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1 Introduction

Let G = G(F) be the F-rational points of a reductive algebraic group G over a finite

field F. Let P = MN be the Levi decomposition of a parabolic subgroup P of G defined

over F. We denote the corresponding decomposition of F-rational points as P =MN. Let

π be any irreducible finite-dimensional complex representation of G, and let ψ be any

irreducible representation of N. The sum, call it πN,ψ, of all irreducible representations

of N inside π, on which N operates via ψ, is a representation space ofMψ, which is the

subgroup of M consisting of those elements in M which leave the isomorphism class

of ψ invariant under the inner conjugation action of M on N. Since the representation

theory of groups such as G is now fairly well understood, it seems like an interesting

question to understand for which irreducible representations π, πN,ψ is nonzero, and

then to understand the structure of πN,ψ as a module forMψ.

The questions most studied in this context is when P is a Borel subgroup of

G and when one takes a nondegenerate character on N. By a theorem due to Gel’fand

and Graev for GLn which was generalised for arbitrary reductive algebraic groups by

Steinberg, one knows that the dimension of πN,ψ is at most 1.This theorem and the study

of representations π with πN,ψ �= 0, called generic representations, play an important

part in many questions in representation theory.
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580 Dipendra Prasad

There is some work by Kawanaka [K] for more general parabolics, but these ques-

tions seem largely not touched upon in the literature so far. In this paper, we make a

detailed analysis of one very special case.

Let G = GL2n(F), where F is a finite field. Let P be the (n,n) parabolic in G with

Levi subgroup GLn(F) × GLn(F) and with unipotent radical N = Mn(F). Let ψ0 be a

nontrivial additive character ψ0 : F → C
∗. Let ψ(X) = ψ0(trX) be the additive character

on N = Mn(F). Let π be an irreducible admissible representation of G. Let πN,ψ be the

largest subspace of π on which N operates via ψ. Since tr(gXg−1) = tr(X), it follows that

πN,ψ is a representation space for H = ∆GLn(F) ↪→ GLn(F) × GLn(F). The space πN,ψ
is referred to as the space of degenerate Whittaker models, or sometimes also as the

twisted Jacquet functor of the representation π. The space of linear forms on πN,ψ is the

same as the space of linear forms on π on whichN =Mn(F) operates via ψ, generalising

the notion of Whittaker models in the case of GL2(F). The term degenerate is used as in

[MW], as these linear functionals have invariance property for the unipotent radical of

a nonminimal parabolic.

The aim of this work is to calculate πN,ψ as a representation space for GLn(F).

We begin with the statement of the main theorem of this paper.

Theorem 1. Let π be a cuspidal representation of GL2n(F) obtained from a character θ

of F
∗
2n . Then

πN,ψ = Ind
GLn(F)
F∗
n

(
θ|F∗

n

)
. �

The proof of this theorem is done by brute force.We prove by an explicit calcula-

tion that the characters of the twisted Jacquet functor πN,ψ and the induced represen-

tation IndGLn(F)
F∗
n

(θ|F∗
n
) at an arbitrary element of GLn(F) are the same. Therefore, the two

representations are isomorphic.

We note that although we restrict ourselves to finite fields in this paper, the

study of πN,ψ is specially relevant to p-adic fields and automorphic forms where it is

connected to Fourier expansion and has indeed been studied by many authors in the p-

adic context. Most of these works in the p-adic context prove a multiplicity one theorem

about πN,ψ as a module forMψ without getting a fuller understanding of πN,ψ and use

them for developing a theory of L-functions.We refer the reader to the book of Ginzburg,

Piatetski-Shapiro, and Rallis [GPSR] for one such context. In a recent work, E. M. Baruch

and S. Rallis have proved a multiplicity one theorem in the p-adic case (cf. [BR] for one

special case). They work with G = Sp(n), P the “Klingen parabolic”whose Levi subgroup

has Sp(n− 1) for its semisimple part, and a Heisenberg group for its unipotent radical.
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The Space of Degenerate Whittaker Models 581

They prove that the maximal quotient of an irreducible representation of Sp(n) on which

this Heisenberg group operates by the oscillator representation has a multiplicity one

property for Sp(n− 1).

Since the representation theory of finite groups of Lie type is much better un-

derstood than that of p-adic groups, and since these theories are closely related, it is

clear that an understanding of πN,ψ in the case of finite fields will throw some light on

analogous questions in the p-adic case. Indeed, this was also the motivation behind this

work that arose because of the need to understand πN,ψ in the p-adic case for GL2n ,

which plays an important role in the work of [PR].

2 Preliminaries

In this paper, F denotes a finite field with q elements. We review the representation

theory of GLm(F) due to J. A. Green. According to Green, cuspidal representations of

GLm(F), fromwhich all the other irreducible representations of GLm(F) are obtained via

the process of parabolic induction, are associated to regular characters of F∗
m,where Fm

is the unique field extension of degree m of F. A character χ of F
∗
m is called regular if,

under the action of the Galois group of Fm over F, χ gives rise to m distinct characters

of F
∗
m. Two regular characters of F

∗
m give rise to the same cuspidal representation if and

only if one is obtained from the other by the action of an element in the Galois group.

We denote the representation of GLm(F) associated to a regular character θ of

F
∗
m by πθ and the character of the representation πθ by Θθ.

There is an embedding of Fm inside Mm(F) as algebras which is unique up to

inner conjugation by GLm(F). This way, every element of F
∗
m gives rise to a well-defined

conjugacy class in GLm(F). The conjugacy classes in GLm(F),which are so obtained from

elements of F∗
m, are said to be associated to F

∗
m. In particular, if an element of F

∗
m belongs

to a proper subfield, then the associated element in GLm(F) will look like a direct sum

of matrices, with the same matrix in each block.

We summarise the information about the character Θθ in the following theorem.

We refer to the paper of S. I. Gel’fand [Ge] for the statement of this theorem in this

explicit form, which is originally due to Green [G]. (See also the paper of Springer and

Zelevinsky [SZe].)

Theorem 2 [G]. Let Θθ be the character of a cuspidal representation πθ of GLm(F) as-

sociated to a regular character θ of F
∗
m. Let g = s · u be the Jordan decomposition of an

element g in GLm(F). If Θθ(g) �= 0, then the semisimple element s must come from F
∗
m.

Suppose that s comes fromF
∗
m. Let zbe an eigenvalue of s inFm, and let tbe the dimension
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582 Dipendra Prasad

of the kernel of (g− z) over Fm. Then

Θθ(s · u) = (−1)m−1
[∑

θ(sα)
]
(1− q ′)

(
1− q ′2) · · · (1− q ′t−1),

where q ′ is the cardinality of the field generated by z over F, and the summation is over

the various distinct Galois conjugates of s. �

3 Character of the induced representation

From the well-known result about the character of an induced representation, we have

the following lemma, whose proof is omitted.

Lemma 1. For a character θ of F
∗
n, the character ΘInd, of the induced representation

IndGLn(F)
F∗
n

(θ)

at an element s of F
∗
n which generates an extension of F of degree d, is given by

ΘInd(s) =
1(

qn − 1
) ∑
g∈GLn(F)

θ
(
g−1sg

)

=

∣∣GLd ′(Fd)
∣∣(

qn − 1
) [∑

α

θ(sα)

]
,

where d ′ = n/d. In the first sum, we have followed the standard convention of putting

θ(x) = 0 if x �∈ F
∗
n. The second sum is over the different Galois conjugates of s, thought of

as an element of F
∗
d. The value of the character ΘInd at an element of GLn(F) which does

not come from F
∗
n is zero. �

4 Some linear algebra

To calculate the character of the twisted Jacquet functor,we need to calculate the number

of (n×n)-matrices over F of a given rank and of a given trace. First, we fix some notation

for this purpose. We fix a set of basis vectors {e1 , . . . , em+k} for F
m+k.

Let Yαm,k denote the number of ((m+ k)× (m+ k))-matrices over F of rankk and

trace α. Let Xαm,k denote the number of ((m + k) × (m + k))-matrices over F of rankk

and trace α which have a fixed m-dimensional subspace of F
m+k in its kernel which,

without loss of generality, we take to be {e1 , . . . , em}. Let Xm,k denote the number of

((m + k) × (m + k))-matrices over F of rankk. In this notation, we have suppressed the
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The Space of Degenerate Whittaker Models 583

cardinality of F.When not specifying the cardinality of Fmight lead to confusion,we use

Xαm,k(q). We often use without explicitly mentioning the fact that Y
α
m,k = Y

β
m,k if αβ �= 0;

similarly, Xαm,k = X
β
m,k if αβ �= 0.

Clearly, the rankk endomorphismsofFm+kwith kernel {e1 , . . . , em} are in bijective

correspondence with injective maps of the vector space {em+1 , . . . , em+k} into F
m+k. Our

calculation of Xαm,k, etc., depends on a recursive relation we find between these and the

corresponding objects for index (m,k − 1). An injective map from {em+1 , . . . , em+k} into

F
m+k is built from an injectivemap of {em+1 , . . . , em+k−1 } into F

m+k, plus a condition that

the image of em+k should not belong to the image of {em+1 , . . . , em+k−1 }. We count the

number of endomorphisms in X0m,k.There are two possibilities for such endomorphisms.

Case 1. The image of the subspace {em+1 , . . . , em+k−1 } is contained in {e1 , . . . , em,

em+1 , . . . , em+k−1 }.

Case 2. The image of the subspace {em+1 , . . . , em+k−1 } is not contained in {e1 , . . . , em,

em+1 , . . . , em+k−1 }.

In Case 1, there are two subcases to consider.

Case 1a. The endomorphism induced on the (m+k−1)-dimensional subspace {e1 , . . . , em,

em+1 , . . . , em+k−1 } has trace zero.

Case 1b. The endomorphism induced on the (m+k−1)-dimensional subspace {e1 , . . . , em,

em+1 , . . . , em+k−1 } does not have trace zero.

In Case 1a, the number of possibilities for the image of em+k is (qm+k−1 −qk−1).

In Case 1b, the number of possibilities for the image of em+k is qm+k−1 .

In Case 2, the image of em+k is not to belong to the (k−1)-dimensional subspace of

F
m+k,which is the image of {em+1 , . . . , em+k−1 }, but should lie in the hyperplane defined

by #k(v) = constant, where

#k(em+k) = 1,

#k(ei) = 0, i �= m+ k.

Thus, having chosen the images of em+1 , . . . , em+k−1 , this gives (qn−1 − qk−2) number of

possibilities for the image of em+k.

Adding all the contributions, we have the recursion relation

X0m,k = X0m,k−1
(
qm+k−1 − qk−1

)
+
(
Xm,k−1 − X0m,k−1

)
qm+k−1
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584 Dipendra Prasad

+

[
Xm,k

qm+k − qk−1
− Xm,k−1

](
qm+k−1 − qk−2

)
,

where the three terms correspond to Cases 1a , 1b , and 2, respectively.

Simplifying, we have

X0m,k = −X
0
m,k−1q

k−1 + Xm,k−1q
k−2 + q−1Xm,k,

or

(
Xm,k − qX0m,k

)
= −qk−1

(
Xm,k−1 − qX0m,k−1

)
.

Since Xm,k = X0m,k + (q− 1)X1m,k, we find

(
X1m,k − X0m,k

)
= −qk−1

(
X1m,k−1 − X0m,k−1

)
.

Iterating this recursion relation, we find

X1m,k − X0m,k = (−1)
kqk(k−1) /2

(
X1m,0 − X0m,0

)
= (−1)k−1qk(k−1) /2 ,

where we have used the fact that X1m,0 = 0, and X0m,0 = 1.

We have proved the following lemma.

Lemma 2. Let Yαm,k denote the number of rankk endomorphisms of F
m+k with trace α.

Then

Y1m,k − Y0m,k = (−1)
k−1qk(k−1) /2

∣∣Gr(m+ k,m)
∣∣,

where |Gr(m+ k,m)| denotes the number of m-dimensional subspaces in F
m+k. �

5 Calculation of the dimension of the twisted Jacquet functor

It is clear that the dimension of the twisted Jacquet functor of a representation π of

GL2n(F) is given by

dim(πN,ψ) =
1

qn
2

∑
X∈Mn(F)

Θπ

(
1 X

0 1

)
ψ̄(X),

where ψ̄ denotes the complex conjugate of ψ.
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The Space of Degenerate Whittaker Models 585

Since the number of Jordan blocks in a unipotent matrix u is the dimension of

the kernel of (u− 1), it is easily seen that the number of Jordan blocks in
(
1 X
0 1

)
is equal

to 2n− rank(X). Therefore, using Lemma 2, using Green’s theorem giving the value of the

character of the cuspidal representation π at the unipotent element
(
1 X
0 1

)
, and using the

fact that
∑

x�=0 ψ̄0(x) = −1, we have

dim(πN,ψ) =
1

qn
2

n∑
i=0

(−1)i(q− 1) · · · (q2n−i−1 − 1
)[
Y0n−i,i − Y1n−i,i

]
=

1

qn
2

n∑
i=0

qi(i−1)/2(q− 1) · · · (q2n−i−1 − 1
)∣∣Gr(n,n− i)

∣∣
=

1

qn
2

n∑
i=0

qi(i−1)/2(q− 1) · · · (q2n−i−1 − 1
)(qn − 1

) · · · (qn−i+1 − 1
)(

qi − 1
) · · · (q− 1)

,

where |Gr(n,n − i)| denotes the cardinality of the Grassmanian of (n − i)-planes in F
n.

Since the cardinality of GLn(F)/F∗
n is (q

n−q) · · · (qn−qn−1), the following lemma proves
that the representations VN,ψ and Ind

GLn(F)
F∗
n

(θ|F∗
n
) have the same dimension. The author

is indebted to Dr. Heng Huat Chan for supplying the proof of the following lemma.

Lemma 3. We have

(
qn − q

) · · · (qn − qn−1
)

=
1

qn
2

n∑
i=0

qi(i−1)/2(q− 1) · · · (q2n−i−1 − 1
)(qn − 1

) · · · (qn−i+1 − 1
)(

qi − 1
) · · · (q− 1)

. �

Proof. Set

(a;q)n =

n∏
k=1

(
1− aqk−1

)
= (1− a)(1− aq) · · · (1− aqn−1

)
.

Then the identity needing to be proved in the lemma becomes

(−1)n−1qn(n−1)/2(q;q)n−1 =
1

qn
2

n∑
i=0

(−1)i−1qi(i−1)/2

(
qn;q

)
n−i
(q;q)n−1

(q;q)i(q;q)n−i
(q;q)n,

or

q(3n−1)n /2 =

n∑
i=0

(−1)n−iqi(i−1)/2

(
qn;q

)
n−i
(q;q)n

(q;q)i(q;q)n−i
.
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Replacing n− i by k, this is the same as writing

q(3n−1)n/2 =

n∑
k=0

(−1)kq(n−k)(n−k−1)/2
(
qn;q

)
k
(q;q)n

(q;q)n−k(q;q)k

=

n∑
k=0

(−1)kq(n
2−n)/2 q(k

2−k)/2 qkq−kn

(
qn;q

)
k
(q;q)n

(q;q)n−k(q;q)k
.

It can be shown that (cf. [GR, Appendix 1, (I.12)])

(−1)kq(k
2−k)/2−kn (q;q)n

(q;q)n−k
=
(
q−n;q

)
k
.

This implies that the identity needing to be proved is

qn
2

=

n∑
k=0

qk
(q−n;q)k

(
qn;q

)
k

(q;q)k
.

Define the following q-analogue of the corresponding hypergeometric series

2φ1
(
a, b, c;q;Z

)
=

∞∑
k=0

(a;q)k(b : q)k

(c;q)k

Zk

(q, q)k
.

In this notation, the identity we need to prove reduces to the elegant identity

qn
2

= 2φ1
(
q−n, qn, 0;q;q

)
.

However, we have the following result in the hypergeometric series (cf. [GR, formula

(1.5.3)])

2φ1
(
q−n, b, c;q;q

)
=

(
c

b
;q

)
n

(c;q)n
bn.

Putting b = qn and c = 0, the previous identity and, hence, the lemma is proved. �

6 Proof of the main theorem

We prove Theorem 1 by proving that the character of the representation πN,ψ and

IndGLn(F)
F∗
n

(θ|F∗
n
) at any element g in GLn(F) is the same.We divide the proof into two cases

depending on whether the element g is not semisimple or is semisimple. In the first case,

because of Lemma 1,we prove that the character of πN,ψ at any non-semisimple element

is zero.
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The Space of Degenerate Whittaker Models 587

We make the general remark that byTheorem 2, due to Green, about character of

a cuspidal representation of GLm(F), the character of πN,ψ is zero at any element gwith

Jordan decomposition g = s · u, where the semisimple element s does not come from a
subfield of Fn. (Equivalently, not all the eigenvalues of g are conjugate under the Galois

action of Fn over F.) By Lemma 1, the character of IndGLn(F)
F∗
n

(θ|F∗
n
) is also zero at all the

elements g = su, where the semisimple element s does not come from a subfield of Fn.

Therefore, in the proof ofTheorem 1,we always assume that we are looking at an element

g = su, whose semisimple part s comes from a subfield of Fn.

6.1 Character calculation at a non-semisimple element

Lemma 4. The character of the twisted Jacquet functor at an element g = su, where u

is a nontrivial unipotent element, is zero. �

Proof. Although we could consider the case of arbitrary s from the outset, it is helpful

to first consider the case when s = 1; so we assume that g = u is a nontrivial unipotent

element in GLn(F). The character of πN,ψ, to be denoted by ΘN,ψ, is given by

ΘN,ψ(u) =
1

qn
2

∑
X∈Mn(F)

Θπ

[(
u 0

0 u

)(
1 X

0 1

)]
ψ̄(X)

=
1

qn
2

∑
X∈Mn(F)

Θπ

[
u X

0 u

]
ψ̄
(
u−1X

)
.

Therefore, fromGreen’s theorem about the character of a cuspidal representation

of GL2n(F) at a unipotent element, the calculation of the character of the twisted Jacquet

functor depends on understanding the number of Jordan blocks of the unipotent matrix

h =

(
u X

0 u

)
,

as X varies in Mn(F) with a given trace for u−1X. For this purpose, it is convenient to

represent the matrix

h =

(
u X

0 u

)

as an endomorphism of the vector spaceV⊕V,which leaves the first copy ofV insideV⊕V
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stable. Let {e1 , . . . , en} be a basis for the first copy of V inside V ⊕V, and let {f1 , . . . , fn} be

the corresponding basis for the second copy of V inside V ⊕ V .

Assume without loss of generality that {e1 , . . . , em} is a basis for the kernel of

(u− 1). In particular, this means that the Jordan decomposition of u has m blocks.

Clearly, (h−1) takes V⊕ {f1 , . . . , fm} inside V and is the largest subspace of V⊕V

containing V which (h−1) takes into V . In particular, the kernel of (h−1) is contained in

V ⊕ {f1 , . . . , fm}. Suppose that (h− 1)V =W, which is a subspace of V of codimensionm.

The dimension of the kernel of (h − 1) is determined by the dimension of the image of

(h−1) acting on V⊕{f1 , . . . , fm},which in turn is determined by the intersection ofW with

the image of {f1 , . . . , fm} under X. Thus, if m < n, which is the case as u is a nontrivial

unipotent, the number of Jordan blocks in g depends only on the restriction of the action

of X to the proper subspace {f1 , . . . , fm}. This means that the number of matrices X, with

a given trace tr(u−1X) = a giving rise to the matrix

h =

(
u X

0 u

)

of k blocks, does not depend on the value of a. We elaborate this point further. Note that

if u−1 takes basis elements ei to fi, then the trace of Xu−1 is the sum of coefficients of

ei in the expansion of Xfi using the basis ei. Thus, tr(Xu−1) takes all values equally as

often as X ranges over all the endomorphisms of the underlying vector space with a fixed

restriction to a proper subspace. This proves that the character of the twisted Jacquet

functor is zero at any nontrivial unipotent element.

We now carry out the proof when the element s in the Jordan decomposition of

g = su is an arbitrary element of F
∗
n. For this, we need the following lemma.

Lemma 5. Let

h =

(
g X

0 g

)

be an endomorphism of V ⊕V . Let λ be an eigenvalue of g over the algebraic closure F of

F, and letW ′ = ker(g− λ). Then the number of Jordan blocks of h over F corresponding

to the eigenvalue λ is 2dimW ′ − dim(XW ′) + dim{XW ′ ∩ Im(g− λ)}. �

Proof. From the earlier argument, we have

dimker(h− λ) = dimV + dimW ′
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The Space of Degenerate Whittaker Models 589

−
[
dim Im(g− λ) + dim(XW ′) − dim

{
XW ′ ∩ Im(g− λ)

}]
= 2dimW ′ − dim(XW ′) + dim

{
XW ′ ∩ Im(g− λ)

}
. �

Corollary. The number of Jordan blocks of h corresponding to the eigenvalue λ depends

only on the restriction of X toW ′ = ker(g− λ). �

The following lemma summarises some elementary information from Galois de-

scent that we need. We omit the proof of this lemma.

Lemma 6. Let L be a finite Galois extension of a field K. Let V be a finite-dimensional

vector space over K. Let W be a subspace of the vector space V ⊗K L over L. Assume

that the various Galois conjugates ofW have V ⊗K L as their direct sum. Then there is a

canonical isomorphism

HomK(V, V) ∼= HomL
(
W,V ⊗K L

)
.

The isomorphism of V⊗KLwith the direct sum of the conjugates ofW gives, in particular,

a homomorphism from V ⊗K L to W. Thus, composing with the above isomorphism of

HomK(V, V) with HomL(W,V ⊗K L), we get a mapping from HomK(V, V) to HomL(W,W).

If an endomorphism φ ∈ HomK(V, V) goes to φ ′ ∈ HomL(W,W), then tr(φ) = trL/K(trφ ′).

�

Suppose that g is not semisimple. Let Fd be the extension of F generated by an

eigenvalue, say λ, of g. LetW be the generalised eigenspace of g with eigenvalue λ, that

is, the maximal subspace of V ⊗F Fd on which (g − λ) is a nilpotent endomorphism. Let

W ′ be the λ eigenspace of g in V⊗F Fd. Since g is not semisimple,W ′ is a proper subspace

ofW. Since the semisimple part of g comes from F
∗
d, W and its Galois conjugates form a

direct sumdecomposition of V⊗FFd.Therefore, by Lemma 6,HomF(V, V) can be identified

to HomFd
(W,V ⊗ Fd). By corollary to Lemma 5, the number of Jordan blocks of

h =

(
g X

0 g

)

depends only on the restriction of the homomorphism in HomFd
(W,V⊗Fd), correspond-

ing to the homomorphism X ∈ Hom(V, V) to the proper subspace W ′. Clearly, the set

of elements in HomFd
(W,V ⊗ Fd) with a given restriction on W ′ can be identified to an

affine space. Under this identification, the trace of the projected map to HomFd
(W,W)

becomes a nonconstant affine map with values in Fd. In particular, the number of homo-

morphisms X ∈ Hom(V, V) such that the restriction of the corresponding homomorphism
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in Hom(V ⊗Fd, V ⊗Fd) toW ′ is a given homomorphism, and the trace of g−1X is a given

element a of Fd, is independent of a. Since

∑
x∈F

ψ0(x) = 0,

this completes the proof of Lemma 4. �

6.2 Character calculation at a semisimple element

We follow the notation of the previous section, but we now assume that g is semisimple.

LetW ′′ = Im(g−λ).The spaceW ′′ is a direct summand ofW inside V⊗Fd.The dimension

ofW over Fd is d ′ = n/d, and the dimension ofW ′′ is n− d ′. The endomorphism X of V,

thought of as a homomorphism of W into V ⊗ Fd, gives rise to a linear map X̃ from W

into (V ⊗ Fd)/W
′′ =W. Clearly,

rank
(
X̃
)
= dim

(
XW +W ′′)− dimW ′′

= dim(XW) − dim
(
XW ∩W ′).

It follows from Lemma 5 that the number of Jordan blocks for the endomorphism

h for any given eigenvalue is 2dimW − rank(X̃).

The number of linear maps from W to V ⊗ Fd, which, when projected to (V ⊗
Fd)/W

′′, gives rise to a fixed linear map, is equal to the cardinality of HomFd
(W,W ′′),

which is the same as q(dimW·dimW ′′)d = qn(n−d
′) . It follows that the number of linear

maps fromW to V ⊗ Fd, which, when projected to V ⊗ Fd/W
′′ ∼=W, gives rise to a linear

map fromW toW of rank i, and trace α ∈ Fd is equal to

Yαn/d−i,i
(
qd
) · qn(n−d ′) .

We now observe that g preservesW and acts on it by λ. From Lemma 6, it follows

that

tr(Xg−1) = trFd/F

[
λ−1 tr

(
X̃
)]
.

Finally, we are ready to calculate the character of the twisted Jacquet functor

πN,ψ at the element g, which (using Green’s theorem) is given by

ΘN,ψ(g) = q−n
2 ∑
X∈Mn(F)

Θπ

(
g X

0 g

)
ψ̄
(
Xg−1

)
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= (−1)2n−1
[∑

θ(gα)
]
·
∑
i

(1− q ′) · · · (1− q ′2d ′−i−1 ) · q−nd ′

×
[∑

β

Y
β
d ′−i,i

(
qd
)
ψ̄0
(
trFd/F

{
βλ−1

})]
.

The second equality arises by changing the sum over X ∈ Mn(F) to the sum over

Hom(W,V⊗Fd)whose projection toHom(W,W) is of rank i and traceβ, and then summed

over i, β using Green’s theorem.

We have

∑
β

Y
β
d ′−i,i

(
qd
)
ψ̄0
(
trFd/F

{
βλ−1

})

= Y0d ′−i,i
(
qd
)
+ Y1d ′−i,i

(
qd
)[∑

β�=0
ψ̄0
(
trFd/F βλ

−1
)]

= Y0d ′−i,i
(
qd
)
− Y1d ′−i,i

(
qd
)

= (−1)iqdi(i−1)/2
∣∣Gr(d ′, i)(Fd)

∣∣,
wherewe have used Lemma 2 to arrive at the last equality. Substituting this in the earlier

equation, we get

ΘN,ψ(g)

=
[∑

θ(gα)
]
·
∑
i

(
q ′ − 1

) · · · (q ′2d ′−i−1
− 1
) · q−nd ′

qdi(i−1)/2 · ∣∣Gr(d ′, i)(Fd)
∣∣.

Using Lemma 3 with n replaced by d ′ = n/d and q replaced by qd, we find that

ΘN,ψ(g) =

∣∣GLd ′(Fd)
∣∣(

qn − 1
) [∑

θ(gα)
]
= ΘInd(g).

The proof of Theorem 1 is complete. �

7 Generalised Steinberg representations for finite fields

Our main theorem can be used to calculate the twisted Jacquet functor for some other

representations besides cuspidal representations.

We recall that if π is a cuspidal representation of GLn(F), where F is a finite

field, then the principal series representation Ps(π, π) of GL2n(F), which is obtained by

parabolic induction of the representation π ⊗ π of GLn(F) × GLn(F), which is the Levi
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subgroup of the (n,n) parabolic P(n,n), is not irreducible and has two irreducible com-

ponents each of which appear with multiplicity 1 (cf. [SZ]). The component with larger

dimension is called the generalised Steinberg representation and is denoted by St(π), and

the component with smaller dimension is called the generalised trivial representation

and is denoted by Sp(π).

The following theorem is a consequence of Lusztig’s work, the so-called Jordan

decomposition for characters (cf. [L] or [DM,Theorem 13.23]), by which the proof of the

following theorem reduces to a theorem about GL2 .

Theorem 3. Let π be a cuspidal representation of GLn(F) associated to a character θ0

ofF∗
n. Let θbe the character ofF

∗
2n obtained from θ0 by composingwith the normmapping

to F
∗
n. Define the class function Θθ on GL2n(F) as in Theorem 2, due to Green. Then

the class function Θθ is the difference of the characters of the generalised Steinberg

representation of GL2n(F) associated to π and the generalised trivial representation

Sp(π) of GL2n(F) associated to π. �

We observe that the proof ofTheorem 1 does not use the cuspidal property of the

representation under consideration and works for any class function Θθ associated by

Theorem 2 to a character θ of F
∗
2n . It works in particular for θ, which is obtained from a

character θ0 of F
∗
n via the norm mapping. It follows that

St(π)N,ψ − Sp(π)N,ψ = Ind
GLn(F)
F∗
n

(
θ|F∗

n

)
.

Since the sum of St(π) and Sp(π) is the principal series representation Ps(π, π) of

GL2n(F), its twisted Jacquet functor can be calculated by the orbit method of Mackey.

This allows the calculation of the twisted Jacquet functor of generalised Steinberg and

generalised trivial representation of GL2n(F).

We apply the Mackey theory to calculate the Jacquet functor of a principal series

representation in the next section, where we have for simplicity taken the case of GL4(F)

only. Although similar in spirit, we have not carried out the computation in the case of

GL2n(F), which does not seem to have the simple expression we have in Theorem 4.

8 Principal series

Let π1 and π2 be irreducible representations of GL2(F). Denote by Ps(π1 , π2) the principal

series representation of GL4(F) induced from the (2, 2) parabolic with Levi subgroup

GL2(F)× GL2(F). In this section, we calculate the twisted Jacquet functor of Ps(π1 , π2).
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Theorem 4. The twisted Jacquet functor of Ps(π1 , π2), where π1 and π2 are irreducible

representations of GL2(F) (neither of which is 1-dimensional) and with central charac-

ters ω1 and ω2 , is

π1 ⊗ π2 ⊕ Ps(ω1 ,ω2),

where Ps(ω1 ,ω2) is the principal series representation of GL2(F) induced from the char-

acter (ω1 ,ω2) of F
∗ × F

∗. �

Proof. Let P denote the (2, 2) parabolic stabilising the 2-dimensional subspace {e1 , e2 }

of the 4-dimensional space {e1 , e2 , e3 , e4 }. The set GL4(F)/P can be identified to the set of

2-dimensional subspaces of {e1 , e2 , e3 , e4 }; two elements of GL4(F)/P are in the same orbit

of P if and only if the corresponding subspaces intersect {e1 , e2 } in the same dimensional

subspaces of {e1 , e2 }. It follows that there are three orbits of P onGL4(F)/P corresponding

to the dimension of intersection 0, 1, 2.

Denote by ω the automorphism that takes e1 to e3 , e2 to e4 , e3 to e1 , and e4 to e2 .

Also, denote by ω23 the automorphism that takes e1 to e1 , e2 to e3 , e3 to e2 , and e4 to e4 .

It follows that we have the decomposition

GL4(F) = P
∐

Pω23P
∐

PωP.

By Mackey theory, the restriction of Ps(π1 , π2) to P is

(π1 ⊗ π2)⊕ IndPP∩ω23 Pω23 (π1 ⊗ π2)⊕ IndPP∩wPw(π1 ⊗ π2),

where the first summand π1 ⊗ π2 is a representation of P on which N operates trivially.

Therefore, this summand does not contribute to the twisted Jacquet functor. Since P ∩
ωPω = GL2(F)× GL2(F), it is easy to see that

IndPGL2 (F)×GL2 (F) (π1 ⊗ π2) ∼= π1 ⊗ π2 ⊗ C
[
M2(F)

]
as a representation space forN =M2(F). From this isomorphism, it is easy to see that the

twisted Jacquet functor of IndPGL2 (F)×GL2 (F) (π1 ⊗ π2) is π1 ⊗ π2 as a representation space

for GL2(F). Finally, we calculate the twisted Jacquet functor of Ind
P
P∩ω23 Pω23 (π1 ⊗ π2).

For this, we first calculate P ∩ω23Pω23 . We note that since P is the stabiliser of {e1 , e2 },

ω23Pω23 is the stabiliser of the 2-dimensional subspace {e1 , e3 }. Therefore, P ∩ω23Pω23

is the stabiliser of the pair of planes {e1 , e2 } and {e1 , e3 }. It follows that P ∩ω23Pω23 is
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exactly the set of matrices of the form


x11 x12 x13 x14

0 x22 0 x24

0 0 x33 x34

0 0 0 x44

 .

It is easy to see that

ω23


x11 x12 x13 x14

0 x22 0 x24

0 0 x33 x34

0 0 0 x44

ω23 =


x11 x13 x12 x14

0 x33 0 x34

0 0 x22 x24

0 0 0 x44

 .

We note that in the induced representation, IndPP∩ω23 Pω23 (π1 ⊗π2), π1 ⊗π2 is considered

as a representation space of P ∩ω23Pω23 via the inclusion of

P ∩ω23Pω23 ↪→ P

by x → ω23xω23 .

Observe that since π1 is not 1-dimensional, the representation π1 has exactly

a 1-dimensional subspace spanned by a vector, say v1 , on which the upper-triangular

unipotent matrices operate via the character ψ. Similarly, we find a vector v2 in π2 .

Therefore, recalling the expression for ω23Pω23 given earlier, the set of matrices of the

form


x11 x13 x12 x14

0 x22 0 x34

0 0 x11 x24

0 0 0 x22


operate on the vector v1 ⊗ v2 in π1 ⊗ π2 by

ω1(x11 )ω2(x22 )ψ(x12 )ψ(x34 ),

from which it is easy to see (by recalling the definition of induced representations) that

the twisted Jacquet functor of IndPP∩ω23 Pω23 (π1 ⊗ π2) is Ps(ω1 ,ω2). This completes the

proof of the theorem. �
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