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Abstract. Let Hi be a finite dimensional complex Hilbert space of dimension di
associated with a finite level quantum system Ai for i = 1, 2, . . . , k. A subspace S ⊂
H = HA1A2 ...Ak = H1 ⊗ H2 ⊗ · · · ⊗ Hk is said to be completely entangled if it has no
non-zero product vector of the form u1 ⊗ u2 ⊗ · · · ⊗ uk with ui in Hi for each i. Using
the methods of elementary linear algebra and the intersection theorem for projective
varieties in basic algebraic geometry we prove that

max
S∈E

dim S = d1d2 . . . dk − (d1 + · · · + dk)+ k − 1,

where E is the collection of all completely entangled subspaces.
When H1 = H2 and k = 2 an explicit orthonormal basis of a maximal completely

entangled subspace of H1 ⊗ H2 is given.
We also introduce a more delicate notion of a perfectly entangled subspace for a

multipartite quantum system, construct an example using the theory of stabilizer quantum
codes and pose a problem.
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1. Completely entangled subspaces

Let Hi be a complex finite dimensional Hilbert space of dimension di associated with a
finite level quantum systemAi for each i = 1, 2, . . . , k. A state ρ of the combined system
A1A2 . . . Ak in the Hilbert space

H = H1 ⊗ H2 ⊗ · · · ⊗ Hk (1.1)

is said to be separable if it can be expressed as

ρ =
m∑
i=1

piρi1 ⊗ ρi2 ⊗ · · · ⊗ ρik, (1.2)

where ρij is a state of Aj for each j, pi > 0 for each i and
∑m
i=1 pi = 1 for some

finite m. A state which is not separable is said to be entangled. Entangled states play an
important role in quantum teleportation and communication [3]. The following theorem
due to Horodecki and Horodecki [2] suggests a method of constructing entangled states.
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Theorem 1.1 [2]. Let ρ be a separable state in H. Then the range of ρ is spanned by a
set of product vectors.

For the sake of readers’ convenience and completeness we furnish a quick proof.

Proof. Let ρ be of the form (1.2). By spectrally resolving each ρij into one-dimensional
projections we can rewrite (1.2) as

ρ =
n∑
i=1

qi |ui1 ⊗ ui2 ⊗ · · · ⊗ uik〉〈ui1 ⊗ ui2 ⊗ · · · ⊗ uik|, (1.3)

where uij is a unit vector in Hj for each i, j and qi > 0 for each i with
∑n
i=1qi = 1. We

shall prove the theorem by showing that each of the product vectors ui1 ⊗ui2 ⊗· · ·⊗uik is,
indeed, in the range of ρ. Without loss of generality, consider the case i = 1. Write (1.3) as

ρ = q1|u11 ⊗ u12 ⊗ · · · ⊗ u1k〉〈u11 ⊗ u12 ⊗ . . .⊗ u1k| + T , (1.4)

where q1 > 0 and T is a non-negative operator. Suppose ψ �= 0 is a vector in H such that
T |ψ〉 = 0 and 〈u11 ⊗ u12 ⊗ · · · ⊗ u1k|ψ〉 �= 0. Then ρ|ψ〉 is a non-zero multiple of the
product vector u11 ⊗ u12 ⊗ · · · ⊗ u1k and u11 ⊗ u12 ⊗ · · · ⊗ u1k ∈ R(ρ), the range of
ρ. Now suppose that the null space N(T ) of T is contained in {u11 ⊗ u12 ⊗ · · · ⊗ u1k}⊥.
Then R(T ) ⊃ {u11 ⊗ u12 ⊗ · · · ⊗ u1k} and therefore there exists a vector ψ �= 0 such that

T |ψ〉 = |u11 ⊗ u12 ⊗ · · · ⊗ u1k〉.
Note that ρ|ψ〉 �= 0, for otherwise, the positivity of ρ, T and q1 in (1.4) would imply

T |ψ〉 = 0. Thus (1.4) implies

ρ|ψ〉 = (q1〈u11 ⊗ u12 ⊗ · · · ⊗ u1k|ψ〉 + 1) |u11 ⊗ u12 ⊗ · · · ⊗ u1k〉.
�

COROLLARY

If a subspace S ⊂ H1 ⊗ H2 ⊗ · · · ⊗ Hk does not contain any non-zero product vector of
the form u1 ⊗ u2 ⊗ · · · ⊗ uk where ui ∈ Hi for each i, then any state with support in S is
entangled.

Proof. Immediate. �

DEFINITION 1.2

A non-zero subspace S ⊂ H is said to be completely entangled if S contains no non-zero
product vector of the form u1 ⊗ u2 ⊗ · · · ⊗ uk with ui ∈ Hi for each i.

Denote by E the collection of all completely entangled subspaces of H. Our goal is to
determine maxS∈E dim S.

PROPOSITION 1.3

There exists S ∈ E satisfying

dim S = d1d2 . . . dk − (d1 + d2 + · · · + dk)+ k − 1.
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Proof. LetN = d1+d2+· · ·+dk−k+1. Without loss of generality, assume that Hi = C
di

for each i, with the standard scalar product. Choose and fix a set {λ1, λ2, . . . , λN } ⊂ C

of cardinality N . Define the column vectors

uij =




1

λi

λ2
i

...

λ
dj−1
i



, 1 ≤ i ≤ N, 1 ≤ j ≤ k (1.5)

and consider the subspace

S = {ui1 ⊗ ui2 ⊗ · · · ⊗ uik, 1 ≤ i ≤ N}⊥ ⊂ H. (1.6)

We claim that S has no non-zero product vector. Indeed, let

0 �= v1 ⊗ v2 ⊗ · · · ⊗ vk ∈ S, vi ∈ Hi .

Then

k∏
j=1

〈vj |uij 〉 = 0, 1 ≤ i ≤ N. (1.7)

If

Ej = {i|〈vj |uij 〉 = 0} ⊂ {1, 2, . . . , N}, (1.8)

then (1.7) implies that

{1, 2, . . . , N} = ∪kj=1Ej

and therefore

N ≤
k∑
j=1

#Ej .

By the definition of N it follows that for some j, #Ej ≥ dj . Suppose #Ej0 ≥ dj0 . From
(1.8) we have

〈vj0 |uij0〉 = 0 for i = i1, i2, . . . , idj0
,

where i1 < i2 < · · · < idj0
. From (1.5) and the property of van der Monde determinants

it follows that vj0 = 0, a contradiction. Clearly, dim S ≥ d1d2 . . . dk − (d1 + · · · + dk)+
k − 1. �

PROPOSITION 1.4

Let S ⊂ H be a subspace of dimension d1d2 . . . dk − (d1 + · · · + dk)+ k. Then S contains
a non-zero product vector.
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Proof. Identify Hj with C
dj for each j = 1, 2, . . . , k. For any non-zero element v in a

complex vector space V denote by [v] the equivalence class of v in the projective space
P(V). Consider the map

T : P(Cd1)× P(Cd2)× · · · × P(Cdk ) → P(Cd1 ⊗ C
d2 ⊗ · · · ⊗ C

dk )

given by

T ([u1], [u2], . . . , [uk]) = [u1 ⊗ · · · ⊗ uk].

The map T is algebraic and hence its rangeR(T ) is a complex projective variety of dimen-
sion

∑k
i=1(di − 1). By hypothesis, P(S) is a projective variety of dimension d1d2 . . . dk −

(d1 + · · · + dk)+ k − 1. Thus

dim P(S)+ dimR(T ) = d1d2 . . . dk − 1

= dim P(Cd1 ⊗ C
d2 ⊗ · · · ⊗ C

dk ).

Hence by Theorem 6, p. 76 in [4] we have

P(S) ∩ R(T ) �= ∅.
In other words, S contains a product vector. �

Theorem 1.5. Let E be the collection of all completely entangled subspaces of H1 ⊗
H2 ⊗ · · · ⊗ Hk . Then

max
S∈E

dim S = d1d2 . . . dk − (d1 + d2 + · · · + dk)+ k − 1.

Proof. Immediate from Propositions 1.3 and 1.4. �

2. An explicit orthonormal basis for a completely entangled subspace of maximal
dimension in CCC

n ⊗ CCC
n

Let {|x〉, x = 0, 1, 2, . . . , n− 1} be a labelled orthonormal basis in the Hilbert space C
n.

Choose and fix a set

E = {λ1, λ2, . . . , λ2n−1} ⊂ C

of cardinality 2n− 1 and consider the subspace

S = {uλi ⊗ uλi , 1 ≤ i ≤ 2n− 1}⊥,
where

uλ =
n−1∑
x=0

λx |x〉, λ ∈ C.

By the proof of Proposition 1.3 and Theorem 1.5 it follows that S is a maximal completely
entangled subspace of dimension n2−2n+1. We shall now present an explicit orthonormal
basis for S.
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First, observe that S is orthogonal to a set of symmetric vectors and therefore S contains
the antisymmetric tensor product space C

n ∧ C
n which has the orthonormal basis

B0 =
{ |xy〉 − |yx〉√

2
, 0 ≤ x < y ≤ n− 1

}
. (2.1)

Thus, in order to construct an orthonormal basis of S, it is sufficient to search for symmetric
tensors lying in S and constituting an orthonormal set. Any symmetric tensor in S can be
expressed as ∑

0≤x≤n−1

0≤y≤n−1

f (x, y)|xy〉, (2.2)

where f (x, y) = f (y, x) and∑
0≤x≤n−1

0≤y≤n−1

f (x, y)λ
x+y
i = 0, 1 ≤ i ≤ 2n− 1,

which reduces to∑
0≤x≤n−1

0≤j−x≤n−1

f (x, j − x) = 0 ∀ 0 ≤ j ≤ 2n− 2. (2.3)

Define Kj to be the subspace of all symmetric tensors of the form (2.2) where the coefficient
function f is symmetric, has its support in the set {(x, j−x), 0 ≤ x ≤ n−1, 0 ≤ j−x ≤
n−1} and satisfies (2.3). Simple algebra shows that K0 = K1 = K2n−3 = K2n−2 = 0 and

S = H ∧ H ⊕ ⊕2n−4
j=2 Kj .

We shall now present an orthonormal basis Bj for Kj , 2 ≤ j ≤ 2n − 4. This falls into
four cases.

Case 1. 2 ≤ j ≤ n− 1, j even.

Bj =
{

1√
j (j + 1)

[
(j/2)−1∑
m=0

(|mj −m〉 + |j −mm〉)− j

∣∣∣∣j2 j

2

〉]}

∪
{

1√
j

(j/2)−1∑
m=0

e4iπmp/j (|mj −m〉 + |j −mm〉), 1 ≤ p ≤ j

2
− 1

}
.

Case 2. 2 ≤ j ≤ n− 1, j odd.

Bj =
{

1√
j + 1

(j−1)/2∑
m=0

e4iπmp/(j+1)(|mj −m〉 + |j −mm〉),

1 ≤ p ≤ j − 1

2

}
.
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Case 3. n ≤ j ≤ 2n− 4, j even.

Bj =
{

1√
(2n− 2 − j)(2n− 1 − j)

[
((2n−2−j)/2)−1∑

m=0

(|j − n+m

+ 1 n−m− 1〉 + |n−m− 1 j − n+m+ 1〉)

−(2n− 2 − j)

∣∣∣∣j2 j2
〉 ]}

∪
{

1√
2n− 2 − j

((2n−2−j)/2)−1∑
m=0

e4iπmp/(2n−2−j)(|j − n+m

+ 1 n−m− 1〉|n−m− 1 j − n+m+ 1〉),

1 ≤ p ≤ 2n− 2 − j

2
− 1

}
.

Case 4. n ≤ j ≤ 2n− 4, j odd.

Bj =
{

1√
2n− 1 − j

((2n−1−j)/2)−1∑
m=0

e4iπmp/(2n−1−j)

+ (|j − n+m+ 1 n−m− 1〉 + |n−m− 1 j − n+m+ 1〉),

1 ≤ p ≤ 2n− 1 − j

2
− 1

}
.

The set B0 ∪ ∪2n−4
j=2 Bj , where B0 is given by (2.1) and the remaining Bj ’s are given by

the four cases above constitute an orthonormal basis for the maximal completely entangled
subspace S.

3. Perfectly entangled subspaces

As in §1, let Hi be a complex Hilbert space of dimension di associated with a finite level
quantum system Ai for each i = 1, 2, . . . , k. For any subset E ⊂ {1, 2, . . . , k} let

H(E) = ⊗i∈EHi ,

d(E) =
∏
i∈E

di,

so that the Hilbert space H = H({1, 2, . . . , k}) of the joint system A1A2 . . . Ak can be
viewed as H(E) ⊗ H(E′), E′ being the complement of E. For any operator X on H we
write

X(E) = TrH(E′)X,

where the right-hand side denotes the relative trace of X taken over H(E′). Then X(E)
is an operator in H(E). If ρ is a state of the system A1A2 . . . Ak then ρ(E) describes the
marginal state of the subsystem Ai1Ai2 . . . Air where E = {i1, i2, . . . , ir}.
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DEFINITION 3.1

A non-zero subspace S ⊂ H is said to be perfectly entangled if for any E ⊂ {1, 2, . . . , k}
such that d(E) ≤ d(E′) and any unit vector ψ ∈ S one has

(|ψ〉〈ψ |) (E) = IE

d(E)
,

where IE denotes the identity operator in H(E).
For any state ρ, denote by S(ρ) the von Neumann entropy of ρ. If ψ is a pure state in

H then S((|ψ〉〈ψ |)(E)) = S((|ψ〉〈ψ |)(E′)). Thus perfect entanglement of a subspace S
is equivalent to the property that for every unit vector ψ in S, the pure state |ψ〉〈ψ | is
maximally entangled in every decomposition H(E)⊗ H(E′), i.e.,

S((|ψ〉〈ψ |)(E)) = S((|ψ〉〈ψ |)(E′)) = log2 d(E)

whenever d(E) ≤ d(E′). In other words, the marginal states of |ψ〉〈ψ | in H(E) and H(E′)
have the maximum possible von Neumann entropy.

Denote by P the class of all perfectly entangled subspaces of H. It is an interest-
ing problem to construct examples of perfectly entangled subspaces and also compute
maxS∈P dim S.

Note that a perfectly entangled subspace S is also completely entangled. Indeed, if
S has a unit product vector ψ = u1 ⊗ u2 ⊗ · · · ⊗ uk where each ui is a unit vector
in Hi then (|ψ〉〈ψ |)(E) is also a pure product state with von Neumann entropy zero.
Perfect entanglement of S implies the stronger property that every unit vector ψ in S is
indecomposable, i.e., ψ cannot be factorized as ψ1 ⊗ψ2 where ψ1 ∈ H(E), ψ2 ∈ H(E′)
for any proper subset E ⊂ {1, 2, . . . , k}.

PROPOSITION 3.2

Let S ⊂ H be a subspace and let P denote the orthogonal projection on S. Then S is
perfectly entangled if and only if, for any proper subset E ⊂ {1, 2, . . . , k} with d(E) ≤
d(E′),

(PXP)(E) = Tr PX

d(E)
IE

for all operators X on H.

Proof. Sufficiency is immediate. To prove necessity, assume that S is perfectly entangled.
Let X be any hermitian operator on H. Then by spectral theorem and Definition 3.1 it
follows that (PXP)(E) = α(X)IE where α(X) is a scalar. Equating the traces of both
sides we see that α(X) = d(E)−1 Tr PX. If X is arbitrary, then X can be expressed as
X1 + iX2 where X1 and X2 are hermitian and the required result is immediate. �

Using the method of constructing single error correcting 5 qudit stabilizer quantum codes
in the sense of Gottesman [1, 3] we shall now describe an example of a perfectly entangled
d-dimensional subspace in h⊗5

where h is a d-dimensional Hilbert space. To this end we
identify hwith L2(A)whereA is an abelian group of cardinality d with group operation +
and null element 0. Then h⊗5

is identified with L2(A5). For any x = (x0, x1, x2, x3, x4) in
A5 denote by |x〉 the indicator function of the singleton subset {x} inA5. Then {|x〉, x ∈ A5}
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is an orthonormal basis for h⊗5
. Choose and fix a non-degenerate symmetric bicharacter

〈. , .〉 for the group A satisfying the following:

|〈a, b〉| = 1, 〈a, b〉 = 〈b, a〉, 〈a, b + c〉 = 〈a, b〉〈a, c〉 ∀ a, b, c ∈ A
and a = 0 if and only if 〈a, x〉 = 1 for all x ∈ A. Define

〈x, y〉 =
4∏
i=0

〈xi, yi〉, x, y ∈ A5.

(Note that 〈x, y〉 denotes the bicharacter evaluated at x, y whereas 〈x|y〉 denotes the scalar
product in H = L2(A5).) With these notations we introduce the unitary Weyl operators
Ua, Vb in H satisfying

Ua|x〉 = |a + x〉, Vb|x〉 = 〈b, x〉 |x〉, x ∈ A5.

Then we have the Weyl commutation relations:

UaUb = Ua+b, VaVb = Va+b, VbUa = 〈a,b〉UaVb

for all a,b ∈ A5. The family {d−5/2UaVb, a,b ∈ A5} is an orthonormal basis for the
Hilbert space of all operators on H with the scalar product 〈X|Y 〉 = Tr X†Y between two
operators X, Y .

Introduce the cyclic permutation σ in A5 defined by

σ((x0, x1, x2, x3, x4)) = (x4, x0, x1, x2, x3). (3.1)

Then σ is an automorphism of the product group A5 and

σ−1((x0, x1, x2, x3, x4)) = (x1, x2, x3, x4, x0).

Define

τ(x) = σ 2(x)+ σ−2(x). (3.2)

Let C ⊂ A5 be the subgroup defined by

C = {x|x0 + x1 + x2 + x3 + x4 = 0}.
Define

Wx = 〈x, σ 2(x)〉UxVτ(x), x ∈ A5. (3.3)

Then the correspondence x → Wx is a unitary representation of the subgroup C in H.
Define the operator PC by

PC = d−4
∑
x∈C

Wx. (3.4)

Then PC is a projection satisfying Tr PC = d. The range of PC is an example of a
stabilizer quantum code in the sense of Gottesman. From the methods of [1] it is also known
that PC is a single error correcting quantum code. The range R(PC) of C is given by

R(PC) = {|ψ〉|Wx|ψ〉 = |ψ〉 for all x ∈ C}.
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Our goal is to establish thatR(PC) is perfectly entangled inL2(A)⊗5
. To this end we prove

a couple of lemmas.

Lemma 3.3. For any a,b ∈ A5 the following holds:

〈a|PC |b〉 =



0, if
∑4
i=0(ai − bi) �= 0,

d−4〈a, σ 2(a)〉〈b, σ 2(b)〉, otherwise.

Proof. We have from (3.1)–(3.4) that

〈a|PC |b〉 = d−4
∑

x0+x1+x2+x3+x4=0

〈x, σ 2(x)〉〈τ(x),b〉〈a|x + b〉

which vanishes if
∑4
i=0(ai − bi) �= 0. Now assume that

∑4
i=0(ai − bi) = 0. Then

〈a|PC |b〉 = d−4〈a − b, σ 2(a − b)〉〈σ 2(a − b),b〉〈a − b, σ 2(b)〉
= d−4〈a, σ 2(a)〉〈b, σ 2(b)〉.

�

Lemma 3.4. Consider the tensor product Hilbert space

L2(A)⊗
5 = H0 ⊗ H1 ⊗ H2 ⊗ H3 ⊗ H4,

where Hi is the i-th copy of L2(A). Then for any ({i, j}) ⊂ {0, 1, 2, 3, 4} and a,b ∈ A5

the operator (PC |a〉〈b|PC) ({i, j}) is a scalar multiple of the identity in Hi ⊗ Hj .

Proof. By Lemma 3.2 and the definition of relative trace we have, for any x0, x1, y0,
y1 ∈ A,

〈x0, x1|(PC |a〉〈b|PC) ({0, 1})|y0, y1〉
=

∑
x2,x3,x4∈A

〈x0, x1, x2, x3, x4|PC |a〉〈b|PC |y0, y1, x2, x3, x4〉

= d−8
∑

x2+x3+x4=
∑
ai−x0−x1

x2+x3+x4=
∑
bi−y0−y1

〈x, σ 2(x)〉〈a, σ 2(a)〉〈b, σ 2(b)〉

× 〈y0, y1, x2, x3, x4, σ 2(y0, y1, x2, x3, x4)〉.
The right-hand side vanishes if

∑
(ai − bi) �= x0 + x1 − y0 − y1. Now suppose that∑

(ai − bi) = x0 + x1 − y0 − y1. Then the right-hand side is equal to

d−8〈a, σ 2(a)〉〈b, σ 2(b)〉
〈∑

ai − x0 − x1, x0 + x1 − y0 − y1

〉
×

∑
x2,x4∈A

〈x2, y1 − x1〉〈x4, y0 − x0〉

=
{

0, if x0 �= y0 or x1 �= y1,

d−6〈a, σ 2(a)〉〈b, σ 2(b)〉, otherwise.
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This proves the lemma when i = 0, j = 1. A similar (but tedious) algebra shows that
the lemma holds when i = 0, j = 2.

The cyclic permutation σ of the basis {|x〉, x ∈ A5} induces a unitary operator Uσ in
A5. Since σ leaves C invariant it follows that UσPC = PCUσ and therefore

UσPC |a〉〈b|PCU−1
σ = PC |σ(a)〉〈σ(b)|PC,

which, in turn, implies that

〈x1, x2|(PC |a〉〈b|PC) ({1, 2})|y1, y2〉
= 〈x1, x2|PC |σ−1(a)〉〈σ−1(b)|PC)({0, 1})|y1, y2〉.

By what has been already proved the lemma follows for i = 1, j = 2. A similar
covariance argument proves the lemma for all pairs {i, j}. �

Theorem 3.5. The range of PC is a perfectly entangled subspace of L2(A)⊗5
and

dim PC = #A.

Proof. Immediate from Lemma 3.3 and the fact that every operator in L2(A⊗5
) is a linear

combination of operators of the form |a〉〈b| as a,b vary in A5. �

Note added in Proof. The example in §2 has been recently generalized and simplified
considerably by B V Rajarama Bhat. See arXiv: quant-ph/0409032 VI 6 Sep. 2004.
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