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The Space of Degenerate Whittaker Models for General
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Dipendra Prasad

1 Introduction

Let G = G(F) be the F-rational points of a reductive algebraic group G over a finite
field F. Let P = MN be the Levi decomposition of a parabolic subgroup P of G defined
over F. We denote the corresponding decomposition of F-rational points as P = MN. Let
7t be any irreducible finite-dimensional complex representation of G, and let { be any
irreducible representation of N. The sum, call it 7ty , of all irreducible representations
of N inside 7, on which N operates via 1, is a representation space of My,, which is the
subgroup of M consisting of those elements in M which leave the isomorphism class
of 1V invariant under the inner conjugation action of M on N. Since the representation
theory of groups such as G is now fairly well understood, it seems like an interesting
question to understand for which irreducible representations 7, mn 4, is nonzero, and
then to understand the structure of ny 4, as a module for My,.

The questions most studied in this context is when P is a Borel subgroup of
G and when one takes a nondegenerate character on N. By a theorem due to Gel’ fand
and Graev for GL,, which was generalised for arbitrary reductive algebraic groups by
Steinberg, one knows that the dimension of 7N .y is at most 1. This theorem and the study
of representations 7 with niy 4 # 0, called generic representations, play an important

part in many questions in representation theory.
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There is some work by Kawanaka [K] for more general parabolics, but these ques-
tions seem largely not touched upon in the literature so far. In this paper, we make a
detailed analysis of one very special case.

Let G = GLyy, (), where F is a finite field. Let P be the (n,n) parabolic in G with
Levi subgroup GLy(F) x GL,(F) and with unipotent radical N = M, (FF). Let { be a
nontrivial additive character g : F — C*. Let }(X) = Yo (tr X) be the additive character
on N = M, (F). Let m be an irreducible admissible representation of G. Let mn 4, be the
largest subspace of 7t on which N operates via 1. Since tr(gXg~!) = tr(X), it follows that
TNy 1S @ representation space for H = AGLy (F) — GLy (F) x GLn(F). The space min
is referred to as the space of degenerate Whittaker models, or sometimes also as the
twisted Jacquet functor of the representation 7. The space of linear forms on 7y is the
same as the space of linear forms on 7w on which N = M,, (F) operates via 1, generalising
the notion of Whittaker models in the case of GL;(F). The term degenerate is used as in
[MW], as these linear functionals have invariance property for the unipotent radical of
a nonminimal parabolic.

The aim of this work is to calculate mn 4, as a representation space for GLn (F).

We begin with the statement of the main theorem of this paper.

Theorem 1. Let 7t be a cuspidal representation of GL;, (F) obtained from a character 0
of F;, . Then

7TN)¢ = Ind;’;“(m (ehg‘;) O

The proof of this theorem is done by brute force. We prove by an explicit calcula-
tion that the characters of the twisted Jacquet functor 7Ny and the induced represen-
tation Indg‘“(m (Blr: ) at an arbitrary element of GL, (F) are the same. Therefore, the two
representations are isomorphic.

We note that although we restrict ourselves to finite fields in this paper, the
study of mn 4 is specially relevant to p-adic fields and automorphic forms where it is
connected to Fourier expansion and has indeed been studied by many authors in the p-
adic context. Most of these works in the p-adic context prove a multiplicity one theorem
about my  as a module for My, without getting a fuller understanding of nn 4, and use
them for developing a theory of L-functions. We refer the reader to the book of Ginzburg,
Piatetski-Shapiro, and Rallis [GPSR] for one such context. In a recent work, E. M. Baruch
and S. Rallis have proved a multiplicity one theorem in the p-adic case (cf. [BR] for one
special case). They work with G = Sp(n), P the “Klingen parabolic” whose Levi subgroup

has Sp(n — 1) for its semisimple part, and a Heisenberg group for its unipotent radical.
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They prove that the maximal quotient of an irreducible representation of Sp(n) on which
this Heisenberg group operates by the oscillator representation has a multiplicity one
property for Sp(n — 1).

Since the representation theory of finite groups of Lie type is much better un-
derstood than that of p-adic groups, and since these theories are closely related, it is
clear that an understanding of my 4, in the case of finite fields will throw some light on
analogous questions in the p-adic case. Indeed, this was also the motivation behind this
work that arose because of the need to understand 7N y in the p-adic case for GLyn,

which plays an important role in the work of [PR].

2 Preliminaries

In this paper, F denotes a finite field with q elements. We review the representation
theory of GL,(F) due to J. A. Green. According to Green, cuspidal representations of
GL (F), from which all the other irreducible representations of GL,, (F) are obtained via
the process of parabolic induction, are associated to regular characters of F% , where F,;,
is the unique field extension of degree m of F. A character x of F}, is called regular if,
under the action of the Galois group of F,,, over I, x gives rise to m distinct characters
of F% . Two regular characters of F}, give rise to the same cuspidal representation if and
only if one is obtained from the other by the action of an element in the Galois group.

We denote the representation of GL,,(F) associated to a regular character 0 of
F*, by g and the character of the representation g by Og.

There is an embedding of F,,, inside M., (F) as algebras which is unique up to
inner conjugation by GL, (F). This way, every element of F%, gives rise to a well-defined
conjugacy class in GL., (IF). The conjugacy classes in GL,, (F), which are so obtained from
elements of F},, are said to be associated to F}, . In particular, if an element of F},, belongs
to a proper subfield, then the associated element in GL, (F) will look like a direct sum
of matrices, with the same matrix in each block.

We summarise the information about the character ¢ in the following theorem.
We refer to the paper of S. I. Gel'fand [Ge] for the statement of this theorem in this
explicit form, which is originally due to Green [G]. (See also the paper of Springer and
Zelevinsky [SZe].)

Theorem 2 [G]. Let ©¢ be the character of a cuspidal representation mg of GL, (F) as-
sociated to a regular character 6 of F},. Let g = s - u be the Jordan decomposition of an
element g in GL, (F). If Og(g) # 0, then the semisimple element s must come from F%, .

Suppose that s comes from F},. Let zbe an eigenvalue of s in F,,,, and let t be the dimension

1102 ‘2 |udy uo 1sanb Ag Blosjeulnolplofxo’uiwi woiy papeojumod


http://imrn.oxfordjournals.org/

582 Dipendra Prasad

of the kernel of (g —z) over F,,,. Then

(s -w) = (—1)™ [ 3 6(s™)](1-a)(1—-a")-- (1-a"),

where q’ is the cardinality of the field generated by z over F, and the summation is over

the various distinct Galois conjugates of s. O

3 Character of the induced representation

From the well-known result about the character of an induced representation, we have

the following lemma, whose proof is omitted.

Lemma 1. For a character 0 of F},, the character O, of the induced representation
mdS ) (g)

at an element s of F¥ which generates an extension of IF of degree d, is given by

@Ind(s) = (qnl—l) Z e(gflsg)

g€eGLy, (F)

‘GLd/ ]Fd

w1 o]

where d’ = n/d. In the first sum, we have followed the standard convention of putting
B(x) = 0if x ¢ F% . The second sum is over the different Galois conjugates of s, thought of
as an element of ;. The value of the character Op,q at an element of GL, () which does

not come from F% is zero. O

4 Some linear algebra

To calculate the character of the twisted Jacquet functor, we need to calculate the number
of (n x n)-matrices over FF of a given rank and of a given trace. First, we fix some notation
for this purpose. We fix a set of basis vectors {e;,...,em i} for Fm*k,

Let Yy . denote the number of ((m + k) x (m + k))-matrices over I of rankk and
trace «. Let X{, , denote the number of ((m + k) x (m + k))-matrices over F of rankk
and trace o which have a fixed m-dimensional subspace of F™*¥ in its kernel which,
without loss of generality, we take to be {e;,...,en}. Let X, x denote the number of

((m + k) x (m + k))-matrices over F of rank k. In this notation, we have suppressed the
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cardinality of F. When not specifying the cardinality of F might lead to confusion, we use
m.x(d). We often use without explicitly mentioning the fact that Y} | = Yfl,k if ap #0;
similarly, X% | = X5 | if «p #0.

Clearly, the rank k endomorphisms of F™** with kernel {e,, ..., e, } arein bijective
correspondence with injective maps of the vector space {em1,...,emik} into F™**, Our
calculation of X7, |, etc., depends on a recursive relation we find between these and the
corresponding objects for index (m,k — 1). An injective map from {e+1,. .., €m+k) into
F™+k is built from an injective map of {e;m 41, ..., €mk_1}into F™*% plus a condition that
the image of e,k should not belong to the image of {e;+1,-..,€m+k—1}. We count the

number of endomorphisms in X%, , . There are two possibilities for such endomorphisms.

Case 1. The image of the subspace {em+1,...,ém+k—1} is contained in {ej,...,en,
€mily--+)Cmik—1J)
Case 2. The image of the subspace {em41,...,€m+k—1} iS not contained in {ey,...,en,
€mil,--+)Cmik—1J)

In Case 1, there are two subcases to consider.

Casel,. Theendomorphisminduced onthe (m+k—1)-dimensional subspacef{e;,...,en,
€mil,---,Emik_1) has trace zero.

Casel,. Theendomorphisminduced onthe (m+k—1)-dimensional subspace{e;,...,em,
€m+l,---,em+k_1, does not have trace zero.

In Case 1,4, the number of possibilities for the image of e, is (q™ %1 —q*1).

In Case 1y, the number of possibilities for the image of e, i is g™ %1,

In Case 2,the image of e, x isnot to belong to the (k—1)-dimensional subspace of
F™+* which is the image of {e/ (1,...,emk_1}, but should lie in the hyperplane defined

by {x(v) = constant, where

ek(eerk) = 1)

le(ei) =0, i#m+k

Thus, having chosen the images of e;11,...,emk_1, this gives (™! — ¢ 2) number of
possibilities for the image of e, k.

Adding all the contributions, we have the recursion relation

X?n,k _ X?n,kfl (qm+k—1 _ qk—l) + (Xm,kfl _ X?n,k—l)qm+k_1
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Xm,k
qm+k _ qk—l

m+k—1 k—2 )

- Xm,kfl (q —dq

)

where the three terms correspond to Cases 14, 1y, and 2, respectively.

Simplifying, we have

X?n,k = _X?n,kfl 4+ X102 4+ g Xk

or

Xk — X% 1) = =0 " X1 — aX% 1)

Since Xm k = X9, + (g — 1)X}, ., we find

m m,k>

Xk =X i) = =" (X1 = X 1)

Iterating this recursion relation, we find

X1111,k - X?n,k = (—1)kgtt1 /2 (X11n,0 — X?n,O)

_ (_l)k—lqk(k—l)/z

)

where we have used the fact that X} ; =0,and X% , = 1.

We have proved the following lemma.

Lemma 2. Let Y , denote the number of rank k endomorphisms of F™** with trace «.

Then

Yk — Yo = (=11 gk /2 |Gr(m +k, m)

)

where |Gr(m + k, m)| denotes the number of m-dimensional subspaces in F™*k,

5 Calculation of the dimension of the twisted Jacquet functor

It is clear that the dimension of the twisted Jacquet functor of a representation 7t of

GLn (IF) is given by

1 X\ -
dim(nN,w):qulz S @ﬂ<0 )w(X),
()

XeMy 1

where 1 denotes the complex conjugate of 1.
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Since the number of Jordan blocks in a unipotent matrix u is the dimension of
the kernel of (u— 1), it is easily seen that the number of Jordan blocks in (} ¥) is equal
to 2n —rank(X). Therefore, using Lemma 2, using Green's theorem giving the value of the
character of the cuspidal representation 7t at the unipotent element ((1) ’f), and using the
fact that ), Po(x) = —1, we have

dim(ﬂN,w):qTZ(—l)i(q—l)"'(qzn_i_l —D[Yaii =Yoo
i=0
- qiz S g D2(q 1) (@ - 1)|Gr(n,n )|
i=0
1 i ss i (qnf ]_) (qn*i+l 71)
= . i(i—1)/2 — 1) (g*1-1 g . ’
pr ;)q (a=1)-(q N P} Ny PRy

where | Gr(n,n — i)| denotes the cardinality of the Grassmanian of (n — i)-planes in F™.
Since the cardinality of GL,, (F)/F% is (q™—q)--- (q™—q™ 1), the following lemma proves
that the representations Vy 4, and IndGL“ ® (Blrx ) have the same dimension. The author

is indebted to Dr. Heng Huat Chan for supplying the proof of the following lemma.

Lemma 3. We have

(@™ —q)--(a" —q" ")
LS 2y gy (i1 (@t =) (@ )

Proof. Set
n
=[J](1-ad*")=(1-a)@—aq)---(1—aq™).
k=1
Then the identity needing to be proved in the lemma becomes

1 & e (a™a), . (dd)n
-1 nflqn(nfl)/z Gdn1 = —r _1)i-! ql(lfl)/z n—i : ’
=1 (@ Dns = Gz ;( ) @il an s S

or

n

sn—I)n /2 _ Z(_l)nfiqi(ifm/z (qn; q)n,i(q? d)n .
ico (a;9)i(d5d)n—i

q
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Replacing n —1i by k, this is the same as writing

n

q(Snfl)n/Z _ Z(_l)kq(nfk)(nfkfl)/2 (qn; q)k(q’ q)“
— (a5 )n—r (a5 q)x
k=0

= i(—l)kq(”z “n)/2 (& —K)/2 qkqfknm‘
k=0 CHONSN )N

It can be shown that (cf. [GR, Appendix 1, (I1.12)])

2_y)/2— q; 4 -
(_l)kq(k k)/2—kn ( )n _<q n;q>k.

Define the following g-analogue of the corresponding hypergeometric series

oy e (mak(big)y ZF
2d>1(a,b,c,q,Z)_];) Gax  (aa)k

In this notation, the identity we need to prove reduces to the elegant identity

a™ =2¢1(a7™,9"0;,q;q).

However, we have the following result in the hypergeometric series (cf. [GR, formula
(1.5.3)]))

b
201(47 ™, b,¢05q) = T

Putting b = q™ and ¢ = 0, the previous identity and, hence, the lemma is proved. [ |

6 Proof of the main theorem

We prove Theorem 1 by proving that the character of the representation my ., and
Indgi*‘ ® (Blr; ) at any element g in GL,, (F) is the same. We divide the proof into two cases
depending on whether the element g is not semisimple or is semisimple. In the first case,
because of Lemma 1, we prove that the character of 7ty 4, at any non-semisimple element

is zero.
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We make the general remark that by Theorem 2, due to Green, about character of
a cuspidal representation of GL, (F), the character of 7y , is zero at any element g with
Jordan decomposition g = s - u, where the semisimple element s does not come from a
subfield of F,,. (Equivalently, not all the eigenvalues of g are conjugate under the Galois
action of F,, over F.) By Lemma 1, the character of Indgé“(m (lr ) is also zero at all the
elements g = su, where the semisimple element s does not come from a subfield of F,,.
Therefore, in the proof of Theorem 1, we always assume that we are looking at an element

g = su, whose semisimple part s comes from a subfield of F,,.

6.1 Character calculation at a non-semisimple element

Lemma 4. The character of the twisted Jacquet functor at an element g = su, where u

is a nontrivial unipotent element, is zero. O

Proof. Although we could consider the case of arbitrary s from the outset, it is helpful
to first consider the case when s = 1; so we assume that g = u is a nontrivial unipotent

element in GL, (F). The character of 7y ,, to be denoted by Oy v, is given by

1 u 0 1 X _
Onyp(W)=—F D O ( >( ) B(X)
4% xeMnm) 0 uw/\0 1
X| -
-y et ]w(u—lx).
4% xeMnm u

Therefore, from Green’s theorem about the character of a cuspidal representation
of GLyn (F) at a unipotent element, the calculation of the character of the twisted Jacquet

functor depends on understanding the number of Jordan blocks of the unipotent matrix

u X
h = ,
0O u
as X varies in M, (F) with a given trace for u~!X. For this purpose, it is convenient to
represent the matrix

o)

as an endomorphism of the vector space V&V, which leaves the first copy of Vinside VgV
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stable. Let {e1,...,en} be a basis for the first copy of V inside V@V, and let {f;,...,f,} be
the corresponding basis for the second copy of V inside V ¢ V.

Assume without loss of generality that {e;,...,en} is a basis for the kernel of
(w—1). In particular, this means that the Jordan decomposition of u has m blocks.

Clearly, (h—1) takes V@ {fy,..., fin}inside V and is the largest subspace of V&V
containing V which (h—1) takes into V. In particular, the kernel of (h—1) is contained in
V@ {fy,...,fm}. Suppose that (h — 1)V = W, which is a subspace of V of codimension m.
The dimension of the kernel of (h — 1) is determined by the dimension of the image of
(h—1) acting on V®{fy,...,fn}, which in turn is determined by the intersection of W with
the image of {f;,...,f} under X. Thus, if m < n, which is the case as u is a nontrivial
unipotent, the number of Jordan blocks in g depends only on the restriction of the action
of X to the proper subspace {fy,...,f}. This means that the number of matrices X, with

a given trace tr(u—!X) = a giving rise to the matrix

o
0O u
of k blocks, does not depend on the value of a. We elaborate this point further. Note that
if u~! takes basis elements e; to f;, then the trace of Xu~! is the sum of coefficients of
e; in the expansion of Xf; using the basis e;. Thus, tr(Xu™!) takes all values equally as
often as X ranges over all the endomorphisms of the underlying vector space with a fixed
restriction to a proper subspace. This proves that the character of the twisted Jacquet
functor is zero at any nontrivial unipotent element.

We now carry out the proof when the element s in the Jordan decomposition of

g = su is an arbitrary element of F . For this, we need the following lemma.

Lemma 5. Let

)

be an endomorphism of V@ V. Let A be an eigenvalue of g over the algebraic closure F of
FF, and let W’ = ker(g — A). Then the number of Jordan blocks of h over F corresponding
to the eigenvalue A is 2dim W’ — dim(XW’) 4+ dim{XW’' N Im(g — A)}. O

Proof. From the earlier argument, we have

dimker(h —A) = dimV + dim W’
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— [dimIm(g — A) + dim(XW’) — dim {XW'NIm(g —A) }]

=2dim W’ — dim(XW') + dim {XW’ N Im(g — A) }. n

Corollary. The number of Jordan blocks of h corresponding to the eigenvalue A depends
only on the restriction of X to W/ = ker(g — ). O

The following lemma summarises some elementary information from Galois de-

scent that we need. We omit the proof of this lemma.

Lemma 6. Let L be a finite Galois extension of a field K. Let V be a finite-dimensional
vector space over K. Let W be a subspace of the vector space V @k L over L. Assume
that the various Galois conjugates of W have V ® L as their direct sum. Then there is a

canonical isomorphism
Homg (V, V) = Hom (W,V @k L).

The isomorphism of V&g L with the direct sum of the conjugates of W gives, in particular,
a homomorphism from V ®x L to W. Thus, composing with the above isomorphism of
Homg (V, V) with Homy (W, V ®x L), we get a mapping from Homg (V, V) to Hom (W, W).
If an endomorphism ¢ € Homk (V, V) goes to ¢’ € Homy (W, W), then tr(¢d) = try x(trd’).

O

Suppose that g is not semisimple. Let F4 be the extension of F generated by an
eigenvalue, say A, of g. Let W be the generalised eigenspace of g with eigenvalue A, that
is, the maximal subspace of V ®r F4q on which (g — A) is a nilpotent endomorphism. Let
W’ be the A eigenspace of g in V®rF4. Since g is not semisimple, W' is a proper subspace
of W. Since the semisimple part of g comes from F}, W and its Galois conjugates form a
direct sum decomposition of VQF4. Therefore, by Lemma 6, Homy(V, V) can be identified

to Homp, (W, V ® F4). By corollary to Lemma 5, the number of Jordan blocks of

()

depends only on the restriction of the homomorphism in Homyp, (W,V®TF4), correspond-
ing to the homomorphism X € Hom(V,V) to the proper subspace W’. Clearly, the set
of elements in Homyp, (W,V ® Fq) with a given restriction on W’ can be identified to an
affine space. Under this identification, the trace of the projected map to Homg, (W, W)
becomes a nonconstant affine map with values in F4. In particular, the number of homo-

morphisms X € Hom(V, V) such that the restriction of the corresponding homomorphism
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in Hom(V®Fg4,V®F4) to W’ is a given homomorphism, and the trace of g~ X is a given

element a of Fy, is independent of a. Since

ZII)O(X) =0,

x€F

this completes the proof of Lemma 4. |

6.2 Character calculation at a semisimple element

We follow the notation of the previous section, but we now assume that g is semisimple.
Let W” =Im(g—A). The space W” is a direct summand of W inside V®F4. The dimension
of W over F4 is d’ = n/d, and the dimension of W” is n — d’. The endomorphism X of V,
thought of as a homomorphism of W into V @ Fq, gives rise to a linear map X from W
into (V@ Fq)/W" = W. Clearly,

rank (%) = dim (XW +W") — dimW"
— dim(XW) — dim (XW N W').

It follows from Lemma 5 that the number of Jordan blocks for the endomorphism
h for any given eigenvalue is 2dimW — rank()~().

The number of linear maps from W to V ® Fq4, which, when projected to (V ®
Fq)/W", gives rise to a fixed linear map, is equal to the cardinality of Homy, (W, W"),

(imW-dimW")d

which is the same as ¢ — ("4 1t follows that the number of linear

maps from W to V ® F4q, which, when projected to V@ Fq/W" = W, gives rise to a linear
map from W to W of ranki, and trace « € 4 is equal to

Y3 aii(a?) - qrin=dl,

We now observe that g preserves W and acts on it by A. From Lemma 6, it follows
that

tr(Xg ') = trg, v [N tr (X)].

Finally, we are ready to calculate the character of the twisted Jacquet functor

7N at the element g, which (using Green's theorem) is given by

. X\ _
Onp(@)=a ™ D O (g ) b(Xg ™)
(F) 9

XeM
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o[ X6 Y a-a) (g g

[ZYB,H o (tre, /¢ {BA })]

The second equality arises by changing the sum over X € M,, (F) to the sum over
Hom(W, V®F4) whose projection to Hom (W, W) is of rank i and trace 3, and then summed
over i, 3 using Green's theorem.

We have

ZYBH i(a®)Wo (tre, e {BAT'})

Yd’ i 1( d) + Ycli’fij(qd) Z 1I’O(tr]l?d/IF 67\_1)
B#0

=Y} rii (qd) - Ycli’fi,i(qd)

where we have used Lemma 2 to arrive at the last equality. Substituting this in the earlier
equation, we get

On,w(9)

{Ze ] Z q . 1) (q/2d/7171 . 1) . qfnd/qdi(ifl)/z . ‘Gr(d’,i)(lﬁ‘d)|.

Using Lemma 3 with n replaced by d’ = n/d and q replaced by q¢, we find that

 |GLa/(Fa)| ]
Onwp(9) = 1) [Z 6(g )} = Orna(9)-
The proof of Theorem 1 is complete. [ |

7 Generalised Steinberg representations for finite fields

Our main theorem can be used to calculate the twisted Jacquet functor for some other
representations besides cuspidal representations.

We recall that if 7 is a cuspidal representation of GLy(F), where F is a finite
field, then the principal series representation Ps(, 7t) of GLy, (F), which is obtained by

parabolic induction of the representation 7 ® 7 of GL,,(F) x GLn (F), which is the Levi
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subgroup of the (n,n) parabolic P(n,n), is not irreducible and has two irreducible com-
ponents each of which appear with multiplicity 1 (cf. [SZ]). The component with larger
dimension is called the generalised Steinberg representation and is denoted by St(7), and
the component with smaller dimension is called the generalised trivial representation
and is denoted by Sp(m).

The following theorem is a consequence of Lusztig’'s work, the so-called Jordan
decomposition for characters (cf. [L] or [DM, Theorem 13.23]), by which the proof of the

following theorem reduces to a theorem about GL;.

Theorem 3. Let 7 be a cuspidal representation of GL, (F) associated to a character 6y
of IF},. Let © be the character of ;| obtained from 6, by composing with the norm mapping
to F;. Define the class function ©¢ on GL;, (F) as in Theorem 2, due to Green. Then
the class function O is the difference of the characters of the generalised Steinberg
representation of GL,, (F) associated to 7 and the generalised trivial representation
Sp(m) of GL,, (F) associated to 7. O

We observe that the proof of Theorem 1 does not use the cuspidal property of the
representation under consideration and works for any class function G associated by
Theorem 2 to a character 8 of I}, . It works in particular for 8, which is obtained from a

character 8y of I}, via the norm mapping. It follows that
St(m)np — SP(M)n p = Indg™® (B]s,).

Since the sum of St(7r) and Sp() is the principal series representation Ps(r, 7t) of
GLy, (), its twisted Jacquet functor can be calculated by the orbit method of Mackey.
This allows the calculation of the twisted Jacquet functor of generalised Steinberg and
generalised trivial representation of GL;, (F).

We apply the Mackey theory to calculate the Jacquet functor of a principal series
representation in the next section, where we have for simplicity taken the case of GL4 (F)
only. Although similar in spirit, we have not carried out the computation in the case of

GLyn (), which does not seem to have the simple expression we have in Theorem 4.

8 Principal series

Letm; and 7t; be irreducible representations of GL; (IF). Denote by Ps(7; , 7t2) the principal
series representation of GL4(F) induced from the (2,2) parabolic with Levi subgroup

GLy(F) x GLy(F). In this section, we calculate the twisted Jacquet functor of Ps(m;, 7).
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Theorem 4. The twisted Jacquet functor of Ps(m;, 7y), where 7; and 7, are irreducible
representations of GL; (F) (neither of which is 1-dimensional) and with central charac-

ters w; and wo, is

US| & T2 @ PS((Ul,(Uz),

where Ps(w;, w;) is the principal series representation of GL;(FF) induced from the char-
acter (wp, wy) of F* x F*. O

Proof. Let P denote the (2,2) parabolic stabilising the 2-dimensional subspace {e;,e;}
of the 4-dimensional space {e;, e;, €3, e4}. The set GL4(F)/P can be identified to the set of
2-dimensional subspaces of {e;, ez, e3, e4 }; two elements of GL4 (IF) /P are in the same orbit
of P if and only if the corresponding subspaces intersect {e;, e;} in the same dimensional
subspaces of {e;, e, }. It follows that there are three orbits of P on GL, (F)/P corresponding
to the dimension of intersection 0, 1, 2.

Denote by w the automorphism that takes e; to es, e; to eq, e3 to e;, and ey to es.
Also, denote by w23 the automorphism that takes e; to e;, e to e3, e3 to ez, and e4 to ey.
It follows that we have the decomposition

GLy(F) =P ] [ PwasP ] [ PwP.

By Mackey theory, the restriction of Ps(m;, ;) to P is

(M1 ® 2) © Iy, Py (M1 ® T2) B Ay pye (1 @ 72),

where the first summand 7; ® 7, is a representation of P on which N operates trivially.
Therefore, this summand does not contribute to the twisted Jacquet functor. Since P N
wPw = GL, (F) x GL, (F), it is easy to see that

Indgy, ) xcr, ¢ (M ® T2) = m ® M ® C[Mj(F)]

as a representation space for N = M, (IF). From this isomorphism, it is easy to see that the
twisted Jacquet functor of IndgLZ (F)xG1L, () (1 ® T2) is T ® T2 as a representation space
for GL,(FF). Finally, we calculate the twisted Jacquet functor of Ind]}zmw23 Py (T @ T2).
For this, we first calculate P N w23 Pw,3. We note that since P is the stabiliser of {e;, e, },
wo3 Pwas is the stabiliser of the 2-dimensional subspace {e;, e3}. Therefore, P N w3 Pwss

is the stabiliser of the pair of planes {e;, e, } and {e;, es}. It follows that P N w,3Pwa3 is
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exactly the set of matrices of the form

X11  X12  X13  X14
0 x22 0 xp4
0 0 X33 X34
0 0 0 xgq

It is easy to see that

X11  X12  X13  X14 X111 X13  X12  X14
0 x22 0 xpg 0 xa3 0 xa
W23 W23 =
0 0 X33 Xaa 0 0 x22 X2
0 0 0 X44 0 0 0 X44

We note that in the induced representation, Indgm)z3 Py (T ®T2), T @7, is considered

as a representation space of P N wy3 Pwss via the inclusion of

PN Wo3 P(,Uzg — P

by x — wazxwas.

Observe that since 7r; is not 1-dimensional, the representation 7; has exactly
a 1-dimensional subspace spanned by a vector, say v;, on which the upper-triangular
unipotent matrices operate via the character V. Similarly, we find a vector v, in ;.
Therefore, recalling the expression for w,3 Pw,3 given earlier, the set of matrices of the
form

X11  X13 X12 X4
O X22 0 X34
0 0 x11 x24
0 0 0 X22

operate on the vector v; ® v, in 1; ® 71, by

w1 (X11 )wz (X22 )lb(xlz )IP(X34),

from which it is easy to see (by recalling the definition of induced representations) that
the twisted Jacquet functor of Indgm,23 Pwy (M1 @ T2) is Ps(wy, wy). This completes the
proof of the theorem. |
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