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Abstract. LetH;, 1 <i < nbecomplexfinite-dimensional Hilbert spaces of dimension
d;,1 < i < nrespectively withd; > 2 for everyi. By using the method of quantum
circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and
using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor
productd = H; ® H, ® ... ® H, can be expressed as a composition of a finite number
of unitary operators living on pair produci ® H;, 1 < i, j < n. An estimate of the
number of operators appearing in such a composition is obtained.
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1. Introduction

From the theory of quantum computing and quantum circuits (as outlined, for example, in
[2]) it is now well-known that every unitary operator on thdold tensor productC?)®"

of copies of the two-dimensional Hilbert spa€@ can be expressed as a composition of

a finite number of unitary operators living on pair produs® H; where H; and H;

denote theth and jth copies ofC2. The proof outlined in [2] also yields an upperbound

on the number of such ‘pair product’ operators as a function.dfollowing more or

less their lines of proof and using a key lemma suggested to me by Jaikumar we present
a generalization when copies ©f are replaced by arbitrary finite-dimensional complex
Hilbert spaces. Thus the present note is of a pedagogical and expositary nature.

2. The main theorem

Let H;,1 < i < n be complex finite-dimensional Hilbert spaces with diin= d; > 2
for everyi. Let

H=HH Q- ---® H,. (2.1)

We shall identifyH; with LZ(Zdl.) whereZ,, is the additive Abelian grouf0, 1,2, ...,
d; — 1} with addition modulaZ;, denoted byp. For anyx € Z,, we denote

[x) = 1y
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where the right-hand side is the indicator function of the singletorfxgein Z,;,. Thus
|x) is a ket vector inH; and{|x),x € Zg4} is an orthonormal basis fa;. Forx =
(X1, X2, ..., Xp), X; € Zg, We Write|x) = |x1)|x2) ... [x,) = |x1) ® |x2) ® - - ® |x,,) fOr
the product vector in Dirac notation. Thé¢px), x; € Z4,1 < i < n}is an orthonormal
basis forH as defined in (2.1).

A unitary operatolU on H is called an(i, j)-gatefor some 1< i < j < n if it satisfies

Ulxt, x2...26) = Y u(xi, xj, v, 2lxa, x2. . xi-1)y)
yely, ,zeZd].
|Xi41Xiv2 .. X)) X j11Xj42. . . Xn)
for some scalars(x;, x;, y, z) depending on;, x;, y, z.

Theorem 1. There exists an integdd = D(ds, do, . .. , d,) such that every unitary oper-
ator U on H is a composition of the form

U=UipUpjp---Upj, k=D
whereU;, ;. is an(i,, j-)-gate foreachr =1,2,... , k.

We divide the proof into several elementary lemmas and finally obtain an upper bound
for D. Our first lemma and its proof are taken from [2] and presented for the reader’s
convenience. To state it we need a definition.

Let H be anN-dimensional complex Hilbert space with a fixed orthonormal basis
{e1, e2, ... ,en}. A unitary operatoU in H is said to beelementarywith respect to this
basis andootedin the pair{e;, e;} for some 1< i < j < N if there exist scalara, g
satisfyingla|? + |8]2 = 1 and

Ue; = ae; + Bej,

Ue; = —Eei + wej,

Uep = ¢, foreveryk ¢ {i, j}.
Lemmal. LetU be any unitary operator in a complex Hilbert spaigewith an orthonor-
mal basis{e1, ez, ... , ey }. ThenU can be expressed as
- N(N —-1)
- 2
where is a scalar of modulus unity and ea€h is elementary with respect to the basis
{e1,e2,... , en}.

U=\U01U2... U, k

Proof. Let the matrix ofU in the baside, e, ... , ey}, denoted by again, be given by

U= 21 22 2N
UN1 UN2 ... UNN

If up1 = 0, do nothing. Ifup1 # 0, left multiply both sides by
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where

u11 o1
0=, fp=

Vi0u11|? + [u21/? V1|2 + Ju21/?

Then the matrix/1U assumes the form

’ /
0 uyy ... upy

UiU = u31 uz2 ... uan
unN1 UnN2 ... UNN

We now repeat the same procedure with left multiplication @y avhich is elementary
and rooted infe1, ez} and make the 31 entry iloU1U vanish. Continuing thigv — 1
times we get

V11 V12 ... U1y
0 vy ... vy
Uy_1Uy_2...UsUU = | O v32 ... wvany
0 UN2 ... UNN

The orthonormality of the column vectors on the right-hand side implig$ = 1, v1o =
viz=---=viy = 0. Thus

1 0 ... O
B 0 wy ... woy
v11Un_1UNn_2...UU U =

0 wWN2 ... WNN

Now an induction on the size of the matrix and pooling of the scalars shows the existence
of a scalarn. and elementary unitary matricég, Uo, ... , U such that

AU Ur_1...ULU = I.

Transferring the scalar and tlig’s to the right-hand side gives the required composition
withk <(N -1+ N—-2+---+2+1=N(N —1)/2.

Following the methods of quantum computing we draw a ‘circuit diagram’ by indicating
H; by a ‘wire’ and a unitary operatdy onH = H1 ® H, ® --- ® H,, by
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and callU agate If u; € H; and|ui)|uz)...|u,) € H we say that the gat€ produces
theoutputU |u1)|uz) ... |u,) for theinput |ug)|uz) ... |u,) and express it as

ey O
[t O—— —
JeeiChety B+ e, 0 Uluty Loty B ee [, 0
input . . U . output
[e2, B——— —

If we have unitary operato§, V on H then we have

Here an input goes through the first gateand then through the second g&teThus
gates must be enumerated from left to right whereas operator multiplication is in the

reverse order. IV isa gate orH1 ® H» ® --- ® H; thenU ® I, wherel is the identity
ONH; 11 ®---® H, is represented as

. . U .

This notation can be adapted to any block of wires. We now introduce the most important
and central notion of a quantum gate depicted by

This gate denotes the unique unitary operdéfdn H satisfying for anyys € H;,a; €
Zdjv J Fi
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Ulaaz...a;i-1)|¥)aiv1aiv2 - . . an)

= la1az...ai—1)(L|Y)lait1di+2 . . . an),
Ulxaxz. .. xi—)|Y) [ xipaxiv2 ... Xn)

= |xgx2. .. xi—) Y |XivaXit2 - - Xn)

if

(X1, %2, ooy Xi—1, Xig1 ... s Xpn) #£ (a1,0a2, ... ,8i-1,Gi41, ... ,0an),
L being a unitary operator iff;. Itis called a quantum gatentrolledatas, ao, . .. , a;—1,
aiy1, ... ,aponthewires12, ... ,i—1,i+1, ..., nandtargetedby the unitary operator

L on theith wire. Denote the set of all such gatesthy 1.
For any of the groupg,, we write for anyx € Z,,

() = 1 ifx=0,
~ |0 otherwise

Then we have, for example,

=

whereU is the unique unitary operator H; ® H, ® Hj satisfying
Ulxa)|y)|xs) = ) (Lé 0170037430 [y )) | x3)

forallxy € Zy,x3 € Zay, ¥ € Hp, a1 € Zg,, a2 € Z4, andLL a unitary operator itf>.
We denote by, the set of all gates which are controlled bnvires and targeted by
some unitary operator on a wire different from théseires. For example

is aC1 gate satisfying

Ulxaxz...xp) = [x1x2. .. xj_1) (LYY 79D |x ) |xj 41X 42 - - - Xn)
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forallx, e Z;,1<r <n.
Whenever the controls are at the null elements of the gr@ypsve indicate them by
dots on the appropriate wires. For example

isagateinH; ® H» ® - - - ® Hg satisfying
Ulxixz ... xg) = |x1x2) (L¥020900) | x3)) x4 x5x6)

forall x; € Z4,1 <i < 6. This is an example of & gate which is controlled at 0 on
wires 2, 5, 6 and targeted liyon wire 3.

We denote b)C,? C Ci the subset of those gates where all the controls are & 0.
denotes the set of all gates h ® H2 ® --- ® H, which are targeted on one wire but
without any control on other wires. For example

i+1

n

is aCp gate satisfying

Ulxaxz...xp) = |x1. .. xi—2)(L|xi ) Xig1 - - Xn)

forallx; e Zy,1<i <n.
When the targeted operataron theith wire is the cyclic permutation of the basis in
Zg,i.e., Llx) = |x & 1) we indicate it on théth wire by®. For example,
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R
N

means the gate satisfying

Ulxix2x3) = |x1x2)|x3 @ a(x1 — a1)).
With these conventions adapted to our situation from the theory of quantum computing
(as outlined for example in [2,3]) we are ready to formulate and prove a lemma due to
Jaikumar [1].

Lemma2. [1] Let L be any unitary operator irff,,. Then

1 2 d,
— — —
17
2
3
4 =
n-2
n—1

n{ L} L—{B}—{B}— s ——{BHC]

whereB = €71, ¢ = LY%-1 s a fixedd,_1th root of L. The right-hand side is a
composition 0R(d,—1 + 1) gates fronc?_,.

Proof. Consider an inputx1x>...x,—1)|¥). The left-hand side produces the output
|x1xp . .y g) LOCDHED 001 ). (2.2)

We now examine the output produced by the ‘quantum circuit’ on the right-hand side.
After passage through the fir@j_2 gate we get

eixz oy —g) LOOD D),
When this passes through the ngxtairs of gates withy < d,_1 we get the output

e1x2 - xn2) 1 @ ja(xa) . o (yp)) B/ UD -2 202Dy

where

a(xy—1 @ sa(xy)...a(x,—2)).

J
=1

rj=

N
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Sinced,—1 and 0 are to be identified in the groidp, , we see that the passage through
thed, _1th pair and then the last gate yields the final output

|x1x2 . . 'xnil>ca(X1)-.-Oé(xn—2)BfOl(Xz)--a(xn—z)LO!(Xz)~--a(xn—1) |v) (2.3)
where
dy—1-1
r= Z a(x,_1 ® sa(xDa(x2)...a(x,—2)). (2.4)
s=0

Supposex; # 0 for some 2< j <n — 2. Then the expression (2.3) reducesatpx; . ..
x,—1)|¥) and coincides with (2.2). Thus it suffices to examine the case when0 for
2 < j <n-—2.Then (2.3) and (2.4) reduce respectively to

1x10,0. .. Ox,_1) C¥*V) B" [*(n=1) ;) (2.5)
and
dy—1-1
r= Z a(xp_1 D sa(xy)). (2.6)
s=0

Now we examine four cases.

Casel. x1 #0,x,-1 # 0.
We havex (x1) = a(x,—1) = r = 0 and (2.5) reduces 1a100. .. Ox,_1)|¥).

Case2. x1 #0,x,-1 =0.
We havex(x1) =0, a(x,—1) = 1,r = d,—1 and (2.5) reduces to

|x100...0)B-1L|y) = |x10...0)|y),
owing to the definition o8 andC in the lemma.

Case3. x1 =0,x,-1 #0.

Now a(x1) = 1, a(x,_1) = 0 andr = f”zbl_la(xn_l @ s5). As s varies from 0 to
d,_1 — 1 exactly one of the elementg_1 @ s is 0 and hence = 1. Thus (2.5) reduces
t0 |00. ..0x,_1)CB|y) = |00...0x,_1)|¥).

Cased. x1 =0,x,_1=0.
Now a(x1) = 1, a(x,—1) = 1 andr = Zf’;])l_la(s) = 1. Thus (2.5) reduces to
|00...0)CBL|¥) = [00...0)L|y).

In other words, in all the cases, the two circuits on both sides of the lemma produce the
same output. The last part of the lemma is obvious. ]

COROLLARY 1
Letd = max d;. Then any gate i[i,',?_l is a composition of at mo§2(d + 1)]"~2 gates
in 9.

Proof. By the last part of Lemma 3 and a shuffle of the wires it follows that@’n_y_/L gate
is a composition of at most@ + 1) gates frorrcfjfz. Rest follows from induction. []
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Lemma3. In H; = L2(Zd,.) denote byfy,, a € Z,4, the unitary operator satisfying, |x) =

|x + a) for everyx € Z,,. Then forany; € Zg4,i = 1,2,...,n — 1and any unitary
operatorL in H, the following holds:
/al\ - T—al Tal -
@ ] T—a Ta [
2 2

a, - — T T, —
Qﬁl T -1 ap -1

Proof. Apply bothsidestotheinpiitixs...x,—1)|¢)foranyx; € Z4,i =1,2,... ,n—
1 andy € H,. A straightforward check by inspection completes the proof. ]

Lemmad. AnyC,_1 gate can be expressed as a composition of at 1B@st- 1) gates
from Co and[2(d + 1)]"~2 gates fromC?.

Proof. By Lemma 3 any,_1 gate is a composition of(2 — 1) gates fronCp and ac,?_l
gate. The required result follows from Corollary 1.

To state our next lemma we introduce a definition.
For anya # b, a, b € Z4 we define theswapoperatorS(a, b) in L2(Zd[) as the unique
unitary operator satisfying

S(a, b)|x) = |x)if x ¢ {a, b},

=|b)ifx =a,
= |a)if x = b.
Lemmab. Leta;, b; € Z4,i = 1,2,... ,k,a; # b; for everyi. Consider the unitary

operatorU in H1 ® H> ® - - - ® Hy determined by
Ulaiaz .. .a;) = alaraz .. .ar) + Blbibs ... b)),
Ulbiby...by) = —Blataz . ..ax) +&|bibs .. . by),
Ulxixg ... xg) = |xax2. .. xg)  if(x1, x2, ..., xp) € {(a1, az, ... ,ax),
(b1, ba, ..., bi)}

wherea, g are scalars satisfyingx|? + | 8|2 = 1. Define the unitary operatat in Hy by
the equations

Llay) = alar) + Blbi),
Llby) = —Blax) + @|by),
Lix) = |x) ifx ¢ {ax, bi}.
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ThenU can be expressed as

where the circuit hagk — 1 gates fronC,_; and the lastk — 1) gates are also the first
(k — 1) gates in reverse order.

Proof. By the definition of L, the kth gate in the circuit is an elementary opera-
tor with respect to the basigxixa...xx),x; € Z4,1 < i < k} rooted in the pair
{laraz . ..ax), la1, a2 . . .ax—1, br)} and all other gates are unitary operators whose squares
are equal to identity. Since the composition of the last 1) gates is the inverse of the
composition of the firstk — 1) gates it follows that the circuit in the lemma yields a gate
which is conjugate to an elementary operator. Now consider the two ifputs. . . a;)
and|b1by . . . by) for the circuit in the lemma. By the definition df it follows that the
respective outputs are, indeddjaiaz . ..ax) andU|b1bs ... by). ThusU is represented

by the circuit in the lemma. ]

Proof of Theorem.. LetN = did> . . .d, denote the dimension & = H1Q Ho®...® H,
and letd = max; d;. Now letU be an arbitrary unitary operator . By Lemma 1,U
can be expressed as a product of a scalaf modulus unity and at mosY(N — 1)/2
unitary operators, each of which is elementary with respect to thefpasis . . . x,), x; €
Zy4,1<i<n}.

Now consider a pair of product vectors of the form

lx1X2. .. Xn), [y1y2...yu) Where #ilx; = yi} =r.

After an appropriate permutationfd, 2, ... , n} (or equivalently, a shuffling of the wires)
we may assume, without loss of generality, that

(-xlax27°" axn) = (C17C27"' ’Cr5alya2’ 7ak)9

(y11y27"'1yn)=(017C27"'scrsbl»bZa"' 7bk)

wherek +r = n anda; # b; forevery 1< i < k. By addingr more wires to the circuitin
Lemma 5 and putting controls at, co, . .. , ¢, on these wires above each of the gates we
observe that a gate which is elementary with respect to our fixed coordinate system and
rooted in the paif|cic2...cra1az ... a;), |c1c2. . .crb1bz . .. by)} can be expressed as a
composition of(2k — 1) gates fronC,,_1. Now an application of Lemma 4 shows that this
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same elementary operator can be expressed as a composition of éimobt{2(n — 1) +
[2(d + 1)]" 2} gates fromCo U C?. ThusU can be expressed as a composition of at most

N(N -1

> (@ = D20 =D +[2(d + 1)]"2) (2.7)

gates fromCo U Cf. Any gate inCo U Cg, is, indeed, arti, j) gate. Choosind equal to
the expression in (2.7) the proof becomes complete.

Remarkl. Whend; = d for everyi andn increases teo the numberD in Theorem 1 is
O (n[2d?%(d + D).
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