Λ0 corresponds to the unordered partition (n, 0), Λn−2 corresponds to the
unordered partition (1n, 0) and Λi corresponds to the unordered partition (µi, 0)
where µi = [1i−1, 2, n−1− i], (1 6 i 6 n−3), while Λ′0 corresponds to the unordered
partition (n− 1, 1) and Λ′i corresponds to the unordered partition (λ′i, 1) where λ′i =
[1i, n− 1− i], (1 6 i 6 n− 2). Therefore, we have

Λ0(c) = 1, Λn−2(c) = (−1)n−2, Λi(c) = (−1)i (1 6 i 6 n− 3),

Λ′0(c) = −1, Λ′i(c) = (−1)i+1 (1 6 i 6 n− 2).

}
(4·20)

We also need the symbol classes corresponding to the exterior power representation
of the reflection representation of W (Bn) and W (Dn). We know that for W (Bn), ∧iE
is given by the ordered partition (n− i, 1i). The corresponding symbol classes are

Γn,0 = Λ0 =
(
n

�

)
, Γn,i =

(
0, 1, . . . , i− 1, n

1, 2, . . . , i

)
(1 6 i 6 n). (4·21)

Similarly, for W (Dn), ∧iE is given by the unordered partition (n− i, 1i). The corres-
ponding symbol classes are

Γ′n,0 = Λ0 =
(
n

0

)
, Γ′n,1 = Λ′0 =

(
n− 1

1

)
,

Γ′n,i =
(

0, 1, . . . , i− 2, n− 1
1, 2, . . . , i

)
, (2 6 i 6 n).

 (4·22)

It is easy to see that Γn,i (0 6 i 6 n) and Γ′n,i (0 6 i 6 n) are special symbols. Apart
from these symbols, we also need some symbols of rank n not corresponding to the
representations of W (Bn),W (Dn). Define Xi for Bn and Cn, as

Xi =
(

0, 1, . . . , i + 1, n
1, 2, . . . , i

)
, (0 6 i 6 n− 2). (4·23)

Define the symbols Yi for Dn as

Yi =
(

0, 1, . . . , i + 2, n− 1
1, 2, . . . , i

)
, (0 6 i 6 n− 4). (4·24)

Let ρ[Xi] be the unipotent representation of Sp(2n,Fq) or SO(2n + 1,Fq) corres-
ponding to the symbolXi, and let ρ[Yi] be the unipotent representation of SO(2n,Fq)
corresponding to the symbol Yi. The following theorem gives the decomposition of
R[Λ] for those Λ whose character at the Coxeter class is non-zero.

Recall (see the proof of Theorem 2·1) that in the case of W (Bn) the symbol Λi

corresponds to the irreducible representation obtained by composing the ∧iEn with
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the homomorphism W (Bn) → Sn, Λ′i corresponds to irreducible representation ob-
tained by tensoring ∧iEn with ε, where ε is as defined in (2·1), and En denotes the
(n−1)-dimensional reflection representation of Sn. In the case of W (Dn) the symbol
Λi (1 6 i 6 n−3) corresponds to the irreducible character χ̄λi as defined in (2·16), and
Λ0,Λn−2 correspond to the irreducible characters χ̄λ0 , χ̄λn−2 respectively, as defined
in (2·17), and Λ′i corresponds to the irreducible character χ(λ′i,1) as defined in (2·19).
Also recall that the symbol Γn,i corresponds to the ith exterior power representation
of the reflection representation of W (Bn−2), and the symbol Γ′n,i corresponds to the
i-th exterior power representation of the reflection representation of W (Dn).

Theorem 4·4. Let G = Sp2n, SO2n+1, or SO2n defined over Fq. We denote by π[Λ] the
principal series representation of G(Fq) corresponding to the Weyl group representation
denoted by the symbol Λ. With the notations as above, we have the following.

(1) Let G(Fq) = Sp(2n,Fq), or SO(2n + 1,Fq), (n > 2).

(a)R[Λ0] = π[Λ0] = Id.

(b)R[Λi] = 1
2

(
π[Λi]+π[∧iE]−π[Λ′i−1]−ρ[Xi−1]

)
, (16 i6 n−1).

(c)R[Λ′i] = 1
2

(−π[Λi+1]+π[∧i+1E]+π[Λ′i]−ρ[Xi]
)
, (06 i6 n−2).

(d)R[Λ′n−1] = π[∧nE] = St.


(4·25)

(2) Let G(Fq) = SO(2n,Fq), (n > 4).

(a)R[Λ0] = π[Λ0] = Id.

(b)R[Λn−2] = π[∧nE] = St.

(c)R[Λi] = 1
2

(
π[Λi]−π[∧i+1E]+π[Λ′i]−ρ[Yi−1]

)
, (16 i6 n−3).

(d)R[Λ′i] = 1
2

(
π[Λi]+π[∧i+1E]+π[Λ′i]+ρ[Yi−1]

)
, (16 i6 n−3).

(e)R[Λ′0] = π[E].

(f )R[Λ′n−2] = π[∧n−1E].


(4·26)

Proof. (1) G(Fq) = Sp(2n,Fq), or SO(2n + 1,Fq).
(a) Since Λ0 = Γ0, R[Λ0] = R[Γ0] = R[Id] = Id.

(b) We have the following data for Γn,i which is a special symbol of rank n

Z1 = {0, i, n}, Z2 = {1, 2, . . . , i− 1}, Z∗1 = {0, n}, (Z1)∗ = {i}, d = 1. (4·27)

It can be seen that,

SΓn,i =
{

Λi, Γn,i, Λ′i−1, Xi−1
}
. (4·28)

Applying Theorem 4·2, we obtain

R[Λi] =
1
2

∑
Λ′∈SΓn,i

(−1)〈Λi,Λ
′〉ρ[Λ′]

= 1
2

(
π[Λi] + π[∧iE]− π[Λ′i−1]− ρ[Xi−1]

)
.

 (4·29)



On the restriction of cuspidal representations to unipotent elements 49
(c) Similarly, applying Theorem 4·2, we obtain

R[Λ′i] =
1
2

∑
Λ′∈SΓn,i+1

(−1)〈Λ
′
i,Λ
′〉ρ[Λ′]

= 1
2

(
π[Λ′i] + π[∧i+1E]− π[Λi+1]− ρ[Xi]

)
.

 (4·30)

(d) Since Λ′n−1 = Γn,n, R[Λ′n−1] = R[Γn,n] = R[∧nE] = π[∧nE] = St.

(2) G(Fq) = SO(2n,Fq).

(a) Since Λ0 = Γ′n,0, R[Λ0] = R[Γ′n,0] = R[Id] = Id.
(b) Since Λn−2 = Γ′n,n, R[Λn−2] = R[Γ′n,n] = R[∧nE] = St.
(c) We have the following data for Γ′n,i+1 which is a special symbol of rank n

Z1 = {0, i, i + 1, n− 1}, Z2 = {1, 2, . . . , i− 1},
Z∗1 = {0, n− 1}, (Z1)∗ = {i, i + 1}, d = 2.

}
(4·31)

It can be seen that,

SΓ′n,i+1
=
{

Λi, Γ′n,i+1, Λ′i, Yi−1
}
. (4·32)

Applying Theorem 4·3, we obtain

R[Λi] =
1
2

∑
Λ′∈SΓ′n,i+1

(−1)〈Λi,Λ
′〉ρ[Λ′]

= 1
2

(
π[Λi]− π[∧i+1E] + π[Λ′i]− ρ[Yi−1]

)
.

 (4·33)

(d) Similarly, applying Theorem 4·3, we obtain

R[Λ′i] =
1
2

∑
Λ′∈SΓ′n,i+1

(−1)〈Λ
′
i,Λ
′〉ρ[Λ′]

= 1
2

(
π[Λi] + π[∧i+1E] + π[Λ′i] + ρ[Yi−1]

)
.

 (4·34)

(e) We have the following data for Λ′0 = Γ′n,1 which is a special symbol of rank n

Z1 = {1, n− 1}, Z2 = �, Z∗1 = {n− 1}, (Z1)∗ = {1}, d = 1. (4·35)

It can be seen that,

SΓ′n,1 =
{

Γ′n,1
}
. (4·36)

Applying Theorem 4·3, we obtain

R[Λ′0] =
∑

Λ′∈SΓ′n,1

(−1)〈Λ
′
0,Λ
′〉ρ[Λ′]

= π[E].

 (4·37)

(f ) We have the following data for Λ′n−2 = Γ′n,n−1 which is a special symbol of
rank n

Z1 = {0, n− 2}, Z2 = {1, 2, . . . , n− 3}, Z∗1 = {0}, (Z1)∗ = {n− 2}, d = 1.
(4·38)
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It can be seen that,

SΓ′n,n−1
=
{

Γ′n,n−1

}
. (4·39)

Applying Theorem 4·3, we obtain

R[Λ′n−2] =
∑

Λ′∈SΓ′n,n−1

(−1)〈Λ
′
n−2,Λ

′〉ρ[Λ′]

= π[∧n−1E].

 (4·40)

Hence the proof.

5. The decomposition of induced representation

By Theorem 3·1 we know that ρ[Xi] is not cuspidal unless i = 0, n = 2. It
occurs as an irreducible component of IndG(Fq)

P (Fq)(ρ̃L) for some proper parabolic sub-
group P defined over Fq and some irreducible cuspidal representation ρL of L(Fq)
where L is the Levi component of P . By ρ̃L we mean the lift of ρL to P (Fq) by
extending it trivially to the unipotent radical of P (Fq). As ρ[Xi] is unipotent, we
know that the representation ρL must also be unipotent (see [C1, 12·2]). Since Xi is
of defect 3, by [L2, 8] we know that L% (Gm)n−2 × Sp4, or L% (Gm)n−2 × SO5,
as the case may be. Let x = (x1, x

′
1, x2, x

′
2, . . . , xn−2, x

′
n−2, g) ∈ (F∗q)2n−4 × Sp(4,Fq),

or (x1, x
′
1, x2, x

′
2, . . . , xn−2, x

′
n−2, g) ∈ (F∗q)2n−4 × SO(5,Fq), with the condition that

x1x
′
1 = · · · = xn−2x

′
n−2 = 1. Since ρL is unipotent cuspidal, and Sp4 and SO5 have a

unique unipotent cuspidal representation πuc we obtain,

Tr(x, ρL) = Tr(g, πuc). (5·1)

We abuse notation to denote ρL by πuc. By [L2, 5·15] there is a bijective cor-
respondence between irreducible representations of G(Fq) appearing in IndG(Fq)

P (Fq)(π̃uc)
and irreducible representations of the Weyl group W (Bn−2) which is given by Propo-
sition 3·1. Since Xi ∈ Φn,3 corresponds to Γn−2,i ∈ Φn−2,1, and by (4·21) we know
that Γn−2,i corresponds to ith exterior power representation of the reflection repre-
sentation of W (Bn−2), the irreducible component ρ[Xi] of IndG(Fq)

P (Fq)(π̃uc) corresponds
to ith exterior power representation of the reflection representation of W (Bn−2).

The case of ρ[Yi] is similar. Since Yi is of defect 4, it can be seen that ρ[Yi] is
an irreducible component of IndG(Fq)

P (Fq)(π̃uc) corresponding to the ith exterior power
representation of the reflection representation of W (Bn−4), where P is the parabolic
subgroup with Levi component L% (Gm)n−4×SO8, and πuc is the unique unipotent
cuspidal representation of SO(8,Fq). Therefore, we have

Proposition 5·1. Let Xi and Yi be defined as above. The unipotent representation
ρ[Xi] of Sp(2n,Fq) or SO(2n + 1,Fq) is the irreducible component of IndG(Fq)

P (Fq)(π̃uc)
corresponding to the ith exterior power representation of the reflection representation
of W (Bn−2), where πuc is the unique unipotent cuspidal representation of Sp(4,Fq) or
SO(5,Fq), as the case may be. Similarly, the unipotent representation ρ[Yi] of SO(2n,Fq)
is the irreducible component of IndG(Fq)

P (Fq)(π̃uc) corresponding to the ith exterior power rep-
resentation of the reflection representation of W (Bn−4), where πuc is the unique unipotent
cuspidal representation of SO(8,Fq).
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6. Proof of the Main Theorem

Let G be a split group of semisimple rank n, W its Weyl group, c the Coxeter
conjugacy class, and Tc the corresponding torus. By [DL, 8·3] we know that Ψθ =
(−1)nRGTc(θ) is an irreducible cuspidal representation of G(Fq) for a character θ of
Tc(Fq) in general position. By [DL, 4·2] we also know that for an unipotent element
u of G(Fq), Tr(u,RGT (θ)) is independent of θ. Therefore,

ΘΨθ (u) = (−1)nTr(u,RGTc(1)). (6·1)

Let G(Fq) = GL(n + 1,Fq). Let us denote π[∧iE] by πi. Applying Proposition 2·1
in (4·3), we obtain

RGTc(1) =
i=n∑
i=0

(−1)iR[χi]. (6·2)

Now applying Theorem 4·1, we obtain

RGTc(1) =
i=n∑
i=0

(−1)iπ[∧iE]

=
i=n∑
i=0

(−1)iπi.


(6·3)

By (6·3) and (6·1), we obtain

ΘΨθ (u) =(−1)n
i=n∑
i=0

(−1)iΘπi(u)

=
i=n∑
i=0

(−1)iΘπn−i(u).


(6·4)

This completes the proof of Theorem 1·1 for GL(n + 1,Fq).
We now take up the case of G(Fq) = Sp(2n,Fq) or SO(2n+ 1,Fq). Applying (4·17)

in (4·3), we obtain

RGTc(1) =
i=n−1∑
i=0

(−1)iR[Λi] +
i=n−1∑
i=0

(−1)i+1R[Λ′i]

=
(
R[Λ0] + (−1)nR[Λ′n−1]

)
+
i=n−1∑
i=1

(−1)i
(
R[Λi] +R[Λ′i−1]

)
.


(6·5)

From Theorem 4·4 it follows that

R[Λ0] + (−1)nR[Λ′n−1] = π[∧0E] + (−1)nπ[∧nE],

R[Λi] +R[Λ′i−1] = π[∧iE]− ρ[Xi−1].

}
(6·6)

Let us denote π[∧iE] by πi and ρ[Xi] by ρi. By Proposition 5·1, ρi is the irreducible
component of IndG(Fq)

P (Fq)(πuc) corresponding to the ith exterior power representation of
the reflection representation of W (Bn−2), where P is the parabolic subgroup defined
over Fq with the Levi component (Gm)n−2 × Sp4 or (Gm)n−2 × SO5, and πuc is the
unique unipotent cuspidal representation of Sp(4,Fq) or SO(5,Fq), as the case may
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be. Using (6·6), we obtain

RGTc(1) =
(
π[∧0E] + (−1)nπ[∧nE]

)
+
i=n−1∑
i=1

(−1)i
(
π[∧iE]− ρ[Xi−1]

)
=
i=n∑
i=0

(−1)iπ[∧iE]−
i=n−1∑
i=1

(−1)iρ[Xi−1]

=
i=n∑
i=0

(−1)iπi +
i=n−2∑
i=0

(−1)iρi.


(6·7)

By (6·7) and (6·1), we obtain

ΘΨθ (u) =(−1)n
(
i=n∑
i=0

(−1)iΘπi(u) +
i=n−2∑
i=0

(−1)iΘρi(u)

)

=
i=n∑
i=0

(−1)iΘπn−i(u) +
i=n−2∑
i=0

(−1)iΘρn−2−i(u).


(6·8)

This completes the proof of Theorem 1·1 for Sp(2n,Fq) and SO(2n + 1,Fq).
Finally, let G(Fq) = SO(2n,Fq). Again denote π[∧iE] by πi and ρ[Yi] by ρi. By

Proposition 5·1, ρi is the irreducible component of IndG(Fq)
P (Fq)(πuc) corresponding to the

i-th exterior power representation of the reflection representation ofW (Bn−4), where
P is the parabolic subgroup defined over Fq with the Levi component (Gm)n−4×SO8

and πuc is the unique unipotent cuspidal representation of SO(8,Fq). By calculations
similar to those done in the previous case yields the following result for SO(2n,Fq).

RGTc(1) =
i=n∑
i=0

(−1)iπi +
i=n−4∑
i=0

(−1)iρi. (6·9)

By (6·9) and (6·1), we obtain

ΘΨθ (u) =
i=n∑
i=0

(−1)iΘπn−i(u) +
i=n−4∑
i=0

(−1)iΘρn−4−i(u). (6·10)

This completes the proof of Theorem 1·1.

Remark 6·1. The only property of RGT (θ) used in the proof of Theorem 1·1 in this
section is that

Tr(g,RGT (θ)) = Tr(g,RGT (1)).

This property is known for all elements g ∈ G(Fq) with Jordan decomposition g = su
such that either s = 1 or s is not conjugate inG(Fq) to any element of T (Fq). Therefore
the character identity contained in Theorem 1·1 is true for all such elements. In
particular, the identity in Theorem 1·1 is true for any element of (n, 1) parabolic in
GLn+1.

Remark 6·2. In the case ofGL(n+1,Fq) all the irreducible cuspidal representations
are given by (−1)nRGTc(θ) where c = σn+1 is the Coxeter element and θ is a regular
character of Tc(Fq) = F∗qn+1 . Thus the character value of any irreducible cuspidal
representation of GL(n + 1,Fq) at any element of (n, 1) parabolic is given by (6·4).



On the restriction of cuspidal representations to unipotent elements 53
7. The case of exceptional groups

In this section we shall give the decomposition of RGTc(1) in the case of split simple
exceptional algebraic groups. We shall follow the notations of [C1, 13·9] for the
unipotent cuspidal representations of G(Fq).

The class functionsRχ can be decomposed using the method of non-abelian Fourier
transforms as introduced in [L3]. By [L3, theorem 1·5] and [L3, corollary 1·13] the
multiplicities 〈ρ,Rχ〉 can be explicitly described, where ρ is any unipotent represen-
tation of G(Fq). See [C1, 13·6] for the Fourier transform matrices.

LetG be a split exceptional simple algebraic group. Let (P, φ) be a pair of parabolic
subgroup in G containing a fixed Borel subgroup B with Levi decomposition P =
MN , and a unipotent cuspidal representation φ of M (Fq). The irreducible compo-
nents of IndG(Fq)

P (Fq)(φ) are in one to one correspondence with the irreducible represen-
tations of the Weyl group W ′ of the quotient root system which is a root system of a
simple group of rank = r(G)−r(P ), where r(G) and r(P ) denote the semisimple ranks
of G and P respectively. Denote by φi the irreducible components of IndG(Fq)

P (Fq)(φ) cor-
responding to the i-th exterior power representation of the reflection representation
of W ′.

Theorem 7·1. With the notations as above, (i) if G is a simple algebraic group of type
E6, E7, then,

RGTc(1) =
∑
(P,φ)

(−1)r(P )
i=r(G)−r(P )∑

i=0

(−1)iφi, (7·1)

where φ runs over all the unipotent cuspidal representations of M (Fq).
(ii) If G = G2, then same as in (i) except that the term corresponding to P = G has

instead of all the 4 unipotent cuspidal representations of G2(Fq), only 3 which can be
specified as G2[−1] +G2[θ] +G2[θ2] following Carter’s notation [C1, 13·9].

(iii) If G = F4, then same as in (i) except that the term corresponding to P = G has
instead of all the 7 unipotent cuspidal representations of F4(Fq), only 4 which can be
specified as F4[θ], F4[θ2], F4[i], F4[−i] following the notations in [C1, 13·9].

(iv) If G = E8, then same as in (i) except that the term corresponding to P = G has
instead of all the 13 unipotent cuspidal representations of E8(Fq), only 6 which can be
specified as E8[ζi](i = 1, . . . , 4), E8[θ], E8[θ2] following the notations in [C1, 13·9].

To illustrate Theorem 7·1 we take the case of G = E7. The Levi subgroups of E7

which have unipotent cuspidal representations are L0% (Gm)7, L1%SO8 × (Gm)3,
L2%E6 ×Gm and L3 = G.

The quotient root system arising from L0 is the root system of type E7, and
φ = 1 is the unique unipotent cuspidal representation of (Fq∗)7. Hence, φi = πi is
the irreducible component of IndG(Fq)

B(Fq)(1) corresponding to the ith exterior power
representation of the reflection representation of W (E7).

The quotient root system arising from L1 is of type C3. Let φ = πuc be the unique
unipotent cuspidal representation of SO(8,Fq). Let φi[D4] be the irreducible com-
ponent of IndGP1

(φ) corresponding to the ith exterior power representation of the
reflection representation of W (C3) for i = 0, 1, 2, 3.

The quotient root system arising from L2 = E6×Gm is of type A1. Let φ′ = E6[θ]
and φ′′ = E6[θ2] be the two unipotent cuspidal representationsE6(Fq). Let φ′i[E6] and
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φ′′i [E6] be the irreducible components of IndG(Fq)

P2(Fq)(φ
′) and IndG(Fq)

P2(Fq)(φ
′) respectively

corresponding to the i-th exterior power of the reflection representation of of W (A1)
for i = 0, 1.

When L = L3 = G, we have two unipotent cuspidal representations of E7(Fq)
denoted by E7[ζ] and E7[−ζ] as in [C1, 13·9]. Then, by Theorem 7·1 we get,

RGTc(1) =
i=7∑
i=0

(−1)iπi +
i=3∑
i=0

(−1)iφi[D4]

+
i=1∑
i=0

(−1)iφ′i[E6] +
i=1∑
i=0

(−1)iφ′′i [E6]

− (E7[ζ] + E7[−ζ]).


(7·2)

8. Cohomological interpretation

The virtual representation RGTw (1) is defined in [DL] as

RGTw (1) =
∑

(−1)iH i
c(X(w), Q̄l) (8·1)

where X(w) is the Deligne-Lusztig variety as defined in [DL, 1·4]. When w = c is
the Coxeter element, Lusztig ([L1]) has given the decomposition of H i

c(X(c), Q̄l) as
irreducible G(Fq)-modules. In the sequel, we will denote H i

c(X(c), Q̄l) by H i. When
G is simple, he proves that ([L1, 6·1])

⊕
H i is a multiplicity free G(Fq)-module, and

it has h irreducible components, where h is the Coxeter number of G.
Let ∆ be the set of simple roots of G and I be a subset of ∆. Let LI be the Levi sub-

group of the parabolic subgroup PI corresponding to I. We put H i
I = H i

c(X(cI), Q̄l),
where cI is the Coxeter element of WI , and X(cI) is the corresponding Deligne-
Lusztig variety of LI . Let n be the semisimple rank of G. Let (H i)(0) denote the
cuspidal part of H i. The following results are due to Lusztig.

Proposition 8·1 [L1, 2·9]. H i = 0, unless n 6 i 6 2n.

Proposition 8·2 [L1, 4·3]. (H i)(0) = 0 for i�n.

Let I be a proper subset of ∆. Let ρ be an irreducible cuspidal LI(Fq)-module. Let
M be a G(Fq)-module. We define M [ρ] to be the largest submodule of M such that
each irreducible representation in M [ρ] is contained in IndG(Fq)

PI (Fq)(ρ̃). The irreducible

components of IndG(Fq)
PI (Fq)(ρ̃) are in one to one correspondence with the irreducible

representations of the Weyl group W̄ of the quotient root system corresponding to
(LI , ρ) (see [L1, 5·9]).

Proposition 8·3 [L1, 6·7, 7·8]. Let I be a subset of ∆, and let ρ be an irreducible
cuspidal representation of LI(Fq) occurring in H

|I|
I . Then the G(Fq)-module H i[ρ],

(n 6 i 6 2n − |I|) is irreducible and corresponds to the (2n − i − |I|)th exterior power
representation of the reflection representation of W̄ .

Proposition 8·4. Let G be a split classical group. We preserve the notations of
Section 1.

(a) For G(Fq) = GL(n + 1,Fq) (n > 0),

Hn+i = πn−i (0 6 i 6 n). (8·2)
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(b) For G(Fq) = Sp(2n,Fq) or SO(2n + 1,Fq) (n > 2),

Hn+i = πn−i ⊕ ρn−2−i (0 6 i 6 n− 2),

Hn+i = πn−i (n− 1 6 i 6 n).

}
(8·3)

(c) For G(Fq) = SO(2n,Fq) (n > 4),

Hn+i = πn−i ⊕ ρn−4−i (0 6 i 6 n− 4),

Hn+i = πn−i (n− 3 6 i 6 n).

}
(8·4)

Proof. (a) Let I be the empty subset of ∆, and let ρ be the trivial representation
of T (Fq), where T is the split maximal torus of G. Then by Proposition 8·3 we know
that Hn+i[1] = πn−i (0 6 i 6 n). As there are n+ 1 irreducible components of

⊕
Hi,

we have H i = πn−i (0 6 i 6 n).
(b) We choose I such that the corresponding Levi component LI of the parabolic

subgroup PI is of the form (Gm)n−2 × Sp4, or (Gm)n−2 × SO5 as the case may be.
Then |I| = 2. By [L1, 7·3], we know that πuc is a component of H2

I . We know that
W̄ = W (Bn−2). By proposition 8·3, we know that Hn+i[πuc] = ρn−2−i (0 6 i 6 n−2).
Now, if we take I to be the empty subset of ∆ and ρ the trivial representation of
T (Fq), where T is the split maximal torus of G, we get Hn+i[1] = πn−i. Since there
are 2n irreducible components of

⊕
H i, we have

Hn+i = πn−i ⊕ ρn−2−i (0 6 i 6 n− 2),

Hn+i = πn−i (n− 1 6 i 6 n).

}
(8·5)

(c) We choose I such that the corresponding Levi component LI of the parabolic
subgroup PI is of the form (Gm)n−4×SO8. Then |I| = 4. By [L1, 7·3] we know that
πuc appears in H4

I . We know that W̄ = W (Dn−4). By Proposition 8·3 we know that
Hn+i[πuc] = ρn−4−i (0 6 i 6 n − 4). Now, if we take I to be the empty subset set of
∆ and ρ the trivial representation of T (Fq), where T is the split maximal torus of G,
we get Hn+i[1] = πn−i. Since there are 2(n− 1) irreducible components of

⊕
H i, we

have

Hn+i = πn−i ⊕ ρn−4−i (0 6 i 6 n− 4),

Hn+i = πn−i (n− 3 6 i 6 n).

}
(8·6)

Hence the proof.
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