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Abstract. Let H; be a finite dimensional complex Hilbert space of dimension d;
associated with a finite level quantum system A; fori = 1,2, ..., k. A subspace S C
H="Ha a4, = Hi ® Ha ® - - ® Hj is said to be completely entangled if it has no
non-zero product vector of the form u; @ u, ® - - - ® uy with u; in H; for each i. Using
the methods of elementary linear algebra and the intersection theorem for projective
varieties in basic algebraic geometry we prove that

rglagxdimS:dldz...dk—(dl+~--+dk)+k—l,
€

where £ is the collection of all completely entangled subspaces.

When H; = H, and k = 2 an explicit orthonormal basis of a maximal completely
entangled subspace of H; ® H, is given.

We also introduce a more delicate notion of a perfectly entangled subspace for a
multipartite quantum system, construct an example using the theory of stabilizer quantum
codes and pose a problem.
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1. Completely entangled subspaces

Let H; be a complex finite dimensional Hilbert space of dimension d; associated with a
finite level quantum system A; foreachi = 1, 2, ... , k. A state p of the combined system
A1Aj ... Ag in the Hilbert space

H=HI®H2® - ® Hy (1.1)
is said to be separable if it can be expressed as
m
P=Zpi/0i1 ® P2 @ & Piks (1.2)
i=1

where p;; is a state of A; for each j, p; > 0 for each i and > /-, p; = 1 for some
finite m. A state which is not separable is said to be entangled. Entangled states play an
important role in quantum teleportation and communication [3]. The following theorem
due to Horodecki and Horodecki [2] suggests a method of constructing entangled states.
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Theorem 1.1 [2]. Let p be a separable state in H. Then the range of p is spanned by a
set of product vectors.

For the sake of readers’ convenience and completeness we furnish a quick proof.

Proof. Let p be of the form (1.2). By spectrally resolving each p;; into one-dimensional
projections we can rewrite (1.2) as

n
p= Zqilun Quiz @ - Quir) (i1 uip @ - --  Ujl, (1.3)

i=1

where u;; is a unit vector in H; for each i, j and ¢; > O for each i with >/ ;¢; = 1. We
shall prove the theorem by showing that each of the product vectors u;1 Quj> ® - - - Q@ uj is,
indeed, in the range of p. Without loss of generality, consider the case i = 1. Write (1.3) as

P=qilu @ui2® - Qui){u Qui2® ... Quik| + T, (1.4

where g; > 0 and T is a non-negative operator. Suppose ¥ # 0 is a vector in H such that
TIY) =0and (411 Quiz ® --- @ uik|y) # 0. Then p|yr) is a non-zero multiple of the
product vector 1] @ u12 @ --- Q uix and u1] Q u12 @ --- @ u1x € R(p), the range of
p. Now suppose that the null space N (7T') of T is contained in {u1] Qupp ® --- ® ulk}J-.
Then R(T) D {u11 Qui2 ® - - - @ u1x} and therefore there exists a vector ¥ % 0 such that

TW)=|lunQ@ui2®---® uix).

Note that p|yr) # 0, for otherwise, the positivity of p, T and g in (1.4) would imply
T|¢¥) = 0. Thus (1.4) implies

plY) =(q{un Quiz @ --- Quikl¥) + 1) lu11 Quip ® ---  uig).

COROLLARY

If a subspace S C H1 @ Ha ® - - - ® Hy does not contain any non-zero product vector of
the formu) @ ua ® - - - @ ux where u; € 'H; for each i, then any state with support in S is
entangled.

Proof. Immediate. O

DEFINITION 1.2

A non-zero subspace S C H is said to be completely entangled if S contains no non-zero
product vector of the form u| Q@ ur ® - - - ® uy with u; € H; for each i.

Denote by £ the collection of all completely entangled subspaces of H. Our goal is to
determine maxgeg dim S.

PROPOSITION 1.3

There exists S € & satisfying

dim S=didy...dy —(d1+do+---+dp)+k—1.
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Proof. Let N = di+d>+- - -+di —k—+1. Without loss of generality, assume that H; = Cdi
for each i, with the standard scalar product. Choose and fix a set {A1, A2,... ,Axy} C C
of cardinality N. Define the column vectors

1
A

2
wj=| M | 1<i<N 1<j<k (1.5)
dji—1

A

7 -

and consider the subspace

S={un®up® - Quyg, 1<i=<N}CH (1.6)
We claim that S has no non-zero product vector. Indeed, let

04U ---Qures, v eH,.

Then

(vjlujj) =0, 1<i=<N. (1.7
1

k
]j=
If

Ej = {il(vjlu;j) =0} C {1,2,..., N}, (1.8)
then (1.7) implies that
k
{1,2,... ,N}:szlEj

and therefore

k
N <) #Ej.
j=1

By the definition of N it follows that for some j, #E; > d;. Suppose #E, > d,. From
(1.8) we have

(Wjoluijp) =0 for i=iy,iz..., idjo’
wherei; <ip < --- < id;, - From (1.5) and the property of van der Monde determinants
it follows that v;, = 0, a contradiction. Clearly, dim S > did>...dy — (d1 + -+ - + dp)+
k—1. a

PROPOSITION 1.4

Let S C 'H be a subspace of dimensiondidy . ..dy — (d1 + - - - +di) + k. Then S contains
a non-zero product vector.
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Proof. 1dentify H; with C% for each j =1,2,..., k. For any non-zero element v in a
complex vector space )V denote by [v] the equivalence class of v in the projective space
P(V). Consider the map

T :P(Ch) x P(C2) x .. x P(C%) > P(CH" @ C2 @ - .- @ C%)
given by
T([ur], [u2l, . s [ug]) =[u1 @ -+ - @ ugl.

The maE T is algebraic and hence its range R(7T') is a complex projective variety of dimen-
sion ) ;_;(d; — 1). By hypothesis, P(S) is a projective variety of dimension d1d . . . dy —
(di +---+dx) +k — 1. Thus

dimP(S) +dim R(T) =did>...dy — 1
=dmP(CH @CL @ - ®C%).
Hence by Theorem 6, p. 76 in [4] we have
P(S) N R(T) # 0.
In other words, S contains a product vector. O

Theorem 1.5. Let £ be the collection of all completely entangled subspaces of Hi; ®
Hy ® -+ ® Hy. Then

I;laé(dimszdldz...dk—(d1+d2+"'+dk)+k—1.
€

Proof. Immediate from Propositions 1.3 and 1.4. O

2. An explicit orthonormal basis for a completely entangled subspace of maximal
dimension in C" @ C"

Let {|x),x =0,1,2,...,n — 1} be alabelled orthonormal basis in the Hilbert space C".
Choose and fix a set

E={i,2,... ., kp—1} CC
of cardinality 2n — 1 and consider the subspace
S={u, Quy,, 1 <i<2n—1}",

where
n—1
w, =y »lx), reC.
x=0

By the proof of Proposition 1.3 and Theorem 1.5 it follows that S is a maximal completely
entangled subspace of dimension n2 —2n+ 1. We shall now present an explicit orthonormal
basis for S.
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First, observe that § is orthogonal to a set of symmetric vectors and therefore S contains
the antisymmetric tensor product space C* A C" which has the orthonormal basis

By — { lxy) — |yx)

V2

Thus, in order to construct an orthonormal basis of S, it is sufficient to search for symmetric
tensors lying in § and constituting an orthonormal set. Any symmetric tensor in S can be
expressed as

, O§x<y§n—1}. 2.1

> F@ ), 2.2)
0<x<n-—1

0<y<n-—1
where f(x,y) = f(y, x) and
Z fe, ™ =0, 1<i<2n—1,
0<x<n-—1

O<y=n-1

which reduces to

Y fj-x)=0 Y0<j<2n-2 (2.3)
0<x<n-—1

0<j—x<n—1

Define C; to be the subspace of all symmetric tensors of the form (2.2) where the coefficient
function f is symmetric, has its supportinthe set {(x, j —x),0 <x <n—1,0< j—x <
n — 1} and satisfies (2.3). Simple algebra shows that o = K| = Ky,—3 = Kp,—2 = 0 and
2n—4
S=HAH®®,"K;.

We shall now present an orthonormal basis B; for K;,2 < j < 2n — 4. This falls into

four cases.

(j/2)—1

1 . .

Ul—= Y &l(mj —m)+|j—mm)), 1<p<=—1¢.
NK; m=0

Case2. 2 <j<mn-—1, jodd.

Casel. 2 <j<n-—1, jeven.

1 (/21 .
{ﬁ[ > (|mj—m>+|j—mm>>—j’

B

N |~
N |~

m=0

N | ~.

(=12
1 . .
B = eTmP/UHD (\mj — m) + |j — mm)),
’{71,,; (Imj = m) + 1 = mm))
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Case3. n < j <2n—4, jeven
1 (2n—-2-j)/D)-1
Bj = - -
V@n—=2—-j)C2n—1-j)
+1ln—m—-1)+n—m—-1j—n+m+1))

NER
—(2”—2—])‘§§>:|}

{ 1 ((2n—2—Zj)/2)—1

Uy —F—rr—

J2n—2—j =
+ln—m—-—1D)n—m—1j—n+m+1)),

2n—2—j
l<p< ———1 4.
S S

(Ij=n+m

m=0

e4inmp/(2n—2—j)(|j —n4m

Case4. n < j <2n—4, jodd.

! (@=1=p/-1 .
Bj — e4171mp/(2n—1—j)

J2n—1—7] =

+(j—n+m+1ln—-m—-1)+n—m—-—1j—n+m+1)),

| < <2n—1—j !
=p= ) .

The set By U U?’; _24 Bj, where By is given by (2.1) and the remaining B;’s are given by
the four cases above constitute an orthonormal basis for the maximal completely entangled
subspace S.

3. Perfectly entangled subspaces

Asin §1, let H; be a complex Hilbert space of dimension d; associated with a finite level

quantum system A; foreachi = 1,2, ..., k. For any subset £ C {1, 2, ..., k}let
H(E) = QiceHi,
d(E)=]]d.
i€eE

so that the Hilbert space H = H({1, 2, ..., k}) of the joint system AjA; ... A; can be
viewed as H(E) ® H(E’), E’ being the complement of E. For any operator X on H we
write

X(E) = TI"H(E/)X,

where the right-hand side denotes the relative trace of X taken over H(E’). Then X (E)
is an operator in H(E). If p is a state of the system A A5 ... Ax then p(E) describes the
marginal state of the subsystem A;, A;, ... A;, where E = {i1,i2, ... ,i/}.
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DEFINITION 3.1

A non-zero subspace S C H is said to be perfectly entangled if forany E C {1, 2, ..., k}
such that d(E) < d(E’) and any unit vector ¥/ € S one has

Ig

() ¥ (E) = A(E)’

where /g denotes the identity operator in H(E).

For any state p, denote by S(p) the von Neumann entropy of p. If 1 is a pure state in
H then S((|¥) (¥ D(E)) = S((|¥){¢¥])(E")). Thus perfect entanglement of a subspace S
is equivalent to the property that for every unit vector i in S, the pure state |) (| is
maximally entangled in every decomposition H(E) ® H(E’), i.e.,

SY) W D(E)) = S ) (Y D(EN) = log, d(E)

whenever d(E) < d(E’). In other words, the marginal states of |¢) (| in H(E) and H(E")
have the maximum possible von Neumann entropy.

Denote by P the class of all perfectly entangled subspaces of H. It is an interest-
ing problem to construct examples of perfectly entangled subspaces and also compute
maxgsep dim S.

Note that a perfectly entangled subspace S is also completely entangled. Indeed, if
S has a unit product vector ¥ = u; ® up @ --- ® uy where each u; is a unit vector
in H; then (|y)(y¥|)(E) is also a pure product state with von Neumann entropy zero.
Perfect entanglement of S implies the stronger property that every unit vector ¥ in S is
indecomposable, i.e.,  cannot be factorized as Y| ® Y, where ¥ € H(E), ¥ € H(E')
for any proper subset E C {1, 2, ..., k}.

PROPOSITION 3.2

Let S C 'H be a subspace and let P denote the orthogonal projection on S. Then S is
perfectly entangled if and only if, for any proper subset E C {1,2, ... ,k} with d(E) <
d(E"),

Tr PX

(PXP)(E) = A(E)

E

for all operators X on 'H.

Proof. Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled.
Let X be any hermitian operator on . Then by spectral theorem and Definition 3.1 it
follows that (PX P)(E) = «a(X)Ig where a(X) is a scalar. Equating the traces of both
sides we see that «(X) = d(E)~! Tr PX. If X is arbitrary, then X can be expressed as
X1 +iX, where X1 and X» are hermitian and the required result is immediate. O

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes
in the sense of Gottesman [1, 3] we shall now describe an example of a perfectly entangled
d-dimensional subspace in h®” where h is a d-dimensional Hilbert space. To this end we
identify h with L?(A) where A is an abelian group of cardinality d with group operation +
and null element 0. Then h®” is identified with L2(A5). For any x = (xp, x1, X2, X3, x4) in
A’ denote by |x) the indicator function of the singleton subset {x} in Ad.Then {|x), x € A3}
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is an orthonormal basis for 2%”. Choose and fix a non-degenerate symmetric bicharacter
(., .) for the group A satisfying the following:

[{a,b)| =1, {a,b) = (b,a), {a,b+c)={a,b)la,c) Va,b,ceA
and @ = 0 if and only if (a, x) = 1 for all x € A. Define

4

(x, y) =[x vi). x. ye A
i=0

(Note that (x, y) denotes the bicharacter evaluated at x, y whereas (x|y) denotes the scalar
product in H = L2(A%).) With these notations we introduce the unitary Weyl operators
Ua, Vb in 'H satisfying

Ualx) = [a +x), Vplx) = (b,x) x), x € A,
Then we have the Weyl commutation relations:
UaUp = Uatp, VaVb = Vayp, VoUa = (a,b)UaWp

for alla,b € A5. The family {d_5/2Ua Vb,a,b € AS} is an orthonormal basis for the
Hilbert space of all operators on H with the scalar product (X|Y) = Tr XY between two
operators X, Y.

Introduce the cyclic permutation o in A defined by

o ((xo, X1, X2, X3, X4)) = (x4, X0, X1, X2, X3). (3.1
Then o is an automorphism of the product group A3 and

o~ ((x0, X1, X2, X3, X4)) = (X1, X2, X3, X4, X0).
Define

T7(X) = 02(x) + 0 "2 (x). (3.2)
Let C C A be the subgroup defined by

C = {x|xo + x1 + x2 + x3 + x4 = 0}.
Define

Wy = (X, 02(x))Ux Vi), X € A, (3.3)

Then the correspondence x — Wy is a unitary representation of the subgroup C in H.
Define the operator Pc by

Pec=d* Z Wy. (3.4)
xeC

Then Pc is a projection satisfying Tr Pc = d. The range of P¢ is an example of a
stabilizer quantum code in the sense of Gottesman. From the methods of [1] it is also known
that Pc is a single error correcting quantum code. The range R(P¢) of C is given by

R(Pc) = {|l¥)|Wx|¥) = [¢) forallx € C}.
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Our goal is to establish that R(Pc¢) is perfectly entangled in L2(A)®5 . To this end we prove
a couple of lemmas.
Lemma 3.3. Forany a,b € A the following holds:
0, if Yiolai —bi) #0,
(alPc|b) = -
d—*(a,o%(a))(b, 02(b)), otherwise.
Proof. We have from (3.1)—(3.4) that

@rcb)=d 3 (x0200)(x®), b)alx+b)
x0+x1+x24+x34+x4=0

which vanishes if Z?:o (a; — b;) # 0. Now assume that Z?:o (a; — b;) = 0. Then
(a| Pc|b) = d~*(a — b, 0%(a —b))(a”(a — b), b)(a — b, o> (b))

=d*(a, 0(a)) (b, 72(b)).

Lemma 3.4. Consider the tensor product Hilbert space
LA =Hy @ Hi @ Hay @ H3 ® Ha,

where H; is the i-th copy of L*(A). Then for any ({i, j}) C {0,1,2,3,4} and a,b € A’
the operator (Pcla)(b|Pc) ({i, j}) is a scalar multiple of the identity in H; @ H;.

Proof. By Lemma 3.2 and the definition of relative trace we have, for any xg, x1, Yo,
Y1 € A,

(x0, x1|(Pcla)(b| Pc) ({0, 1})|yo, ¥1)

= Y (x0.x1,x2, X3, x4 Pc|a)(b| Pc|yo. y1. %2, X3, X4)
X2,X3,X4€A

=4 > (x, 0% (%) (a, 0% (@) (b, o> (b))
Xo+x3+X4=)_ aj—x0—X1
xX2+x3+x4=)_ bi—yo—y1

X (Y0, Y1, X2, X3, X4, 02(30, Y1, X2, X3, X4)).

The right-hand side vanishes if Y (a; — b;) # xo0 + x1 — Yo — y1. Now suppose that
> (a; — bi) = xo + x1 — yo — yi1. Then the right-hand side is equal to

d™a, 02 @) (b, o2®) (Y as —x0 = x1.%0 +x1 = 30— 1)

XY {x2, 1 — x1){x4, Yo — X0)

X2,X4€A

o if xo # yo or xi # y1,
| @%@, 02(a)) (b, 72(b)), otherwise.
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This proves the lemma when i = 0, j = 1. A similar (but tedious) algebra shows that
the lemma holds wheni =0, j = 2.

The cyclic permutation o of the basis {|x),x € A’} induces a unitary operator U, in
A>. Since o leaves C invariant it follows that U, Pc = PcU, and therefore

Us Pcla)(b|PcU, " = Pclo(a)) (o (b)| Pc,
which, in turn, implies that
(x1, x2|(Pcla)(b| Pc) ({1, 2D)y1. y2)
= (x1, x2| Pclo ™" @) (o~ (0)| Pe) ({0, 1)) y1. y2).

By what has been already proved the lemma follows for i = 1, j = 2. A similar
covariance argument proves the lemma for all pairs {i, j}. O

Theorem 3.5. The range of Pc is a perfectly entangled subspace of L2(A)®5 and
dim Pc = #A.

Proof. Immediate from Lemma 3.3 and the fact that every operator in L2(A®5) is a linear
combination of operators of the form |a) (b| as a, b vary in A>. O

Note added in Proof. The example in §2 has been recently generalized and simplified
considerably by B V Rajarama Bhat. See arXiv: quant-ph/0409032 VI 6 Sep. 2004.
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