On the maximal dimension of a completely entangled subspace for finite level quantum systems

K R PARTHASARATHY
Indian Statistical Institute, Delhi Centre, 7, S.J.S. Sansanwal Marg, New Delhi 110 016, India
E-mail: krp@isid.ac.in

MS received 19 March 2004; revised 16 August 2004

Abstract

Let \mathcal{H}_{i} be a finite dimensional complex Hilbert space of dimension d_{i} associated with a finite level quantum system A_{i} for $i=1,2, \ldots, k$. A subspace $S \subset$ $\mathcal{H}=\mathcal{H}_{A_{1} A_{2} \ldots A_{k}}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{k}$ is said to be completely entangled if it has no non-zero product vector of the form $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{k}$ with u_{i} in \mathcal{H}_{i} for each i. Using the methods of elementary linear algebra and the intersection theorem for projective varieties in basic algebraic geometry we prove that

$$
\max _{S \in \mathcal{E}} \operatorname{dim} S=d_{1} d_{2} \ldots d_{k}-\left(d_{1}+\cdots+d_{k}\right)+k-1
$$

where \mathcal{E} is the collection of all completely entangled subspaces.
When $\mathcal{H}_{1}=\mathcal{H}_{2}$ and $k=2$ an explicit orthonormal basis of a maximal completely entangled subspace of $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ is given.

We also introduce a more delicate notion of a perfectly entangled subspace for a multipartite quantum system, construct an example using the theory of stabilizer quantum codes and pose a problem.

Keywords. Finite level quantum systems; separable states; entangled states; completely entangled subspaces; perfectly entangled subspace; stabilizer quantum code.

1. Completely entangled subspaces

Let \mathcal{H}_{i} be a complex finite dimensional Hilbert space of dimension d_{i} associated with a finite level quantum system A_{i} for each $i=1,2, \ldots, k$. A state ρ of the combined system $A_{1} A_{2} \ldots A_{k}$ in the Hilbert space

$$
\begin{equation*}
\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{k} \tag{1.1}
\end{equation*}
$$

is said to be separable if it can be expressed as

$$
\begin{equation*}
\rho=\sum_{i=1}^{m} p_{i} \rho_{i 1} \otimes \rho_{i 2} \otimes \cdots \otimes \rho_{i k} \tag{1.2}
\end{equation*}
$$

where $\rho_{i j}$ is a state of A_{j} for each $j, p_{i}>0$ for each i and $\sum_{i=1}^{m} p_{i}=1$ for some finite m. A state which is not separable is said to be entangled. Entangled states play an important role in quantum teleportation and communication [3]. The following theorem due to Horodecki and Horodecki [2] suggests a method of constructing entangled states.

Theorem 1.1 [2]. Let ρ be a separable state in \mathcal{H}. Then the range of ρ is spanned by a set of product vectors.

For the sake of readers' convenience and completeness we furnish a quick proof.
Proof. Let ρ be of the form (1.2). By spectrally resolving each $\rho_{i j}$ into one-dimensional projections we can rewrite (1.2) as

$$
\begin{equation*}
\rho=\sum_{i=1}^{n} q_{i}\left|u_{i 1} \otimes u_{i 2} \otimes \cdots \otimes u_{i k}\right\rangle\left\langle u_{i 1} \otimes u_{i 2} \otimes \cdots \otimes u_{i k}\right| \tag{1.3}
\end{equation*}
$$

where $u_{i j}$ is a unit vector in \mathcal{H}_{j} for each i, j and $q_{i}>0$ for each i with $\sum_{i=1}^{n} q_{i}=1$. We shall prove the theorem by showing that each of the product vectors $u_{i 1} \otimes u_{i 2} \otimes \cdots \otimes u_{i k}$ is, indeed, in the range of ρ. Without loss of generality, consider the case $i=1$. Write (1.3) as

$$
\begin{equation*}
\rho=q_{1}\left|u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}\right\rangle\left\langle u_{11} \otimes u_{12} \otimes \ldots \otimes u_{1 k}\right|+T \tag{1.4}
\end{equation*}
$$

where $q_{1}>0$ and T is a non-negative operator. Suppose $\psi \neq 0$ is a vector in \mathcal{H} such that $T|\psi\rangle=0$ and $\left\langle u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k} \mid \psi\right\rangle \neq 0$. Then $\rho|\psi\rangle$ is a non-zero multiple of the product vector $u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}$ and $u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k} \in R(\rho)$, the range of ρ. Now suppose that the null space $N(T)$ of T is contained in $\left\{u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}\right\}^{\perp}$. Then $R(T) \supset\left\{u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}\right\}$ and therefore there exists a vector $\psi \neq 0$ such that

$$
T|\psi\rangle=\left|u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}\right\rangle
$$

Note that $\rho|\psi\rangle \neq 0$, for otherwise, the positivity of ρ, T and q_{1} in (1.4) would imply $T|\psi\rangle=0$. Thus (1.4) implies

$$
\rho|\psi\rangle=\left(q_{1}\left\langle u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k} \mid \psi\right\rangle+1\right)\left|u_{11} \otimes u_{12} \otimes \cdots \otimes u_{1 k}\right\rangle
$$

COROLLARY

If a subspace $S \subset \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{k}$ does not contain any non-zero product vector of the form $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{k}$ where $u_{i} \in \mathcal{H}_{i}$ for each i, then any state with support in S is entangled.

Proof. Immediate.

DEFINITION 1.2

A non-zero subspace $S \subset \mathcal{H}$ is said to be completely entangled if S contains no non-zero product vector of the form $u_{1} \otimes u_{2} \otimes \cdots \otimes u_{k}$ with $u_{i} \in \mathcal{H}_{i}$ for each i.

Denote by \mathcal{E} the collection of all completely entangled subspaces of \mathcal{H}. Our goal is to determine $\max _{S \in \mathcal{E}} \operatorname{dim} S$.

PROPOSITION 1.3

There exists $S \in \mathcal{E}$ satisfying

$$
\operatorname{dim} S=d_{1} d_{2} \ldots d_{k}-\left(d_{1}+d_{2}+\cdots+d_{k}\right)+k-1
$$

Proof. Let $N=d_{1}+d_{2}+\cdots+d_{k}-k+1$. Without loss of generality, assume that $\mathcal{H}_{i}=\mathbb{C}^{d_{i}}$ for each i, with the standard scalar product. Choose and fix a set $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\} \subset \mathbb{C}$ of cardinality N. Define the column vectors

$$
u_{i j}=\left[\begin{array}{c}
1 \tag{1.5}\\
\lambda_{i} \\
\lambda_{i}^{2} \\
\vdots \\
\lambda_{i}^{d_{j}-1}
\end{array}\right], 1 \leq i \leq N, 1 \leq j \leq k
$$

and consider the subspace

$$
\begin{equation*}
S=\left\{u_{i 1} \otimes u_{i 2} \otimes \cdots \otimes u_{i k}, \quad 1 \leq i \leq N\right\}^{\perp} \subset \mathcal{H} . \tag{1.6}
\end{equation*}
$$

We claim that S has no non-zero product vector. Indeed, let

$$
0 \neq v_{1} \otimes v_{2} \otimes \cdots \otimes v_{k} \in S, \quad v_{i} \in \mathcal{H}_{i} .
$$

Then

$$
\begin{equation*}
\prod_{j=1}^{k}\left\langle v_{j} \mid u_{i j}\right\rangle=0, \quad 1 \leq i \leq N \tag{1.7}
\end{equation*}
$$

If

$$
\begin{equation*}
E_{j}=\left\{i \mid\left\langle v_{j} \mid u_{i j}\right\rangle=0\right\} \subset\{1,2, \ldots, N\}, \tag{1.8}
\end{equation*}
$$

then (1.7) implies that

$$
\{1,2, \ldots, N\}=\cup_{j=1}^{k} E_{j}
$$

and therefore

$$
N \leq \sum_{j=1}^{k} \# E_{j}
$$

By the definition of N it follows that for some $j, \# E_{j} \geq d_{j}$. Suppose $\# E_{j_{0}} \geq d_{j_{0}}$. From (1.8) we have

$$
\left\langle v_{j_{0}} \mid u_{i j_{0}}\right\rangle=0 \quad \text { for } \quad i=i_{1}, i_{2}, \ldots, i_{d_{j_{0}}}
$$

where $i_{1}<i_{2}<\cdots<i_{d_{j}}$. From (1.5) and the property of van der Monde determinants it follows that $v_{j_{0}}=0$, a contradiction. Clearly, $\operatorname{dim} S \geq d_{1} d_{2} \ldots d_{k}-\left(d_{1}+\cdots+d_{k}\right)+$ $k-1$.

PROPOSITION 1.4

Let $S \subset \mathcal{H}$ be a subspace of dimension $d_{1} d_{2} \ldots d_{k}-\left(d_{1}+\cdots+d_{k}\right)+k$. Then S contains a non-zero product vector.

Proof. Identify \mathcal{H}_{j} with $\mathbb{C}^{d_{j}}$ for each $j=1,2, \ldots, k$. For any non-zero element v in a complex vector space \mathcal{V} denote by $[v]$ the equivalence class of v in the projective space $\mathbb{P}(\mathcal{V})$. Consider the map

$$
T: \mathbb{P}\left(\mathbb{C}^{d_{1}}\right) \times \mathbb{P}\left(\mathbb{C}^{d_{2}}\right) \times \cdots \times \mathbb{P}\left(\mathbb{C}^{d_{k}}\right) \rightarrow \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \cdots \otimes \mathbb{C}^{d_{k}}\right)
$$

given by

$$
T\left(\left[u_{1}\right],\left[u_{2}\right], \ldots,\left[u_{k}\right]\right)=\left[u_{1} \otimes \cdots \otimes u_{k}\right]
$$

The map T is algebraic and hence its range $R(T)$ is a complex projective variety of dimension $\sum_{i=1}^{k}\left(d_{i}-1\right)$. By hypothesis, $\mathbb{P}(S)$ is a projective variety of dimension $d_{1} d_{2} \ldots d_{k}-$ $\left(d_{1}+\cdots+d_{k}\right)+k-1$. Thus

$$
\begin{aligned}
\operatorname{dim} \mathbb{P}(S)+\operatorname{dim} R(T) & =d_{1} d_{2} \ldots d_{k}-1 \\
& =\operatorname{dim} \mathbb{P}\left(\mathbb{C}^{d_{1}} \otimes \mathbb{C}^{d_{2}} \otimes \cdots \otimes \mathbb{C}^{d_{k}}\right)
\end{aligned}
$$

Hence by Theorem 6, p. 76 in [4] we have

$$
\mathbb{P}(S) \cap R(T) \neq \emptyset
$$

In other words, S contains a product vector.
Theorem 1.5. Let \mathcal{E} be the collection of all completely entangled subspaces of $\mathcal{H}_{1} \otimes$ $\mathcal{H}_{2} \otimes \cdots \otimes \mathcal{H}_{k}$. Then

$$
\max _{S \in \mathcal{E}} \operatorname{dim} S=d_{1} d_{2} \ldots d_{k}-\left(d_{1}+d_{2}+\cdots+d_{k}\right)+k-1
$$

Proof. Immediate from Propositions 1.3 and 1.4.

2. An explicit orthonormal basis for a completely entangled subspace of maximal dimension in $\mathbb{C}^{\boldsymbol{n}} \otimes \mathbb{C}^{\boldsymbol{n}}$

Let $\{|x\rangle, x=0,1,2, \ldots, n-1\}$ be a labelled orthonormal basis in the Hilbert space \mathbb{C}^{n}. Choose and fix a set

$$
E=\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{2 n-1}\right\} \subset \mathbb{C}
$$

of cardinality $2 n-1$ and consider the subspace

$$
S=\left\{u_{\lambda_{i}} \otimes u_{\lambda_{i}}, 1 \leq i \leq 2 n-1\right\}^{\perp}
$$

where

$$
u_{\lambda}=\sum_{x=0}^{n-1} \lambda^{x}|x\rangle, \quad \lambda \in \mathbb{C}
$$

By the proof of Proposition 1.3 and Theorem 1.5 it follows that S is a maximal completely entangled subspace of dimension $n^{2}-2 n+1$. We shall now present an explicit orthonormal basis for S.

First, observe that S is orthogonal to a set of symmetric vectors and therefore S contains the antisymmetric tensor product space $\mathbb{C}^{n} \wedge \mathbb{C}^{n}$ which has the orthonormal basis

$$
\begin{equation*}
B_{0}=\left\{\frac{|x y\rangle-|y x\rangle}{\sqrt{2}}, \quad 0 \leq x<y \leq n-1\right\} \tag{2.1}
\end{equation*}
$$

Thus, in order to construct an orthonormal basis of S, it is sufficient to search for symmetric tensors lying in S and constituting an orthonormal set. Any symmetric tensor in S can be expressed as

$$
\begin{equation*}
\sum_{\substack{0 \leq x \leq n-1 \\ 0 \leq y \leq n-1}} f(x, y)|x y\rangle \tag{2.2}
\end{equation*}
$$

where $f(x, y)=f(y, x)$ and

$$
\sum_{\substack{0 \leq x \leq n-1 \\ 0 \leq y \leq n-1}} f(x, y) \lambda_{i}^{x+y}=0, \quad 1 \leq i \leq 2 n-1
$$

which reduces to

$$
\begin{equation*}
\sum_{\substack{0 \leq x \leq n-1 \\ 0 \leq j-x \leq n-1}} f(x, j-x)=0 \quad \forall 0 \leq j \leq 2 n-2 \tag{2.3}
\end{equation*}
$$

Define \mathcal{K}_{j} to be the subspace of all symmetric tensors of the form (2.2) where the coefficient function f is symmetric, has its support in the set $\{(x, j-x), 0 \leq x \leq n-1,0 \leq j-x \leq$ $n-1\}$ and satisfies (2.3). Simple algebra shows that $\mathcal{K}_{0}=\mathcal{K}_{1}=\mathcal{K}_{2 n-3}=\mathcal{K}_{2 n-2}=0$ and

$$
S=\mathcal{H} \wedge \mathcal{H} \oplus \oplus_{j=2}^{2 n-4} \mathcal{K}_{j}
$$

We shall now present an orthonormal basis B_{j} for $\mathcal{K}_{j}, 2 \leq j \leq 2 n-4$. This falls into four cases.

Case 1. $2 \leq j \leq n-1, \quad j$ even.

$$
\begin{aligned}
B_{j} & =\left\{\frac{1}{\sqrt{j(j+1)}}\left[\sum_{m=0}^{(j / 2)-1}(|m j-m\rangle+|j-m m\rangle)-j\left|\frac{j}{2} \frac{j}{2}\right\rangle\right]\right\} \\
& \cup\left\{\frac{1}{\sqrt{j}} \sum_{m=0}^{(j / 2)-1} \mathrm{e}^{4 i \pi m p / j}(|m j-m\rangle+|j-m m\rangle), \quad 1 \leq p \leq \frac{j}{2}-1\right\}
\end{aligned}
$$

Case 2. $2 \leq j \leq n-1, \quad j$ odd.

$$
\begin{aligned}
B_{j}= & \left\{\frac{1}{\sqrt{j+1}} \sum_{m=0}^{(j-1) / 2} \mathrm{e}^{4 i \pi m p /(j+1)}(|m j-m\rangle+|j-m m\rangle)\right. \\
& \left.1 \leq p \leq \frac{j-1}{2}\right\}
\end{aligned}
$$

Case 3. $n \leq j \leq 2 n-4, \quad j$ even.

$$
\begin{aligned}
B_{j}= & \left\{\frac { 1 } { \sqrt { (2 n - 2 - j) (2 n - 1 - j) } } \left[\sum_{m=0}^{((2 n-2-j) / 2)-1}(\mid j-n+m\right.\right. \\
& +1 n-m-1\rangle+|n-m-1 j-n+m+1\rangle) \\
& \left.\left.-(2 n-2-j)\left|\frac{j}{2} \frac{j}{2}\right\rangle\right]\right\} \\
\cup & \left\{\frac{1}{\sqrt{2 n-2-j}} \sum_{m=0}^{((2 n-2-j) / 2)-1} \mathrm{e}^{4 i \pi m p /(2 n-2-j)}(\mid j-n+m\right. \\
& +1 n-m-1\rangle|n-m-1 j-n+m+1\rangle), \\
& \left.1 \leq p \leq \frac{2 n-2-j}{2}-1\right\} .
\end{aligned}
$$

Case 4. $n \leq j \leq 2 n-4, \quad j$ odd.

$$
\begin{aligned}
B_{j}= & \left\{\frac{1}{\sqrt{2 n-1-j}} \sum_{m=0}^{((2 n-1-j) / 2)-1} \mathrm{e}^{4 i \pi m p /(2 n-1-j)}\right. \\
& +(|j-n+m+1 n-m-1\rangle+|n-m-1 j-n+m+1\rangle), \\
& \left.1 \leq p \leq \frac{2 n-1-j}{2}-1\right\} .
\end{aligned}
$$

The set $B_{0} \cup \cup_{j=2}^{2 n-4} B_{j}$, where B_{0} is given by (2.1) and the remaining B_{j} 's are given by the four cases above constitute an orthonormal basis for the maximal completely entangled subspace S.

3. Perfectly entangled subspaces

As in $\S 1$, let \mathcal{H}_{i} be a complex Hilbert space of dimension d_{i} associated with a finite level quantum system A_{i} for each $i=1,2, \ldots, k$. For any subset $E \subset\{1,2, \ldots, k\}$ let

$$
\begin{aligned}
\mathcal{H}(E) & =\otimes_{i \in E} \mathcal{H}_{i}, \\
d(E) & =\prod_{i \in E} d_{i},
\end{aligned}
$$

so that the Hilbert space $\mathcal{H}=\mathcal{H}(\{1,2, \ldots, k\})$ of the joint system $A_{1} A_{2} \ldots A_{k}$ can be viewed as $\mathcal{H}(E) \otimes \mathcal{H}\left(E^{\prime}\right), E^{\prime}$ being the complement of E. For any operator X on \mathcal{H} we write

$$
X(E)=\operatorname{Tr}_{\mathcal{H}\left(E^{\prime}\right)} X,
$$

where the right-hand side denotes the relative trace of X taken over $\mathcal{H}\left(E^{\prime}\right)$. Then $X(E)$ is an operator in $\mathcal{H}(E)$. If ρ is a state of the system $A_{1} A_{2} \ldots A_{k}$ then $\rho(E)$ describes the marginal state of the subsystem $A_{i_{1}} A_{i_{2}} \ldots A_{i_{r}}$ where $E=\left\{i_{1}, i_{2}, \ldots, i_{r}\right\}$.

DEFINITION 3.1

A non-zero subspace $\mathcal{S} \subset \mathcal{H}$ is said to be perfectly entangled if for any $E \subset\{1,2, \ldots, k\}$ such that $d(E) \leq d\left(E^{\prime}\right)$ and any unit vector $\psi \in \mathcal{S}$ one has

$$
(|\psi\rangle\langle\psi|)(E)=\frac{I_{E}}{d(E)},
$$

where I_{E} denotes the identity operator in $\mathcal{H}(E)$.
For any state ρ, denote by $S(\rho)$ the von Neumann entropy of ρ. If ψ is a pure state in \mathcal{H} then $\left.S((|\psi\rangle\langle\psi|)(E))=S(| | \psi\rangle\langle\psi|)\left(E^{\prime}\right)\right)$. Thus perfect entanglement of a subspace \mathcal{S} is equivalent to the property that for every unit vector ψ in \mathcal{S}, the pure state $|\psi\rangle\langle\psi|$ is maximally entangled in every decomposition $\mathcal{H}(E) \otimes \mathcal{H}\left(E^{\prime}\right)$, i.e.,

$$
S((|\psi\rangle\langle\psi|)(E))=S\left((|\psi\rangle\langle\psi|)\left(E^{\prime}\right)\right)=\log _{2} d(E)
$$

whenever $d(E) \leq d\left(E^{\prime}\right)$. In other words, the marginal states of $|\psi\rangle\langle\psi|$ in $\mathcal{H}(E)$ and $\mathcal{H}\left(E^{\prime}\right)$ have the maximum possible von Neumann entropy.

Denote by \mathcal{P} the class of all perfectly entangled subspaces of \mathcal{H}. It is an interesting problem to construct examples of perfectly entangled subspaces and also compute $\max _{\mathcal{S} \in \mathcal{P}} \operatorname{dim} \mathcal{S}$.

Note that a perfectly entangled subspace \mathcal{S} is also completely entangled. Indeed, if \mathcal{S} has a unit product vector $\psi=u_{1} \otimes u_{2} \otimes \cdots \otimes u_{k}$ where each u_{i} is a unit vector in \mathcal{H}_{i} then $(|\psi\rangle\langle\psi|)(E)$ is also a pure product state with von Neumann entropy zero. Perfect entanglement of \mathcal{S} implies the stronger property that every unit vector ψ in \mathcal{S} is indecomposable, i.e., ψ cannot be factorized as $\psi_{1} \otimes \psi_{2}$ where $\psi_{1} \in \mathcal{H}(E), \psi_{2} \in \mathcal{H}\left(E^{\prime}\right)$ for any proper subset $E \subset\{1,2, \ldots, k\}$.

PROPOSITION 3.2

Let $\mathcal{S} \subset \mathcal{H}$ be a subspace and let P denote the orthogonal projection on \mathcal{S}. Then \mathcal{S} is perfectly entangled if and only if, for any proper subset $E \subset\{1,2, \ldots, k\}$ with $d(E) \leq$ $d\left(E^{\prime}\right)$,

$$
(P X P)(E)=\frac{\operatorname{Tr} P X}{d(E)} I_{E}
$$

for all operators X on \mathcal{H}.
Proof. Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled. Let X be any hermitian operator on \mathcal{H}. Then by spectral theorem and Definition 3.1 it follows that $(P X P)(E)=\alpha(X) I_{E}$ where $\alpha(X)$ is a scalar. Equating the traces of both sides we see that $\alpha(X)=d(E)^{-1} \operatorname{Tr} P X$. If X is arbitrary, then X can be expressed as $X_{1}+i X_{2}$ where X_{1} and X_{2} are hermitian and the required result is immediate.

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes in the sense of Gottesman $[1,3]$ we shall now describe an example of a perfectly entangled d-dimensional subspace in $h^{\otimes^{5}}$ where h is a d-dimensional Hilbert space. To this end we identify h with $L^{2}(A)$ where A is an abelian group of cardinality d with group operation + and null element 0 . Then $h^{\otimes^{5}}$ is identified with $L^{2}\left(A^{5}\right)$. For any $\mathbf{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)$ in A^{5} denote by $|\mathbf{x}\rangle$ the indicator function of the singleton subset $\{\mathbf{x}\}$ in A^{5}. Then $\left\{|\mathbf{x}\rangle, \mathbf{x} \in A^{5}\right\}$
is an orthonormal basis for $h^{\otimes^{5}}$. Choose and fix a non-degenerate symmetric bicharacter $\langle.,$.$\rangle for the group A$ satisfying the following:

$$
|\langle a, b\rangle|=1,\langle a, b\rangle=\langle b, a\rangle,\langle a, b+c\rangle=\langle a, b\rangle\langle a, c\rangle \quad \forall a, b, c \in A
$$

and $a=0$ if and only if $\langle a, x\rangle=1$ for all $x \in A$. Define

$$
\langle\mathbf{x}, \mathbf{y}\rangle=\prod_{i=0}^{4}\left\langle x_{i}, y_{i}\right\rangle, \mathbf{x}, \mathbf{y} \in A^{5}
$$

(Note that $\langle\mathbf{x}, \mathbf{y}\rangle$ denotes the bicharacter evaluated at \mathbf{x}, \mathbf{y} whereas $\langle\mathbf{x} \mid \mathbf{y}\rangle$ denotes the scalar product in $\mathcal{H}=L^{2}\left(A^{5}\right)$.) With these notations we introduce the unitary Weyl operators $U_{\mathbf{a}}, V_{\mathbf{b}}$ in \mathcal{H} satisfying

$$
U_{\mathbf{a}}|\mathbf{x}\rangle=|\mathbf{a}+\mathbf{x}\rangle, \quad V_{\mathbf{b}}|\mathbf{x}\rangle=\langle\mathbf{b}, \mathbf{x}\rangle|\mathbf{x}\rangle, \mathbf{x} \in A^{5}
$$

Then we have the Weyl commutation relations:

$$
U_{\mathbf{a}} U_{\mathbf{b}}=U_{\mathbf{a}+\mathbf{b}}, \quad V_{\mathbf{a}} V_{\mathbf{b}}=V_{\mathbf{a}+\mathbf{b}}, V_{\mathbf{b}} U_{\mathbf{a}}=\langle\mathbf{a}, \mathbf{b}\rangle U_{\mathbf{a}} V_{\mathbf{b}}
$$

for all $\mathbf{a}, \mathbf{b} \in A^{5}$. The family $\left\{d^{-5 / 2} U_{\mathbf{a}} V_{\mathbf{b}}, \mathbf{a}, \mathbf{b} \in A^{5}\right\}$ is an orthonormal basis for the Hilbert space of all operators on \mathcal{H} with the scalar product $\langle X \mid Y\rangle=\operatorname{Tr} X^{\dagger} Y$ between two operators X, Y.

Introduce the cyclic permutation σ in A^{5} defined by

$$
\begin{equation*}
\sigma\left(\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=\left(x_{4}, x_{0}, x_{1}, x_{2}, x_{3}\right) \tag{3.1}
\end{equation*}
$$

Then σ is an automorphism of the product group A^{5} and

$$
\sigma^{-1}\left(\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right)\right)=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{0}\right)
$$

Define

$$
\begin{equation*}
\tau(\mathbf{x})=\sigma^{2}(\mathbf{x})+\sigma^{-2}(\mathbf{x}) \tag{3.2}
\end{equation*}
$$

Let $C \subset A^{5}$ be the subgroup defined by

$$
C=\left\{\mathbf{x} \mid x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0\right\}
$$

Define

$$
\begin{equation*}
W_{\mathbf{x}}=\left\langle\mathbf{x}, \sigma^{2}(\mathbf{x})\right\rangle U_{\mathbf{x}} V_{\tau(\mathbf{x})}, \quad \mathbf{x} \in A^{5} \tag{3.3}
\end{equation*}
$$

Then the correspondence $\mathbf{x} \rightarrow W_{\mathbf{x}}$ is a unitary representation of the subgroup C in \mathcal{H}. Define the operator P_{C} by

$$
\begin{equation*}
P_{C}=d^{-4} \sum_{\mathbf{x} \in C} W_{\mathbf{x}} \tag{3.4}
\end{equation*}
$$

Then P_{C} is a projection satisfying $\operatorname{Tr} P_{C}=d$. The range of P_{C} is an example of a stabilizer quantum code in the sense of Gottesman. From the methods of [1] it is also known that P_{C} is a single error correcting quantum code. The range $R\left(P_{C}\right)$ of C is given by

$$
\left.R\left(P_{C}\right)=\left\{|\psi\rangle\left|W_{\mathbf{x}}\right| \psi\right\rangle=|\psi\rangle \quad \text { for all } \mathbf{x} \in C\right\}
$$

Our goal is to establish that $R\left(P_{C}\right)$ is perfectly entangled in $L^{2}(A)^{\otimes^{5}}$. To this end we prove a couple of lemmas.

Lemma 3.3. For any $\mathbf{a}, \mathbf{b} \in A^{5}$ the following holds:

$$
\langle\mathbf{a}| P_{C}|\mathbf{b}\rangle= \begin{cases}0, & \text { if } \sum_{i=0}^{4}\left(a_{i}-b_{i}\right) \neq 0, \\ d^{-4}\left\langle\mathbf{a}, \sigma^{2}(\mathbf{a})\right\rangle \overline{\left\langle\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle,} & \text { otherwise } .\end{cases}
$$

Proof. We have from (3.1)-(3.4) that

$$
\langle\mathbf{a}| P_{C}|\mathbf{b}\rangle=d^{-4} \sum_{x_{0}+x_{1}+x_{2}+x_{3}+x_{4}=0}\left\langle\mathbf{x}, \sigma^{2}(\mathbf{x})\right\rangle\langle\tau(\mathbf{x}), \mathbf{b}\rangle\langle\mathbf{a} \mid \mathbf{x}+\mathbf{b}\rangle
$$

which vanishes if $\sum_{i=0}^{4}\left(a_{i}-b_{i}\right) \neq 0$. Now assume that $\sum_{i=0}^{4}\left(a_{i}-b_{i}\right)=0$. Then

$$
\begin{aligned}
\langle\mathbf{a}| P_{C}|\mathbf{b}\rangle & =d^{-4}\left\langle\mathbf{a}-\mathbf{b}, \sigma^{2}(\mathbf{a}-\mathbf{b})\right\rangle\left\langle\sigma^{2}(\mathbf{a}-\mathbf{b}), \mathbf{b}\right\rangle\left\langle\mathbf{a}-\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle \\
& =d^{-4}\left\langle\mathbf{a}, \sigma^{2}(\mathbf{a})\right\rangle\left\langle\overline{\left.\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle} .\right.
\end{aligned}
$$

Lemma 3.4. Consider the tensor product Hilbert space

$$
L^{2}(A)^{\otimes^{5}}=\mathcal{H}_{0} \otimes \mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3} \otimes \mathcal{H}_{4}
$$

where \mathcal{H}_{i} is the i-th copy of $L^{2}(A)$. Then for any $(\{i, j\}) \subset\{0,1,2,3,4\}$ and $\mathbf{a}, \mathbf{b} \in A^{5}$ the operator $\left(P_{C}|\mathbf{a}\rangle\langle\mathbf{b}| P_{C}\right)(\{i, j\})$ is a scalar multiple of the identity in $\mathcal{H}_{i} \otimes \mathcal{H}_{j}$.

Proof. By Lemma 3.2 and the definition of relative trace we have, for any x_{0}, x_{1}, y_{0}, $y_{1} \in A$,

$$
\begin{aligned}
& \left\langle x_{0}, x_{1}\right|\left(P_{C}|\mathbf{a}\rangle\langle\mathbf{b}| P_{C}\right)(\{0,1\})\left|y_{0}, y_{1}\right\rangle \\
& =\sum_{x_{2}, x_{3}, x_{4} \in A}\left\langle x_{0}, x_{1}, x_{2}, x_{3}, x_{4}\right| P_{C}|\mathbf{a}\rangle\langle\mathbf{b}| P_{C}\left|y_{0}, y_{1}, x_{2}, x_{3}, x_{4}\right\rangle \\
& =d^{-8} \sum_{\substack{x_{2}+x_{3}+x_{4}=\sum a_{i}-x_{0}-x_{1} \\
x_{2}+x_{3}+x_{4}=\sum b_{i}-y_{0}-y_{1}}}\left\langle\mathbf{x}, \sigma^{2}(\mathbf{x})\right\rangle\left\langle\overline{\left.\mathbf{a}, \sigma^{2}(\mathbf{a})\right\rangle\left\langle\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle}\right. \\
& \quad \times\left\langle\overline{\left.y_{0}, y_{1}, x_{2}, x_{3}, x_{4}, \sigma^{2}\left(y_{0}, y_{1}, x_{2}, x_{3}, x_{4}\right)\right\rangle .}\right.
\end{aligned}
$$

The right-hand side vanishes if $\sum\left(a_{i}-b_{i}\right) \neq x_{0}+x_{1}-y_{0}-y_{1}$. Now suppose that $\sum\left(a_{i}-b_{i}\right)=x_{0}+x_{1}-y_{0}-y_{1}$. Then the right-hand side is equal to

$$
\begin{aligned}
& d^{-8}\left\langle\overline{\left\langle\mathbf{a}, \sigma^{2}(\mathbf{a})\right\rangle\left\langle\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle\left\langle\sum a_{i}-x_{0}-x_{1}, x_{0}+x_{1}-y_{0}-y_{1}\right\rangle}\right. \\
& \quad \times \sum_{x_{2}, x_{4} \in A}\left\langle x_{2}, y_{1}-x_{1}\right\rangle\left\langle x_{4}, y_{0}-x_{0}\right\rangle \\
& \quad= \begin{cases}0, & \text { if } x_{0} \neq y_{0} \text { or } x_{1} \neq y_{1}, \\
d^{-6}\left\langle\overline{\left.\mathbf{a}, \sigma^{2}(\mathbf{a})\right\rangle\left\langle\mathbf{b}, \sigma^{2}(\mathbf{b})\right\rangle,}\right. & \text { otherwise. }\end{cases}
\end{aligned}
$$

This proves the lemma when $i=0, j=1$. A similar (but tedious) algebra shows that the lemma holds when $i=0, j=2$.

The cyclic permutation σ of the basis $\left\{|\mathbf{x}\rangle, \mathbf{x} \in A^{5}\right\}$ induces a unitary operator U_{σ} in A^{5}. Since σ leaves C invariant it follows that $U_{\sigma} P_{C}=P_{C} U_{\sigma}$ and therefore

$$
U_{\sigma} P_{C}|\mathbf{a}\rangle\langle\mathbf{b}| P_{C} U_{\sigma}^{-1}=P_{C}|\sigma(\mathbf{a})\rangle\langle\sigma(\mathbf{b})| P_{C},
$$

which, in turn, implies that

$$
\begin{aligned}
\left\langle x_{1},\right. & \left.x_{2}\left|\left(P_{C}|\mathbf{a}\rangle\langle\mathbf{b}| P_{C}\right)(\{1,2\})\right| y_{1}, y_{2}\right\rangle \\
\quad= & \left.\left\langle x_{1}, x_{2}\right| P_{C}\left|\sigma^{-1}(\mathbf{a})\right\rangle\left\langle\sigma^{-1}(\mathbf{b})\right| P_{C}\right)(\{0,1\})\left|y_{1}, y_{2}\right\rangle .
\end{aligned}
$$

By what has been already proved the lemma follows for $i=1, j=2$. A similar covariance argument proves the lemma for all pairs $\{i, j\}$.

Theorem 3.5. The range of P_{C} is a perfectly entangled subspace of $L^{2}(A)^{\otimes^{5}}$ and $\operatorname{dim} P_{C}=\# A$.

Proof. Immediate from Lemma 3.3 and the fact that every operator in $L^{2}\left(A^{\otimes^{5}}\right)$ is a linear combination of operators of the form $|\mathbf{a}\rangle\langle\mathbf{b}|$ as \mathbf{a}, \mathbf{b} vary in A^{5}.

Note added in Proof. The example in $\S 2$ has been recently generalized and simplified considerably by B V Rajarama Bhat. See arXiv: quant-ph/0409032 VI 6 Sep. 2004.

Acknowledgement

The author would like to thank A J Parameswaran and V Pati for their help in explaining to him the role of basic algebraic geometry in the proof of Proposition 1.4.

References

[1] Arvind V and Parthasarathy K R, A family of quantum stabilizer codes based on the Weyl commutation relations over a finite field, in: A tribute to C.S. Seshadri, perspectives in geometry and representation theory (eds) V Lakshmibai et al (India: Hindustan Book Agency) (2003) pp. 133-153
[2] Horodecki M and Horodecki R, Separability of mixed states: necessary and sufficient conditions, Phys. Lett. A223(1-2) (1996) 1-8
[3] Nielsen M A and Chuang I L, Quantum computation and quantum information (Cambridge: Cambridge University Press) (1999)
[4] Shafarevich I R, Basic Algebraic Geometry I, Second edition (Berlin: Springer Verlag) (translated from Russian) (1994)

