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THETA CORRESPONDENCE FOR UNITARY GROUPS

DIPENDRA PRASAD

In this paper we study the theta correspondence for Uni-
tary groups of the same size over local and global fields. This
correspondence has been studied in many cases by several au-
thors. We are able to unify and generalise all these known
results in terms of two conjectures, one local and the other
global. These conjectures are in terms of the parametrisation
of irreducible admissible representations of groups over local
fields which are formulated by David Vogan refining Lang-
lands parametrization, and which are now called Vogan pa-
rameters. In turn, the simple form of the conjecture here,
gives support to the importance of Vogan’s refinement of
Langlands parametrisation.

1. Generalities.

Let K be a quadratic extension of a local field k, and let V and W be
two finite dimensional Hermitian spaces over K. Let 6 € K* be fixed with
tr(d) = 0. Multiplication by ¢ turns the Hermitian space W into a skew-
Hermitian space, and therefore we get a symplectic structure on the k-
vector space V @ W, making (U(V),U(W)) into a dual reductive pair in
Sp(V ®@g W). In the paper [HKS]|, Harris, Kudla and Sweet have made a
detailed study of the C*-metaplectic covering of Sp(V @ W) restricted to
U(V) x U(W). They prove that the C*-metaplectic cover of Sp(V @ W)
splits over U(V) x U(W) for non-Archimedean local fields, and that the
splittings over U(V') x U(W) can be parametrised by pairs of characters
(x1,x2) of K* such that x| = w?(h/l;cw, and xo|kx = w?(h;}gv, where w/p,
is the quadratic character of k* associated by local class field theory to the
quadratic extension K of k. In this paper, we will have dim V' = dim W = n,
and we therefore take xy1 = x2 = X, a fixed character of K* whose restriction
to k™ is wg g if n is odd, and is the trivial character of K™ if n is even.
The two-fold metaplectic cover of Sp(2n?) when restricted to U(V) x
U(W) gives rise to two-fold covers of U(V) and U(W). We will denote
these covers by U(V) and U(W). These covers are split over the special
Unitary groups. This one can see by using the result of Harris, Kudla, Sweet
that the C*-metaplectic cover splits over Unitary groups, and therefore over
the special Unitary group, and the special Unitary group being its own
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commutator (when the unitary group is non-compact), the mapping from
H?(SU(n),Z/2) to H*(SU(n),C*) is injective. Therefore if U (1) denotes the
inverse image of U(1) inside U(V) where U(1) is a subgroup of U(V) con-
structed using a one dimensional Hermitian subspace of the n-dimensional
Hermitian space V, then there is an isomorphism U (V) = U(1) - SU(V), a
semi-direct product with SU (V') as the normal subgroup.

If we fix a character of U(1) which is non-trivial on the kernel of the nat-
ural mapping to U (1), then multiplication by this character gives a bijection
between genuine representations of U(V) i.e., those representations of U(V)
on which the Z/2 which is the kernel of the map of U (V') to U(V') acts non-
trivially, to representations of U (V). This way, questions on representation
theory of U (V') can be reduced to questions about representation theory of
the group U(V). Fixing splitting over U(V) x U(W) via the choice of the
character xy of K* achieves exactly this.

We fix ¢ to be a non-trivial additive character of k, and ¢ i the additive
character of K obtained by composing ¢ with the trace map from K to k.

The Weil representation of Sp(V ® g W) associated to the character ¢
thus gives rise to a representation of U (V') x U(W). When working globally,
we take global analogues of ¢ and x.

We will assume the conjecture of Langlands and its refinement due to
Vogan [Vo] about parametrization of representations of reductive groups
over local fields. Very briefly put, let G be a quasi-split reductive group over
a local field k with “G its L-group which is a semi-direct product of GV, the
dual group of GG, with the Weil group of k. Fix a non-degenerate character
of the unipotent radical of a Borel subgroup of G. Then according to Vogan,
the equivalence classes of pairs (¢, 1) under the inner-conjugation action of
G where ¢ is a parameter for G, and y is an irreducible representation of S,
the group of connected components of the centraliser of ¢ in GV, is in one-
to-one correspondence with the set of irreducible admissible representations
of pure inner forms of G. Besides the Archimedean case treated by Vogan in
[Vo], the best known result confirming the Vogan parametrization is due to
Lusztig [Lu] for what are called unipotent representations of p-adic groups.
Also, the case of Unitary groups in up to 3 variables is fully understood by
the work of Rogawski [Ro2].

We will denote the L-group of U(V) by “U(n) which is a semi-direct
product of GL(n,C) by the Weil group of k which acts via its quotient
Gal(K/k) by g — ®,'g71®! where ®, is the n x n matrix whose only
non-zero entries are at the places (i,n+ 1 —14),1 <1 < n where it takes the
value (—1)"*1

For G, the quasi-split unitary group U(Vjp), the pure inner forms of U (V})
are in one-to-one correspondence with the isomorphism classes of Hermitian
spaces of dimension n = dim(Vp). The additive character s of the trace
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zero elements of K defined by v¢s(z) = 1 (dz) can be used to fix a non-
degenerate character on the unipotent radical of a Borel subgroup of U(Vj).
In the case of a non-Archimedean local field, the discriminant of V', denoted
discV, which is an element of k*/NmK™ determines the isomorphism class
of V. A Vogan parameter (¢, ) corresponds to a representation of U(V')
such that

discV
discVy

where —Id is the element of Sy represented by the negative of the identity
matrix in GL(n,C).

2. Component group for parameters of unitary group.

Let G be a group containing a subgroup H as an index 2 subgroup. Later we
will apply this setup to G = W}, the Weil-Deligne group of k, and H = W,
the Weil-Deligne group of K. (We take the Weil-Deligne group to be the
product of the Weil group with SL(2,C).) Fix an element s in G which
does not belong to H. Let ¢ be a homomorphism from G to GL(n,C) xZ/2
such that H lands inside GL(n,C), and the element s of G does not land
inside GL(n,C). Here the semi-direct product GL(n,C) x Z/2 is generated
by GL(n,C) and j such that
2 =1, jgi t=d,tl¢g7'® ! forall g€ GL(n,C).

n

It is clear that GL(n,C) x Z/2 is a quotient of the L-group of U(n), and
that a Langlands parameter for U(n) gives rise to such a homomorphism.

Suppose that the element s goes to the element wj under the homomor-
phism ¢. Let h® = shs™!, and for a representation W of H, let W* denote
the representation of H in which h € H operates via h®. Then

o(h°) = wdp'p(h) " 0w,
Define an inner product on C™ by

(v1,12) = " ®pw oy
= ‘w0
= @0 lwd, w0
= (vg,w®, tw_1<1>nv1>
= (=1)" vz, ¢(5*)v1).
(We have used that ®2 = (—1)""!, and '®,, = (—-1)""1®,,.)
The following lemmas are easy to verify.

Lemma 2.1. (¢(h)vi, ¢(h®*)va) = (vi,v2) for all h in H and vy, vy in C™.
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Lemma 2.2. An element g € GL(n,C) commutes with ¢(s) = wj if and
only if
(gu1, gv2) = (v1,v2)  for all vy, vy € C™.

Lemma 2.3. Let W be an irreducible representation of H such that W?*
is isomorphic to the dual W* of W. Fix a non-degenerate bilinear form
(which is unique up to scaling) B : W x W — C such that B(hwy, h*ws) =
B(wy,ws). Then there exists a constant ¢(W') € {£1} independent of s such
that the bilinear form B has the property that

B(v,w) = c¢(W)B(w, s*v)  for all v,w € W.

Remark 2.1. The invariant ¢(WW) of Lemma 2.3 was introduced by Ro-
gawski in [Ro2, Lemma 15.1.1]. For H = W[, he proves there that if W
has odd dimension then ¢(W) is 1 or —1 depending on whether the determi-
nant of W which is a character of K* is trivial on k* or not. Furthermore,
(W) = (=1)3mW=1if and only if the representation W of W) can be
extended to a parameter of the corresponding unitary group over k, cf. Ro-
gawski [Ro2, Lemma 15.1.2], with correction in [Ro1l].

Let ¢ be a parameter for unitary group U (V') over a local field k defined
in terms of a Hermitian form on an n-dimensional vector space V over
the quadratic extension K of k. The restriction of ¢ to the Weil-Deligne
group Wi of K defines a group homomorphism ¢x : Wy — GL(n,C).
Assume that ¢ decomposes as a direct sum of irreducible representations
ox = Y_n;p; where n; is the multiplicity of the irreducible representation ¢;.
The representation ¢ has the property that ¢ = ¢} where ¢} denotes
the dual of ¢x, and ¢ is the representation of W} obtained from ¢
by conjugation by an element of W/ which does not belong to Wj. It
follows that the set of irreducible representations ¢; which appear in the
decomposition of ¢k is stable under ¢; — gE;"

Suppose that the representation ¢; has the property that gZ;;‘ = ¢;. Then
the bilinear form (,) restricted to the ¢; isotypic subspace of C" is non-
degenerate. Let the representation ¢; of the Weil-Deligne group Wj- of
K be realised on a vector space W;. Fix a non-degenerate bilinear form
B; : W; x W; — C such that B;(hwi, h®ws) = B;(wy,ws) for all wy,wy € Wi.

Write the ¢; isotypic component as U; ® W; for some vector space U; of
dimension n; where the action of Wx on U; ® W; is via its action on W;. By
the uniqueness of the inner product B;, there exists a unique non-degenerate
bilinear form (, ); on U; such that

(u1 @ wi,ug ® wa) = (u1,ug);Bi(w, ws).
Since

(ur @ wi,ug ® wa) = (—1)""Hug ® wa, uy @ P(s*)wr),
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and
Bi(w1,ws) = c(¢) Bi(wa, p(s*)w1),
we find that
(u1,u2) = (=1)"" (i) (ug, ua).

Proposition 2.1. Let ¢ be a parameter for unitary group U(V') over a local
field k defined in terms of a Hermitian form on an n-dimensional vector
space V over the quadratic extension K of k. Assume that ¢ decomposes
as a direct sum of irreducible representations ¢ = Y m;p; where n; is the
multiplicity of the irreducible representation ¢;. Then the group of connected
components of the centraliser of ¢ in GL(n,C) is a product of 7./2’s, the
product being indexed by those irreducible representations ¢; which have the
property that

(a) ¢ = o5

(b) c(¢i) = (=1)"~".
Proof. The subgroup of GL(n,C) which commutes with the image of W
inside “U(n) is precisely the subgroup of GL(n, C) which commutes with the
image of W} and s. By Lemma 2.2, the elements of GL(n,C) commuting
with the image of s is precisely those elements which preserve the bilinear
form (,) on C". The centraliser of H preserves the isotypical components
of ¢ and in the decomposition of the isotypical component as U; @ W;,
it can be taken to be Aut(U;) acting on U; ® W; through the first factor.
Therefore the centraliser of the image of W}, in GL(n,C) is precisely those
elements of Aut(U;) which preserves the bilinear form (,) on U;. We have
seen above that this bilinear form on U; is symmetric or skew-symmetric
according as (—1)""'c(¢;) = 1, or —1. Therefore this is precisely the con-
dition that the part of the centraliser corresponding to the i-th isotypical
piece is Z/2 or trivial. It is easy to see that representations ¢; which are not
isomorphic to qg;*, do not contribute to the group of connected components.
The proposition follows.

Since a non-degenerate bilinear form on an odd dimensional vector space
cannot be alternating, we have the following corollary to the proof of Propo-
sition 2.1.

Corollary 2.1. With the notation as in the proposition, an irreducible rep-
resentation ¢; of Wi, with ¢f = ¢; appearing with odd multiplicity in ¢k
must have c(¢;) = (—1)" 1.

3. The character x, and the local conjecture.

For representations ¢; of Wy with the property ¢; = ¢, det ¢; which is
a character of K* is trivial on those elements of £* which are norms from
K*. Recall that we have fixed § € K* with tr(d) = 0. Since §2 = —Nm(d),
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det ¢;(6?) = det ¢;(—1). We will now be using epsilon factors associated
to representations of the Weil-Deligne group for which we refer to the pa-

per of Tate [Ta]. Since e(¢;, V) = e(ds,Yr), and e(¢y, Vi) - e(of,YK) =
det ¢;(—1), we find that

e(¢i, Vi) = det ¢;(—1) = det ¢;(5?),
and therefore
(i, Yi) - det ¢ (67 1) = £1.

To a parameter ¢ of the unitary group U(V'), we will now define a char-
acter x4 on the group of connected components Sy of the centraliser of ¢
in GL(n,C). For the decomposition of ¢ restricted to K, ¢ = > n;¢;, as
we have seen in Proposition 2.1, the group of connected components is a
product of Z/2, the product being parametrised by certain ¢;’s. Define x4
on the Z/2 associated to such a ¢; to be the character of Z/2 taking the
non-trivial element of Z/2 to

e(di @ X, V) - det(d; @ x)(671).

Remark 3.1. From the definition of x4 given above, it is easy to see that

Xo(—1d) = €(pr @ X, V) - det(px @ x) (07,

where —Id is the element of Sy represented by the negative of the identity
matrix in GL(n,C).

Conjecture 1. If an irreducible admissible representation wy @ mw of
UWV) x UMW) appears as a quotient in the Weil representation of
Sp(V @k W) restricted to U(V') x U(W), then:

(i) The Langlands parameters associated to my and wy are the same; call
it ¢.

(ii) The theta correspondence between U(V) and U(W) as V and W vary
over the isomorphism classes of Hermitian spaces of dimension n de-
fines a bijection between the irreducible admissible representations of
pure inner forms of U(V') (represented by U(V) as V varies over the
isomorphism classes of Hermitian spaces of dimension n) belonging to
one Vogan L-packet to itself.

(iii) The characters xy and xw associated to the representatins mwy and
mw are related by

XV = XW - X¢
where x4 15 the character of the component group Sy defined earlier.

Remark 3.2. If for an irreducible admissible representation = of U(V'), the
theta lift of m to U(W) is non-zero for a Hermitian space W with dimV =
dim W, then from the above conjecture together with Remark 3.1 above,
and Equation 1.1, the discriminants of V and W are related by

wicsr(discV) = e(¢x ® X, ¥r) det(dr @ x)(6~ wpep(discW),
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where ¢ is the parameter of m base changed to K.

Remark 3.3. Conjecture 1 has been motivated by the work of Rogawski
[Rol] for U(1), the work of Harris-Kudla-Sweet [HKS], and the work of
J.-S. Li [Lil]. Indeed, parts (i) and (ii) of Conjecture 1 already appear in the
work of Harris-Kudla-Sweet. The Langlands parameter of representations
associated by theta correspondence was studied by Adams in [Ad] in the
Archimedean case.

4. Theta lifting for unitary groups: The Archimedean case.

We verify Conjecture 1 for the discrete series representations of the uni-
tary group U(p,q) here. The discrete series representations of U(p,q) are
parametrized by p + ¢ tuples of distinct numbers (A1, Ag, -+, Apyq) Where
all the \; are integers if p + ¢ is odd, and all the \; are half-integers (i.e.,
belong to %Z but not to Z) if n is even. We can further assume that

)\1>)\2>"'>)\p, and

)‘p-‘rl > )\p+2 > > Ap-i—q-
Assume that
)\1 >)\2 > "‘>\a20>)\a+1 > .. >>\p,
)\p+1 > > >‘p+b >0> )\p+b+1 > ')\erq,
then it follows from the results of J.-S. Li [Lil] that the local theta lift of
m to U(r,s) for r + s = p + q, is non-zero if
r=a—b+gq,

s=b—a+np,
and in this case the local theta lift is again a discrete series whose Harish-
Chandra parameter is

ALy 3 Aas Aprbtts -+ s At Api L -+ s Ay A1y -+ 5 Ap)-

Actually as Li is concerned with local theta lifts of discrete series representa-
tions of U(p, q) to general unitary groups, he expresses his results in terms of
Vogan-Zuckerman A, (\) which even in the case of same size unitary groups
that we are considering, seem much more complicated because of various
shifts involved.

This result of J.-S. Li was completed by A. Paul [Pa] who proved that
the local theta lift of 7y to U(r,s) for r + s = p + ¢, is non-zero if and only
if

r=a—b+gq,

s=b—a+np.
Given this result of J.-S. Li and A.Paul, Conjecture 1 can now be easily
checked for discrete series representations of U(p, q), but before we can do
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that, we need to review the Vogan parametrization of representations of real
reductive groups.

Let G be a connected real reductive group, and G its L-group which
is a semi-direct product of its dual group G by the Weil group Wg of R.
Let ¢ : Wr — LG be a discrete series parameter. The centraliser Sy of ¢
in GV is a finite abelian group isomorphic to (Z/2)" where r is the rank
of G over C. The pure inner forms of G = U(p,q) are U(p + ¢,0),U(p +
g—1,1),...,U(0,p + q). We will fix a quasi split pure inner form of G
together with a non-degenerate character on the unipotent radical of a Borel
subgroup. According to Vogan, given this data, every character of (Z/2)PT4
determines in a bijective manner, a pure inner form of G and a discrete
series representation on it with parameter ¢. Starting with a pure inner
form and a discrete series representation on it, one constructs the character
of (Z/2)P*4 as follows. Let T be a compact Cartan subgroup of G, and
x : T — S a regular character, i.e., (x,a) # 0 for every root a of G. This
defines a system of positive roots by declaring a root to be positive if and
only if (x,a) > 0. Define a root to be compact if the corresponding root
space is contained in the unique maximal compact subgroup of GG containing
T, and non-compact otherwise.

The torus T in G with associated positive root system gives rise to a torus
TV, and a Borel subgroup BY in GV, and for each root o of T, we have the
coroot a¥ : G, — TV. A coroot " is called compact if and only if the root
« is compact. Now given a discrete series parameter ¢ : Wr — LG, we can
assume that its restriction ¢¢c+ to C* lands inside TV. The discrete series
representations with Harish-Chandra parameter y : T — S', has ¢¢+ given
by ¢c+(z) = (2/2)X where x belongs to X*(T') = X,(TV).

The centraliser of ¢ : Wr — “G in GV is precisely the elements of order
<2, TV[2], in TY(C). For each positive simple root a, we have a¥ : G, —
TV. Let an = a¥(—1) € TV[2]. Corresponding to the discrete series on G
with Harish-Chandra parameter y, define the character x : TV[2] — C* by
demanding x(as) = —1 if « is a compact simple root. In the case of unitary
groups, the a,’s generate a subgroup of index 2 of TV [2], so one needs one
bit more of information to fix x (which distinguishes U(p, q) from U(q, p)),
but which we don’t describe here.

We will not verify Conjecture 1 for general discrete series representations,
but we will do it in a particular case; the general case is very similar. We
will take the discrete series representation on U (p,q) with Harish-Chandra
parameter

A=X> > A >0 > >0 20> Apparr > > Apyyg

According to Vogan, this representation of U(p,q) defines a character
XA on the component group (Z/2)P*? which for the standard basis {e;} of
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(Z/2)P*1 has the property that:

xa(eieir1) = —1 fori=1,... ,p+q—1,1i#p.
By the result of J.-S. Li and A. Paul recalled above, the lift of this discrete

series representation on U (p, q) is non-zero for U(p+qg—a, a), and the Harish-
Chandra parameter for the theta lift is:

AL > A2 > o> A > Apgag1 > > Apigs

)\p+1 > )\p+2 > e > )\p—i-a-
The corresponding character yp on the component group (Z/2)P*¢ has
the property that:

XB(eiei-‘rl):_l? forzzl,,p—i—q—l,z%p,z#p—i—a
For m € 37, let xm be the character of C* given by z — (2/2)™, or
re? — ¥ We have [Ta, 3.2.5]

e(xm) =i 2™, if m >0, and
€(xm) = i>™, it m<O0.
It follows that for m € %Z -7,

Xm (1) " te(xm) = —1 it m>0

and
Xm (1) " te(xm) =1 it m<O0.

If n is odd, then the character x fixed at the beginning of this section
(to split Sp(V @k W) over U(V') x U(W)) can be taken to be X1 and if n
is even, then y is taken to be the trivial character. It follows that for any
value of n, A ® x is a tuple consisting of elements in %Z — Z. Therefore the
character x associated to the parameter A is

xa(ei) =1, if i <p-+a,

xa(e) = —1, if i>p+a.
Clearly, xg = Xxa - xao on the index 2 subgroup of (Z/2)PT? generated
by eieir1. If nis odd, then —1 = (1,---,1) € (Z/2)P™? gives a com-
plement to this index 2 subgroup. Since x4 corresponds to a representa-
tion of U(p,q), and xp to a representation of U(p + ¢ — a,a), from 1.1,
xB(=I) = xa(=I)(=1)7"% verifying xg = xaxa. If n is even, our result
has this ambiguity by 2.

Remark 4.1. One needs to keep in mind the role played by the character
X which is used to fix the splitting of the metaplectic cover of Sp(V @x W)
over U(V) x U(W) in defining the correspondence between representations
of U(V) and U(W). In particular, the particular form of the theorem of
Li and Paul given here depends on the choice of xy made here, and if we
changed this x, the form of the theorem will also change.
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Remark 4.2. Annegret Paul has calculated the theta correspondence for
Unitary groups of the same size over R explicitly for all representations in
[Pa]. She informs that her results are in conformity with the conjectures
here.

5. Global theta correspondence for unitary groups.

Conjecture 2. Let V be an n-dimensional Hermitian space over a qua-
dratic extension K of a number field k, and let 1 = ®,m, be a cuspidal
automorphic representation of U(V'). Then:

(i) There exists an n-dimensional Hermitian space W over K such that
the local theta lift is non-zero at each place of k if and only if the global
epsilon factor e(BC(m) ® x,¥K) = 1, where BC(w) denotes the base
change of ™ to GL(n, K).

(ii) Suppose that W is an n-dimensional Hermitian space over K such
that for each place v of k, the theta lift, call it O(m,), of m, is non-
zero. Then the global representation ®,60(m,) is a cuspidal automorphic
representation of U(W).

(iii) If W is as in (ii), then the global theta lift of m to U(W) is non-zero
if and only if L(BC(m) ® x, 5) # 0.

Remark 5.1. Part (i) of the above conjecture follows from the local con-
jecture, specially the Remark 3.2 following from Conjecture 1. When the
number field K splits at a place v of k, then the corresponding local uni-
tary group is just GL(n, k), and we are granting ourselves that the duality
correspondence for the pair (GL(n, k,), GL(n, ky)) is just the map taking a
representation to its contragredient. One also needs to use the classification
theorem of Hermitian forms over a global field due to Landherr (or, the
Hasse principle in modern language).

Remark 5.2. For n = 1, part (i) of the above conjecture is a theorem due
to Rogawski, cf [Rol]; part (ii) is a tautology; part (iii) is due to Gelbart and
Rogawski [GR, Cor.5.2.2]. For n = 2, part (iii) of the above conjecture is
proved by M. Harris [Ha, Thm. 4.5] in most cases, but part (ii) seems open.
Since the unitary group in 2 variables is closely connected to GL(2), part
(ii) of the above conjecture should be a consequence of Jacquet-Langlands
correspondence together with the multiplicity formula of Labesse-Langlands,
but which this author has not verified.

Remark 5.3. The reader will of course not have failed to notice the anal-
ogy of Conjecture 2 to the theorem of Waldspurger [Wa] regarding theta
lifting between PGL(2) and SL(2). We would like to point out that in
Waldspurger’s theorem, there was no local condition as the local theta lift
from PGL(2) to SL(2) is always non-zero.
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Remark 5.4. In the general theory of automorphic forms, there is a con-
jecture due to J. Arthur [Ar] building on the work of Labesse-Langlands
in the context of SL(2), which answers when a representation of the adele
group which is associated to a parameter ¢ is automorphic. This criterion
depends on, again conjectural, pairing

(,): SpxII—17ZJ/2,

where S is the group of connected components of a global parameter ¢, and
IT is the set of representations of the adele group G(A) whose all the local
components belong to the L-packet determined by ¢ (which for simplicity
we take to be a tempered parameter). For each representation 7 in II,
x-(s) = (s,7) defines a character on S;. Suppose that 7 is a cuspidal
automorphic representation belonging to II which has a Whittaker model.
In such a circumstance, by Vogan there are local pairings

(,)o: Sg, x Iy = Z/2.

It seems natural to expect that these local pairings proposed by Vogan give
rise to the global pairing in the sense that for 7 = ®,7,, a representation of
G(A), (s,7) =[], (50, Tw)o for s € Sy and s, its image in Sy,. The conjecture
of Arthur (which in the case of cuspidal tempered representations that we
are considering is due to Kottwitz) is that a global representation 7 of G(A)
is automorphic if and only if the character y, is trivial. Now we will show
how this conjecture implies part (ii) of Conjecture 2. So, we start with a
tempered, cuspidal automorphic representation 7y = ®,m, of U(V'), such
that my = ®,0(m,) is a non-zero representation of U(W)(A). By Arthur,
we are given that the character xr, is the trivial character, and we need
to verify that xr, is also the trivial character. Since the global component
group Sy is Z/2 generated by £Id in GL(n,C), from Remark 3.1, this will
be so if and only if e(BC(7) ® x, ¥ ) = 1. But since 7y has a non-zero theta
lift to U(W), by part (i) of the Conjecture 2, ¢(BC(mw) ® x, ¥k ) is indeed 1.

Remark 5.5. The situation of theta correspondence for unitary groups of
similar size described here should be compared with the situation of theta
correspondence between orthogonal and symplectic groups in [Pr|. In the
case of dual pairs consisting of orthogonal and symplectic groups, the theta
correspondence is completely determined (conjecturally) in terms of a simple
mapping on the L-group, the induced mapping of which on the component
groups determines the Vogan parameters. On the other hand, in the case
of dual pair consisting of unitary groups, the mapping on the L-groups is
identity, however, theta correspondence gives a non-trivial correspondence,
calculated in terms of epsilon factors, on the ‘internal structure’ of the L-
packet.
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