A remark on the unitary group of a tensor product of \boldsymbol{n} finite-dimensional Hilbert spaces

K R PARTHASARATHY
Indian Statistical Institute, Delhi Centre, 7, S.J.S. Sansanwal Marg, New Delhi 110 016, India
E-mail: krp@isid.ac.in

MS received 7 September 2001

Abstract

Let $H_{i}, 1 \leq i \leq n$ be complex finite-dimensional Hilbert spaces of dimension $d_{i}, 1 \leq i \leq n$ respectively with $d_{i} \geq 2$ for every i. By using the method of quantum circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor product $H=H_{1} \otimes H_{2} \otimes \ldots \otimes H_{n}$ can be expressed as a composition of a finite number of unitary operators living on pair products $H_{i} \otimes H_{j}, 1 \leq i, j \leq n$. An estimate of the number of operators appearing in such a composition is obtained.

Keywords. \quad-qubit quantum computer; qubits; gates; controlled gates.

1. Introduction

From the theory of quantum computing and quantum circuits (as outlined, for example, in [2]) it is now well-known that every unitary operator on the n-fold tensor product $\left(\mathbf{C}^{2}\right)^{\otimes^{n}}$ of copies of the two-dimensional Hilbert space \mathbf{C}^{2} can be expressed as a composition of a finite number of unitary operators living on pair products $H_{i} \otimes H_{j}$ where H_{i} and H_{j} denote the i th and j th copies of \mathbf{C}^{2}. The proof outlined in [2] also yields an upperbound on the number of such 'pair product' operators as a function of n. Following more or less their lines of proof and using a key lemma suggested to me by Jaikumar we present a generalization when copies of \mathbf{C}^{2} are replaced by arbitrary finite-dimensional complex Hilbert spaces. Thus the present note is of a pedagogical and expositary nature.

2. The main theorem

Let $H_{i}, 1 \leq i \leq n$ be complex finite-dimensional Hilbert spaces with $\operatorname{dim} H_{i}=d_{i} \geq 2$ for every i. Let

$$
\begin{equation*}
H=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n} \tag{2.1}
\end{equation*}
$$

We shall identify H_{i} with $L^{2}\left(\mathbf{Z}_{d_{i}}\right)$ where $\mathbf{Z}_{d_{i}}$ is the additive Abelian group $\{0,1,2, \ldots$, $\left.d_{i}-1\right\}$ with addition modulo d_{i}, denoted by \oplus. For any $x \in \mathbf{Z}_{d_{i}}$ we denote

$$
|x\rangle=1_{\{x\}}
$$

[^0]where the right-hand side is the indicator function of the singleton set $\{x\}$ in $\mathbf{Z}_{d_{i}}$. Thus $|x\rangle$ is a ket vector in H_{i} and $\left\{|x\rangle, x \in \mathbf{Z}_{d_{i}}\right\}$ is an orthonormal basis for H_{i}. For $\underline{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{i} \in \mathbf{Z}_{d_{i}}$ we write $|\underline{x}\rangle=\left|x_{1}\right\rangle\left|x_{2}\right\rangle \ldots\left|x_{n}\right\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \cdots \otimes\left|x_{n}\right\rangle$ for the product vector in Dirac notation. Then $\left\{|\underline{x}\rangle, x_{i} \in \mathbf{Z}_{d_{i}}, 1 \leq i \leq n\right\}$ is an orthonormal basis for H as defined in (2.1).

A unitary operator U on H is called an (i, j)-gate for some $1 \leq i<j \leq n$ if it satisfies

$$
\begin{aligned}
U\left|x_{1}, x_{2} \ldots z x_{n}\right\rangle= & \sum_{y \in \mathbf{Z}_{d_{i}}, z \in \mathbf{Z}_{d_{j}}} u\left(x_{i}, x_{j}, y, z\right)\left|x_{1}, x_{2} \ldots x_{i-1}\right\rangle|y\rangle \\
& \left|x_{i+1} x_{i+2} \ldots x_{j-1}\right\rangle|z\rangle\left|x_{j+1} x_{j+2} \ldots x_{n}\right\rangle
\end{aligned}
$$

for some scalars $u\left(x_{i}, x_{j}, y, z\right)$ depending on x_{i}, x_{j}, y, z.
Theorem 1. There exists an integer $D=D\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ such that every unitary operator U on H is a composition of the form

$$
U=U_{i_{1} j_{1}} U_{i_{2} j_{2}} \ldots U_{i_{k} j_{k}}, \quad k \leq D
$$

where $U_{i_{r} j_{r}}$ is an $\left(i_{r}, j_{r}\right)$-gate for each $r=1,2, \ldots, k$.
We divide the proof into several elementary lemmas and finally obtain an upper bound for D. Our first lemma and its proof are taken from [2] and presented for the reader's convenience. To state it we need a definition.

Let \mathcal{H} be an N-dimensional complex Hilbert space with a fixed orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$. A unitary operator U in \mathcal{H} is said to be elementary with respect to this basis and rooted in the pair $\left\{e_{i}, e_{j}\right\}$ for some $1 \leq i<j \leq N$ if there exist scalars α, β satisfying $|\alpha|^{2}+|\beta|^{2}=1$ and

$$
\begin{aligned}
U e_{i} & =\alpha e_{i}+\beta e_{j}, \\
U e_{j} & =-\bar{\beta} e_{i}+\bar{\alpha} e_{j}, \\
U e_{k} & =e_{k} \quad \text { for every } k \notin\{i, j\} .
\end{aligned}
$$

Lemma 1. Let U be any unitary operator in a complex Hilbert space \mathcal{H} with an orthonormal basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$. Then U can be expressed as

$$
U=\lambda U_{1} U_{2} \ldots U_{k}, \quad k \leq \frac{N(N-1)}{2}
$$

where λ is a scalar of modulus unity and each U_{i} is elementary with respect to the basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$.

Proof. Let the matrix of U in the basis $\left\{e_{1}, e_{2}, \ldots, e_{N}\right\}$, denoted by U again, be given by

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \ldots & u_{1 N} \\
u_{21} & u_{22} & \ldots & u_{2 N} \\
\ldots & \ldots & \ldots & \ldots \\
u_{N 1} & u_{N 2} & \ldots & u_{N N}
\end{array}\right] .
$$

If $u_{21}=0$, do nothing. If $u_{21} \neq 0$, left multiply both sides by

$$
U_{1}=\left[\begin{array}{cc|c}
\alpha & \beta & 0 \\
-\bar{\beta} & \bar{\alpha} & \\
\hline 0 & I_{N-2}
\end{array}\right]
$$

where

$$
\alpha=\frac{\bar{u}_{11}}{\sqrt{\left|u_{11}\right|^{2}+\left|u_{21}\right|^{2}}}, \quad \beta=\frac{\bar{u}_{21}}{\sqrt{\left|u_{11}\right|^{2}+\left|u_{21}\right|^{2}}} .
$$

Then the matrix $U_{1} U$ assumes the form

$$
U_{1} U=\left[\begin{array}{cccc}
u_{11}^{\prime} & u_{12}^{\prime} & \ldots & u_{1 N}^{\prime} \\
0 & u_{22}^{\prime} & \ldots & u_{2 N}^{\prime} \\
u_{31} & u_{32} & \ldots & u_{3 N} \\
\ldots & \ldots & \ldots & \ldots \\
u_{N 1} & u_{N 2} & \ldots & u_{N N}
\end{array}\right] .
$$

We now repeat the same procedure with left multiplication by a U_{2} which is elementary and rooted in $\left\{e_{1}, e_{3}\right\}$ and make the 31 entry in $U_{2} U_{1} U$ vanish. Continuing this $N-1$ times we get

$$
U_{N-1} U_{N-2} \ldots U_{2} U_{1} U=\left[\begin{array}{cccc}
v_{11} & v_{12} & \ldots & v_{1 N} \\
0 & v_{22} & \ldots & v_{2 N} \\
0 & v_{32} & \ldots & v_{3 N} \\
\vdots & \vdots & & \vdots \\
0 & v_{N 2} & \ldots & v_{N N}
\end{array}\right] .
$$

The orthonormality of the column vectors on the right-hand side implies $\left|v_{11}\right|=1, v_{12}=$ $v_{13}=\cdots=v_{1 N}=0$. Thus

$$
\bar{v}_{11} U_{N-1} U_{N-2} \ldots U_{2} U_{1} U=\left[\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & w_{22} & \ldots & w_{2 N} \\
\vdots & \vdots & & \vdots \\
0 & w_{N 2} & \ldots & w_{N N}
\end{array}\right]
$$

Now an induction on the size of the matrix and pooling of the scalars shows the existence of a scalar λ and elementary unitary matrices $U_{1}, U_{2}, \ldots, U_{k}$ such that

$$
\bar{\lambda} U_{k} U_{k-1} \ldots U_{1} U=I
$$

Transferring the scalar and the U_{i} 's to the right-hand side gives the required composition with $k \leq(N-1)+(N-2)+\cdots+2+1=N(N-1) / 2$.

Following the methods of quantum computing we draw a 'circuit diagram' by indicating H_{i} by a 'wire' and a unitary operator U on $H=H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n}$ by

and call U a gate. If $u_{i} \in H_{i}$ and $\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\left|u_{n}\right\rangle \in H$ we say that the gate U produces the output $U\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\left|u_{n}\right\rangle$ for the input $\left|u_{1}\right\rangle\left|u_{2}\right\rangle \ldots\left|u_{n}\right\rangle$ and express it as

If we have unitary operators U, V on H then we have

Here an input goes through the first gate U and then through the second gate V. Thus gates must be enumerated from left to right whereas operator multiplication is in the reverse order. If U is a gate on $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{i}$ then $U \otimes I$, where I is the identity on $H_{i+1} \otimes \cdots \otimes H_{n}$ is represented as

This notation can be adapted to any block of wires. We now introduce the most important and central notion of a quantum gate depicted by

This gate denotes the unique unitary operator U in H satisfying for any $\psi \in H_{i}, a_{j} \in$ $\mathbf{Z}_{d_{j}}, j \neq i$

$$
\begin{aligned}
& U\left|a_{1} a_{2} \ldots a_{i-1}\right\rangle|\psi\rangle\left|a_{i+1} a_{i+2} \ldots a_{n}\right\rangle \\
& \quad=\left|a_{1} a_{2} \ldots a_{i-1}\right\rangle(L|\psi\rangle)\left|a_{i+1} a_{i+2} \ldots a_{n}\right\rangle, \\
& U\left|x_{1} x_{2} \ldots x_{i-1}\right\rangle|\psi\rangle\left|x_{i+1} x_{i+2} \ldots x_{n}\right\rangle \\
& \quad=\left|x_{1} x_{2} \ldots x_{i-1}\right\rangle|\psi\rangle\left|x_{i+1} x_{i+2} \ldots x_{n}\right\rangle
\end{aligned}
$$

if

$$
\left(x_{1}, x_{2}, \ldots, x_{i-1}, x_{i+1} \ldots, x_{n}\right) \neq\left(a_{1}, a_{2}, \ldots, a_{i-1}, a_{i+1}, \ldots, a_{n}\right),
$$

L being a unitary operator in H_{i}. It is called a quantum gate controlled at $a_{1}, a_{2}, \ldots, a_{i-1}$, a_{i+1}, \ldots, a_{n} on the wires $1,2, \ldots, i-1, i+1, \ldots, n$ and targeted by the unitary operator L on the i th wire. Denote the set of all such gates by \mathcal{C}_{n-1}.
For any of the groups $\mathbf{Z}_{d_{i}}$ we write for any $x \in \mathbf{Z}_{d_{i}}$

$$
\alpha(x)= \begin{cases}1 & \text { if } x=0 \\ 0 & \text { otherwise }\end{cases}
$$

Then we have, for example,

where U is the unique unitary operator in $H_{1} \otimes H_{2} \otimes H_{3}$ satisfying

$$
U\left|x_{1}\right\rangle|\psi\rangle\left|x_{3}\right\rangle=\left|x_{1}\right\rangle\left(L^{\alpha\left(x_{1}-a_{1}\right) \alpha\left(x_{3}-a_{3}\right)}|\psi\rangle\right)\left|x_{3}\right\rangle
$$

for all $x_{1} \in \mathbf{Z}_{d_{1}}, x_{3} \in \mathbf{Z}_{d_{3}}, \psi \in H_{2}, a_{1} \in \mathbf{Z}_{d_{1}}, a_{2} \in \mathbf{Z}_{d_{2}}$ and L a unitary operator in H_{2}.
We denote by \mathcal{C}_{k} the set of all gates which are controlled on k wires and targeted by some unitary operator on a wire different from these k wires. For example

is a \mathcal{C}_{1} gate satisfying

$$
U\left|x_{1} x_{2} \ldots x_{n}\right\rangle=\left|x_{1} x_{2} \ldots x_{j-1}\right\rangle\left(L^{\alpha\left(x_{i}-a_{i}\right)}\left|x_{j}\right\rangle\right)\left|x_{j+1} x_{j+2} \ldots x_{n}\right\rangle
$$

for all $x_{r} \in \mathbf{Z}_{d_{r}}, 1 \leq r \leq n$.
Whenever the controls are at the null elements of the groups $\mathbf{Z}_{d_{i}}$ we indicate them by dots on the appropriate wires. For example

is a gate in $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{6}$ satisfying

$$
U\left|x_{1} x_{2} \ldots x_{6}\right\rangle=\left|x_{1} x_{2}\right\rangle\left(L^{\alpha\left(x_{2}\right) \alpha\left(x_{5}\right) \alpha\left(x_{6}\right)}\left|x_{3}\right\rangle\right)\left|x_{4} x_{5} x_{6}\right\rangle
$$

for all $x_{i} \in \mathbf{Z}_{d_{i}}, 1 \leq i \leq 6$. This is an example of a \mathcal{C}_{3} gate which is controlled at 0 on wires 2, 5, 6 and targeted by L on wire 3 .

We denote by $\mathcal{C}_{k}^{0} \subset \mathcal{C}_{k}$ the subset of those gates where all the controls are at $0 . \mathcal{C}_{0}$ denotes the set of all gates in $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{n}$ which are targeted on one wire but without any control on other wires. For example

is a \mathcal{C}_{0} gate satisfying

$$
U\left|x_{1} x_{2} \ldots x_{n}\right\rangle=\left|x_{1} \ldots x_{i-1}\right\rangle\left(L\left|x_{i}\right\rangle\right)\left|x_{i+1} \ldots x_{n}\right\rangle
$$

for all $x_{i} \in \mathbf{Z}_{d_{i}}, 1 \leq i \leq n$.
When the targeted operator L on the i th wire is the cyclic permutation of the basis in $\mathbf{Z}_{d_{i}}$, i.e., $L|x\rangle=|x \oplus 1\rangle$ we indicate it on the i th wire by \oplus. For example,

means the gate satisfying

$$
U\left|x_{1} x_{2} x_{3}\right\rangle=\left|x_{1} x_{2}\right\rangle\left|x_{3} \oplus \alpha\left(x_{1}-a_{1}\right)\right\rangle .
$$

With these conventions adapted to our situation from the theory of quantum computing (as outlined for example in $[2,3]$) we are ready to formulate and prove a lemma due to Jaikumar [1].

Lemma 2. [1] Let L be any unitary operator in H_{n}. Then

where $B=C^{-1}, C=L^{1 / d_{n-1}}$ is a fixed d_{n-1} th root of L. The right-hand side is a composition of $2\left(d_{n-1}+1\right)$ gates from \mathcal{C}_{n-2}^{0}.

Proof. Consider an input $\left|x_{1} x_{2} \ldots x_{n-1}\right\rangle|\psi\rangle$. The left-hand side produces the output

$$
\begin{equation*}
\left|x_{1} x_{2} \ldots x_{n-1}\right\rangle L^{\alpha\left(x_{1}\right) \alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-1}\right)}|\psi\rangle . \tag{2.2}
\end{equation*}
$$

We now examine the output produced by the 'quantum circuit' on the right-hand side. After passage through the first \mathcal{C}_{n-2}^{0} gate we get

$$
\left|x_{1} x_{2} \ldots x_{n-1}\right\rangle L^{\alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-1}\right)}|\psi\rangle .
$$

When this passes through the next j pairs of gates with $j \leq d_{n-1}$ we get the output

$$
\left|x_{1} x_{2} \ldots x_{n-2}\right\rangle\left|x_{n-1} \oplus j \alpha\left(x_{1}\right) \ldots \alpha\left(x_{n-2}\right)\right\rangle B^{r_{j} \alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-2}\right)} L^{\alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-1}\right)}|\psi\rangle
$$

where

$$
r_{j}=\sum_{s=1}^{j} \alpha\left(x_{n-1} \oplus s \alpha\left(x_{1}\right) \ldots \alpha\left(x_{n-2}\right)\right) .
$$

Since d_{n-1} and 0 are to be identified in the group $\mathbf{Z}_{d_{n-1}}$ we see that the passage through the d_{n-1} th pair and then the last gate yields the final output

$$
\begin{equation*}
\left|x_{1} x_{2} \ldots x_{n-1}\right\rangle C^{\alpha\left(x_{1}\right) \ldots \alpha\left(x_{n-2}\right)} B^{r \alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-2}\right)} L^{\alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-1}\right)}|\psi\rangle \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
r=\sum_{s=0}^{d_{n-1}^{-1}} \alpha\left(x_{n-1} \oplus s \alpha\left(x_{1}\right) \alpha\left(x_{2}\right) \ldots \alpha\left(x_{n-2}\right)\right) \tag{2.4}
\end{equation*}
$$

Suppose $x_{j} \neq 0$ for some $2 \leq j \leq n-2$. Then the expression (2.3) reduces to $\mid x_{1} x_{2} \ldots$ $\left.x_{n-1}\right\rangle|\psi\rangle$ and coincides with (2.2). Thus it suffices to examine the case when $x_{j}=0$ for $2 \leq j \leq n-2$. Then (2.3) and (2.4) reduce respectively to

$$
\begin{equation*}
\left|x_{1} 0,0 \ldots 0 x_{n-1}\right\rangle C^{\alpha\left(x_{1}\right)} B^{r} L^{\alpha\left(x_{n-1}\right)}|\psi\rangle \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
r=\sum_{s=0}^{d_{n-1}-1} \alpha\left(x_{n-1} \oplus s \alpha\left(x_{1}\right)\right) . \tag{2.6}
\end{equation*}
$$

Now we examine four cases.
Case 1. $x_{1} \neq 0, x_{n-1} \neq 0$.
We have $\alpha\left(x_{1}\right)=\alpha\left(x_{n-1}\right)=r=0$ and (2.5) reduces to $\left|x_{1} 00 \ldots 0 x_{n-1}\right\rangle|\psi\rangle$.
Case 2. $x_{1} \neq 0, x_{n-1}=0$.
We have $\alpha\left(x_{1}\right)=0, \alpha\left(x_{n-1}\right)=1, r=d_{n-1}$ and (2.5) reduces to

$$
\left|x_{1} 00 \ldots 0\right\rangle B^{d_{n-1}} L|\psi\rangle=\left|x_{1} 0 \ldots 0\right\rangle|\psi\rangle
$$

owing to the definition of B and C in the lemma.
Case 3. $x_{1}=0, x_{n-1} \neq 0$.
Now $\alpha\left(x_{1}\right)=1, \alpha\left(x_{n-1}\right)=0$ and $r=\sum_{s=0}^{d_{n-1}-1} \alpha\left(x_{n-1} \oplus s\right)$. As s varies from 0 to $d_{n-1}-1$ exactly one of the elements $x_{n-1} \oplus s$ is 0 and hence $r=1$. Thus (2.5) reduces to $\left|00 \ldots 0 x_{n-1}\right\rangle C B|\psi\rangle=\left|00 \ldots 0 x_{n-1}\right\rangle|\psi\rangle$.

Case 4. $x_{1}=0, x_{n-1}=0$.
Now $\alpha\left(x_{1}\right)=1, \alpha\left(x_{n-1}\right)=1$ and $r=\sum_{s=0}^{d_{n-1}-1} \alpha(s)=1$. Thus (2.5) reduces to $|00 \ldots 0\rangle C B L|\psi\rangle=|00 \ldots 0\rangle L|\psi\rangle$.

In other words, in all the cases, the two circuits on both sides of the lemma produce the same output. The last part of the lemma is obvious.

COROLLARY 1

Let $d=\max _{i} d_{i}$. Then any gate in \mathcal{C}_{n-1}^{0} is a composition of at most $[2(d+1)]^{n-2}$ gates in \mathcal{C}_{1}^{0}.

Proof. By the last part of Lemma 3 and a shuffle of the wires it follows that any \mathcal{C}_{n-1}^{0} gate is a composition of at most $2(d+1)$ gates from \mathcal{C}_{n-2}^{0}. Rest follows from induction.

Lemma 3. In $H_{i}=L^{2}\left(\mathbf{Z}_{d_{i}}\right)$ denote by $T_{a}, a \in \mathbf{Z}_{d_{i}}$ the unitary operator satisfying $T_{a}|x\rangle=$ $|x+a\rangle$ for every $x \in \mathbf{Z}_{d_{i}}$. Then for any $a_{i} \in \mathbf{Z}_{d_{i}}, i=1,2, \ldots, n-1$ and any unitary operator L in H_{n} the following holds:

Proof. Apply both sides to the input $\left|x_{1} x_{2} \ldots x_{n-1}\right\rangle|\psi\rangle$ for any $x_{i} \in \mathbf{Z}_{d_{i}}, i=1,2, \ldots, n-$ 1 and $\psi \in H_{n}$. A straightforward check by inspection completes the proof.

Lemma 4. Any \mathcal{C}_{n-1} gate can be expressed as a composition of at most $2(n-1)$ gates from \mathcal{C}_{0} and $[2(d+1)]^{n-2}$ gates from \mathcal{C}_{1}^{0}.
Proof. By Lemma 3 any \mathcal{C}_{n-1} gate is a composition of $2(n-1)$ gates from \mathcal{C}_{0} and a \mathcal{C}_{n-1}^{0} gate. The required result follows from Corollary 1.

To state our next lemma we introduce a definition.
For any $a \neq b, a, b \in \mathbf{Z}_{d_{i}}$ we define the swap operator $S(a, b)$ in $L^{2}\left(\mathbf{Z}_{d_{i}}\right)$ as the unique unitary operator satisfying

$$
\begin{aligned}
S(a, b)|x\rangle & =|x\rangle \text { if } x \notin\{a, b\}, \\
& =|b\rangle \text { if } x=a, \\
& =|a\rangle \text { if } x=b .
\end{aligned}
$$

Lemma 5. Let $a_{i}, b_{i} \in \mathbf{Z}_{d_{i}}, i=1,2, \ldots, k, a_{i} \neq b_{i}$ for every i. Consider the unitary operator U in $H_{1} \otimes H_{2} \otimes \cdots \otimes H_{k}$ determined by

$$
\begin{aligned}
U\left|a_{1} a_{2} \ldots a_{k}\right\rangle & =\alpha\left|a_{1} a_{2} \ldots a_{k}\right\rangle+\beta\left|b_{1} b_{2} \ldots b_{k}\right\rangle, \\
U\left|b_{1} b_{2} \ldots b_{k}\right\rangle & =-\bar{\beta}\left|a_{1} a_{2} \ldots a_{k}\right\rangle+\bar{\alpha}\left|b_{1} b_{2} \ldots b_{k}\right\rangle, \\
U\left|x_{1} x_{2} \ldots x_{k}\right\rangle & =\left|x_{1} x_{2} \ldots x_{k}\right\rangle \quad \text { if }\left(x_{1}, x_{2}, \ldots, x_{k}\right) \notin\left\{\left(a_{1}, a_{2}, \ldots, a_{k}\right),\right. \\
& \left.\left(b_{1}, b_{2}, \ldots, b_{k}\right)\right\}
\end{aligned}
$$

where a, β are scalars satisfying $|\alpha|^{2}+|\beta|^{2}=1$. Define the unitary operator L in H_{k} by the equations

$$
\begin{aligned}
L\left|a_{k}\right\rangle & =\alpha\left|a_{k}\right\rangle+\beta\left|b_{k}\right\rangle, \\
L\left|b_{k}\right\rangle & =-\bar{\beta}\left|a_{k}\right\rangle+\bar{\alpha}\left|b_{k}\right\rangle, \\
L|x\rangle & =|x\rangle \quad \text { if } x \notin\left\{a_{k}, b_{k}\right\} .
\end{aligned}
$$

Then U can be expressed as

where the circuit has $2 k-1$ gates from \mathcal{C}_{k-1} and the last $(k-1)$ gates are also the first $(k-1)$ gates in reverse order.

Proof. By the definition of L, the k th gate in the circuit is an elementary operator with respect to the basis $\left\{\left|x_{1} x_{2} \ldots x_{k}\right\rangle, x_{i} \in \mathbf{Z}_{d_{i}}, 1 \leq i \leq k\right\}$ rooted in the pair $\left\{\left|a_{1} a_{2} \ldots a_{k}\right\rangle,\left|a_{1}, a_{2} \ldots a_{k-1}, b_{k}\right\rangle\right\}$ and all other gates are unitary operators whose squares are equal to identity. Since the composition of the last $(k-1)$ gates is the inverse of the composition of the first $(k-1)$ gates it follows that the circuit in the lemma yields a gate which is conjugate to an elementary operator. Now consider the two inputs $\left|a_{1} a_{2} \ldots a_{k}\right\rangle$ and $\left|b_{1} b_{2} \ldots b_{k}\right\rangle$ for the circuit in the lemma. By the definition of L it follows that the respective outputs are, indeed, $U\left|a_{1} a_{2} \ldots a_{k}\right\rangle$ and $U\left|b_{1} b_{2} \ldots b_{k}\right\rangle$. Thus U is represented by the circuit in the lemma.

Proof of Theorem 1. Let $N=d_{1} d_{2} \ldots d_{n}$ denote the dimension of $H=H_{1} \otimes H_{2} \otimes \ldots \otimes H_{n}$ and let $d=\max _{i} d_{i}$. Now let U be an arbitrary unitary operator in H. By Lemma $1, U$ can be expressed as a product of a scalar λ of modulus unity and at most $N(N-1) / 2$ unitary operators, each of which is elementary with respect to the basis $\left\{\left|x_{1} x_{2} \ldots x_{n}\right\rangle, x_{i} \in\right.$ $\left.\mathbf{Z}_{d_{i}}, 1 \leq i \leq n\right\}$.

Now consider a pair of product vectors of the form

$$
\left|x_{1} x_{2} \ldots x_{n}\right\rangle,\left|y_{1} y_{2} \ldots y_{n}\right\rangle \quad \text { where } \#\left\{i \mid x_{i}=y_{i}\right\}=r .
$$

After an appropriate permutation of $\{1,2, \ldots, n\}$ (or equivalently, a shuffling of the wires) we may assume, without loss of generality, that

$$
\begin{aligned}
& \left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(c_{1}, c_{2}, \ldots, c_{r}, a_{1}, a_{2}, \ldots, a_{k}\right), \\
& \left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(c_{1}, c_{2}, \ldots, c_{r}, b_{1}, b_{2}, \ldots, b_{k}\right)
\end{aligned}
$$

where $k+r=n$ and $a_{i} \neq b_{i}$ for every $1 \leq i \leq k$. By adding r more wires to the circuit in Lemma 5 and putting controls at $c_{1}, c_{2}, \ldots, c_{r}$ on these wires above each of the gates we observe that a gate which is elementary with respect to our fixed coordinate system and rooted in the pair $\left\{\left|c_{1} c_{2} \ldots c_{r} a_{1} a_{2} \ldots a_{k}\right\rangle,\left|c_{1} c_{2} \ldots c_{r} b_{1} b_{2} \ldots b_{k}\right\rangle\right\}$ can be expressed as a composition of $(2 k-1)$ gates from \mathcal{C}_{n-1}. Now an application of Lemma 4 shows that this
same elementary operator can be expressed as a composition of at most $(2 k-1)\{2(n-1)+$ $\left.[2(d+1)]^{n-2}\right\}$ gates from $\mathcal{C}_{0} \cup \mathcal{C}_{1}^{0}$. Thus U can be expressed as a composition of at most

$$
\begin{equation*}
\frac{N(N-1)}{2}(2 n-1)\left\{2(n-1)+[2(d+1)]^{n-2}\right\} \tag{2.7}
\end{equation*}
$$

gates from $\mathcal{C}_{0} \cup \mathcal{C}_{1}^{0}$. Any gate in $\mathcal{C}_{0} \cup \mathcal{C}_{1}^{0}$, is, indeed, an (i, j) gate. Choosing D equal to the expression in (2.7) the proof becomes complete.

Remark 1. When $d_{i}=d$ for every i and n increases to ∞ the number D in Theorem 1 is $O\left(n\left[2 d^{2}(d+1)\right]^{n}\right)$.

Acknowledgements

I thank the Indian National Science Academy for its financial support for the period 2000-June 2001 during which this work was done at the Delhi Centre of the Indian Statistical Institute. I thank Amitava Bhattacharya and Jaikumar of the Tata Institute, Mumbai for several fruitful discussions on quantum computing. I acknowledge the hospitality of the Volterra Centre of The University of Rome 'Tor Vergata' where I wrote this note in July 2001.

References

[1] Jaikumar Radhakrishnan: Private communication, April 2001
[2] Nielsen M A and Chuang I L, Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) (2000)
[3] Parthasarathy K R, Lectures on quantum computation and quantum error correcting codes, Notes by Amitava Bhattacharya, Tata Institute of Fundamental Research, Mumbai (2001)

[^0]: Dedicated to Prof. A.K. Roy on his 62nd birthday.

