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Abstract. LetHi, 1 ≤ i ≤ nbe complex finite-dimensional Hilbert spaces of dimension
di, 1 ≤ i ≤ n respectively withdi ≥ 2 for everyi. By using the method of quantum
circuits in the theory of quantum computing as outlined in Nielsen and Chuang [2] and
using a key lemma of Jaikumar [1] we show that every unitary operator on the tensor
productH = H1 ⊗H2 ⊗ . . .⊗Hn can be expressed as a composition of a finite number
of unitary operators living on pair productsHi ⊗ Hj, 1 ≤ i, j ≤ n. An estimate of the
number of operators appearing in such a composition is obtained.
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1. Introduction

From the theory of quantum computing and quantum circuits (as outlined, for example, in
[2]) it is now well-known that every unitary operator on then-fold tensor product(C2)⊗n

of copies of the two-dimensional Hilbert spaceC2 can be expressed as a composition of
a finite number of unitary operators living on pair productsHi ⊗ Hj whereHi andHj
denote theith andj th copies ofC2. The proof outlined in [2] also yields an upperbound
on the number of such ‘pair product’ operators as a function ofn. Following more or
less their lines of proof and using a key lemma suggested to me by Jaikumar we present
a generalization when copies ofC2 are replaced by arbitrary finite-dimensional complex
Hilbert spaces. Thus the present note is of a pedagogical and expositary nature.

2. The main theorem

LetHi, 1 ≤ i ≤ n be complex finite-dimensional Hilbert spaces with dimHi = di ≥ 2
for everyi. Let

H = H1 ⊗H2 ⊗ · · · ⊗Hn. (2.1)

We shall identifyHi with L2(Zdi ) whereZdi is the additive Abelian group{0, 1, 2, . . . ,
di − 1} with addition modulodi , denoted by⊕. For anyx ∈ Zdi we denote

|x〉 = 1{x}
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where the right-hand side is the indicator function of the singleton set{x} in Zdi . Thus
|x〉 is a ket vector inHi and {|x〉, x ∈ Zdi } is an orthonormal basis forHi . For x =
(x1, x2, . . . , xn), xi ∈ Zdi we write|x〉 = |x1〉|x2〉 . . . |xn〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉 for
the product vector in Dirac notation. Then{|x〉, xi ∈ Zdi , 1 ≤ i ≤ n} is an orthonormal
basis forH as defined in (2.1).

A unitary operatorU onH is called an(i, j)-gatefor some 1≤ i < j ≤ n if it satisfies

U |x1, x2 . . . zxn〉 =
∑

y∈Zdi
,z∈Zdj

u(xi, xj , y, z)|x1, x2 . . . xi−1〉|y〉

|xi+1xi+2 . . . xj−1〉|z〉|xj+1xj+2 . . . xn〉
for some scalarsu(xi, xj , y, z) depending onxi, xj , y, z.

Theorem 1. There exists an integerD = D(d1, d2, . . . , dn) such that every unitary oper-
atorU onH is a composition of the form

U = Ui1j1Ui2j2 . . . Uikjk , k ≤ D

whereUirjr is an(ir , jr )-gate for eachr = 1, 2, . . . , k.

We divide the proof into several elementary lemmas and finally obtain an upper bound
for D. Our first lemma and its proof are taken from [2] and presented for the reader’s
convenience. To state it we need a definition.

Let H be anN -dimensional complex Hilbert space with a fixed orthonormal basis
{e1, e2, . . . , eN }. A unitary operatorU in H is said to beelementarywith respect to this
basis androoted in the pair{ei, ej } for some 1≤ i < j ≤ N if there exist scalarsα, β
satisfying|α|2 + |β|2 = 1 and

Uei = αei + βej ,

Uej = −βei + αej ,

Uek = ek for everyk /∈ {i, j}.
Lemma1. LetU be any unitary operator in a complex Hilbert spaceH with an orthonor-
mal basis{e1, e2, . . . , eN }. ThenU can be expressed as

U = λU1U2 . . . Uk, k ≤ N(N − 1)

2

whereλ is a scalar of modulus unity and eachUi is elementary with respect to the basis
{e1, e2, . . . , eN }.
Proof. Let the matrix ofU in the basis{e1, e2, . . . , eN }, denoted byU again, be given by

U =



u11 u12 . . . u1N
u21 u22 . . . u2N
. . . . . . . . . . . .

uN1 uN2 . . . uNN


 .

If u21 = 0, do nothing. Ifu21 6= 0, left multiply both sides by

U1 =



α β 0

−β α

0 IN−2



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where

α = u11√
|u11|2 + |u21|2

, β = u21√
|u11|2 + |u21|2

.

Then the matrixU1U assumes the form

U1U =



u′

11 u′
12 . . . u′

1N
0 u′

22 . . . u′
2N

u31 u32 . . . u3N
. . . . . . . . . . . .

uN1 uN2 . . . uNN


 .

We now repeat the same procedure with left multiplication by aU2 which is elementary
and rooted in{e1, e3} and make the 31 entry inU2U1U vanish. Continuing thisN − 1
times we get

UN−1UN−2 . . . U2U1U =




v11 v12 . . . v1N
0 v22 . . . v2N
0 v32 . . . v3N
...

...
...

0 vN2 . . . vNN


 .

The orthonormality of the column vectors on the right-hand side implies|v11| = 1, v12 =
v13 = · · · = v1N = 0. Thus

v11UN−1UN−2 . . . U2U1U =




1 0 . . . 0
0 w22 . . . w2N
...

...
...

0 wN2 . . . wNN


 .

Now an induction on the size of the matrix and pooling of the scalars shows the existence
of a scalarλ and elementary unitary matricesU1, U2, . . . , Uk such that

λUkUk−1 . . . U1U = I.

Transferring the scalar and theUi ’s to the right-hand side gives the required composition
with k ≤ (N − 1)+ (N − 2)+ · · · + 2 + 1 = N(N − 1)/2. �
Following the methods of quantum computing we draw a ‘circuit diagram’ by indicating
Hi by a ‘wire’ and a unitary operatorU onH = H1 ⊗H2 ⊗ · · · ⊗Hn by

U

1
2

nv
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and callU a gate. If ui ∈ Hi and|u1〉|u2〉 . . . |un〉 ∈ H we say that the gateU produces
theoutputU |u1〉|u2〉 . . . |un〉 for the input |u1〉|u2〉 . . . |un〉 and express it as

U

|u1〉
|u2〉

|un〉

U|u1〉 |u2〉 |un〉|u1 |u2〉 |un〉
input output

〉

If we have unitary operatorsU,V onH then we have

=U V VU

Here an input goes through the first gateU and then through the second gateV . Thus
gates must be enumerated from left to right whereas operator multiplication is in the
reverse order. IfU is a gate onH1 ⊗ H2 ⊗ · · · ⊗ Hi thenU ⊗ I , whereI is the identity
onHi+1 ⊗ · · · ⊗Hn is represented as

1
2

   i
i + 1
  

n

U

This notation can be adapted to any block of wires. We now introduce the most important
and central notion of a quantum gate depicted by

a1

a2

ai − 1

L

an

ai + 1

This gate denotes the unique unitary operatorU in H satisfying for anyψ ∈ Hi, aj ∈
Zdj , j 6= i
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U |a1a2 . . . ai−1〉|ψ〉|ai+1ai+2 . . . an〉
= |a1a2 . . . ai−1〉(L|ψ〉)|ai+1ai+2 . . . an〉,

U |x1x2 . . . xi−1〉|ψ〉|xi+1xi+2 . . . xn〉
= |x1x2 . . . xi−1〉|ψ〉|xi+1xi+2 . . . xn〉

if
(x1, x2, . . . , xi−1, xi+1 . . . , xn) 6= (a1, a2, . . . , ai−1, ai+1, . . . , an),

L being a unitary operator inHi . It is called a quantum gatecontrolledata1, a2, . . . , ai−1,

ai+1, . . . , an on the wires 1, 2, . . . , i−1, i+1, . . . , n andtargetedby the unitary operator
L on theith wire. Denote the set of all such gates byCn−1.

For any of the groupsZdi we write for anyx ∈ Zdi

α(x) =
{

1 if x = 0,
0 otherwise.

Then we have, for example,

a1

L

a2

= U

whereU is the unique unitary operator inH1 ⊗H2 ⊗H3 satisfying

U |x1〉|ψ〉|x3〉 = |x1〉(Lα(x1−a1)α(x3−a3)|ψ〉)|x3〉
for all x1 ∈ Zd1, x3 ∈ Zd3, ψ ∈ H2, a1 ∈ Zd1, a2 ∈ Zd2 andL a unitary operator inH2.

We denote byCk the set of all gates which are controlled onk wires and targeted by
some unitary operator on a wire different from thesek wires. For example

L

ai

1
2

i

j

n

is aC1 gate satisfying

U |x1x2 . . . xn〉 = |x1x2 . . . xj−1〉(Lα(xi−ai )|xj 〉)|xj+1xj+2 . . . xn〉
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for all xr ∈ Zdr , 1 ≤ r ≤ n.
Whenever the controls are at the null elements of the groupsZdi we indicate them by

dots on the appropriate wires. For example

L

is a gate inH1 ⊗H2 ⊗ · · · ⊗H6 satisfying

U |x1x2 . . . x6〉 = |x1x2〉(Lα(x2)α(x5)α(x6)|x3〉)|x4x5x6〉

for all xi ∈ Zdi , 1 ≤ i ≤ 6. This is an example of aC3 gate which is controlled at 0 on
wires 2, 5, 6 and targeted byL on wire 3.

We denote byC0
k ⊂ Ck the subset of those gates where all the controls are at 0.C0

denotes the set of all gates inH1 ⊗ H2 ⊗ · · · ⊗ Hn which are targeted on one wire but
without any control on other wires. For example

1

2

L

i − 1

i

i + 1

n

is aC0 gate satisfying

U |x1x2 . . . xn〉 = |x1 . . . xi−1〉(L|xi〉)|xi+1 . . . xn〉

for all xi ∈ Zdi , 1 ≤ i ≤ n.
When the targeted operatorL on theith wire is the cyclic permutation of the basis in

Zdi , i.e.,L|x〉 = |x ⊕ 1〉 we indicate it on theith wire by⊕. For example,
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a1

means the gate satisfying

U |x1x2x3〉 = |x1x2〉|x3 ⊕ α(x1 − a1)〉.

With these conventions adapted to our situation from the theory of quantum computing
(as outlined for example in [2,3]) we are ready to formulate and prove a lemma due to
Jaikumar [1].

Lemma2. [1] LetL be any unitary operator inHn. Then

2

n − 2

n − 1

n L B CL B B

1 2 dn − 1

4

3

1

=

whereB = C−1, C = L1/dn−1 is a fixeddn−1th root of L. The right-hand side is a
composition of2(dn−1 + 1) gates fromC0

n−2.

Proof. Consider an input|x1x2 . . . xn−1〉|ψ〉. The left-hand side produces the output

|x1x2 . . . xn−1〉Lα(x1)α(x2)...α(xn−1)|ψ〉. (2.2)

We now examine the output produced by the ‘quantum circuit’ on the right-hand side.
After passage through the firstC0

n−2 gate we get

|x1x2 . . . xn−1〉Lα(x2)...α(xn−1)|ψ〉.

When this passes through the nextj pairs of gates withj ≤ dn−1 we get the output

|x1x2 . . . xn−2〉|xn−1 ⊕ jα(x1) . . . α(xn−2)〉Brjα(x2)...α(xn−2)Lα(x2)...α(xn−1)|ψ〉

where

rj =
j∑
s=1

α(xn−1 ⊕ sα(x1) . . . α(xn−2)).
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Sincedn−1 and 0 are to be identified in the groupZdn−1 we see that the passage through
thedn−1th pair and then the last gate yields the final output

|x1x2 . . . xn−1〉Cα(x1)...α(xn−2)Brα(x2)...α(xn−2)Lα(x2)...α(xn−1)|ψ〉 (2.3)

where

r =
dn−1−1∑
s=0

α(xn−1 ⊕ sα(x1)α(x2) . . . α(xn−2)). (2.4)

Supposexj 6= 0 for some 2≤ j ≤ n − 2. Then the expression (2.3) reduces to|x1x2 . . .

xn−1〉|ψ〉 and coincides with (2.2). Thus it suffices to examine the case whenxj = 0 for
2 ≤ j ≤ n− 2. Then (2.3) and (2.4) reduce respectively to

|x10, 0 . . .0xn−1〉Cα(x1)BrLα(xn−1)|ψ〉 (2.5)

and

r =
dn−1−1∑
s=0

α(xn−1 ⊕ sα(x1)). (2.6)

Now we examine four cases.

Case1. x1 6= 0, xn−1 6= 0.
We haveα(x1) = α(xn−1) = r = 0 and (2.5) reduces to|x100. . .0xn−1〉|ψ〉.

Case2. x1 6= 0, xn−1 = 0.
We haveα(x1) = 0, α(xn−1) = 1, r = dn−1 and (2.5) reduces to

|x100. . .0〉Bdn−1L|ψ〉 = |x10 . . .0〉|ψ〉,
owing to the definition ofB andC in the lemma.

Case3. x1 = 0, xn−1 6= 0.
Now α(x1) = 1, α(xn−1) = 0 andr = ∑dn−1−1

s=0 α(xn−1 ⊕ s). As s varies from 0 to
dn−1 − 1 exactly one of the elementsxn−1 ⊕ s is 0 and hencer = 1. Thus (2.5) reduces
to |00. . .0xn−1〉CB|ψ〉 = |00. . .0xn−1〉|ψ〉.
Case4. x1 = 0, xn−1 = 0.

Now α(x1) = 1, α(xn−1) = 1 andr = ∑dn−1−1
s=0 α(s) = 1. Thus (2.5) reduces to

|00. . .0〉CBL|ψ〉 = |00. . .0〉L|ψ〉.
In other words, in all the cases, the two circuits on both sides of the lemma produce the
same output. The last part of the lemma is obvious. �
COROLLARY 1

Let d = maxi di . Then any gate inC0
n−1 is a composition of at most[2(d + 1)]n−2 gates

in C0
1.

Proof. By the last part of Lemma 3 and a shuffle of the wires it follows that anyC0
n−1 gate

is a composition of at most 2(d + 1) gates fromC0
n−2. Rest follows from induction. �
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Lemma3. InHi = L2(Zdi ) denote byTa, a ∈ Zdi the unitary operator satisfyingTa|x〉 =
|x + a〉 for everyx ∈ Zdi . Then for anyai ∈ Zdi , i = 1, 2, . . . , n − 1 and any unitary
operatorL in Hn the following holds:

Ta1

Ta2

T−a1

T−a2

T−an − 1
Tan − 1

L L

an − 1

a2

a1

=

Proof. Apply both sides to the input|x1x2 . . . xn−1〉|ψ〉 for anyxi ∈ Zdi , i = 1, 2, . . . , n−
1 andψ ∈ Hn. A straightforward check by inspection completes the proof. �
Lemma4. AnyCn−1 gate can be expressed as a composition of at most2(n − 1) gates
fromC0 and[2(d + 1)]n−2 gates fromC0

1.

Proof. By Lemma 3 anyCn−1 gate is a composition of 2(n− 1) gates fromC0 and aC0
n−1

gate. The required result follows from Corollary 1. �
To state our next lemma we introduce a definition.
For anya 6= b, a, b ∈ Zdi we define theswapoperatorS(a, b) in L2(Zdi ) as the unique

unitary operator satisfying

S(a, b)|x〉 = |x〉 if x /∈ {a, b},
= |b〉 if x = a,

= |a〉 if x = b.

Lemma5. Let ai, bi ∈ Zdi , i = 1, 2, . . . , k, ai 6= bi for everyi. Consider the unitary
operatorU in H1 ⊗H2 ⊗ · · · ⊗Hk determined by

U |a1a2 . . . ak〉 = α|a1a2 . . . ak〉 + β|b1b2 . . . bk〉,
U |b1b2 . . . bk〉 = −β|a1a2 . . . ak〉 + α|b1b2 . . . bk〉,
U |x1x2 . . . xk〉 = |x1x2 . . . xk〉 if (x1, x2, . . . , xk) /∈ {(a1, a2, . . . , ak),

(b1, b2, . . . , bk)}
wherea, β are scalars satisfying|α|2 + |β|2 = 1. Define the unitary operatorL in Hk by
the equations

L|ak〉 = α|ak〉 + β|bk〉,
L|bk〉 = −β|ak〉 + α|bk〉,
L|x〉 = |x〉 if x /∈ {ak, bk}.



12 K R Parthasarathy

ThenU can be expressed as

S (a1, b1) a1

b2

bk − 1

bk

a1 a1 a1 a1 S (a1, b1)

b2

b3b3 b3

bk bk bk bk bk

bk − 1 bk − 1 bk − 1

S (a2, b2)

S (a3, b3)

a2 a2 a2

a3 a3 a3

ak − 1

L

S (ak − 1, bk − 1) S (ak − 1, bk − 1)

a2

where the circuit has2k − 1 gates fromCk−1 and the last(k − 1) gates are also the first
(k − 1) gates in reverse order.

Proof. By the definition ofL, the kth gate in the circuit is an elementary opera-
tor with respect to the basis{|x1x2 . . . xk〉, xi ∈ Zdi , 1 ≤ i ≤ k} rooted in the pair
{|a1a2 . . . ak〉, |a1, a2 . . . ak−1, bk〉} and all other gates are unitary operators whose squares
are equal to identity. Since the composition of the last(k − 1) gates is the inverse of the
composition of the first(k − 1) gates it follows that the circuit in the lemma yields a gate
which is conjugate to an elementary operator. Now consider the two inputs|a1a2 . . . ak〉
and |b1b2 . . . bk〉 for the circuit in the lemma. By the definition ofL it follows that the
respective outputs are, indeed,U |a1a2 . . . ak〉 andU |b1b2 . . . bk〉. ThusU is represented
by the circuit in the lemma. �
Proof of Theorem1. LetN = d1d2 . . . dn denote the dimension ofH = H1⊗H2⊗. . .⊗Hn
and letd = maxi di . Now letU be an arbitrary unitary operator inH . By Lemma 1,U
can be expressed as a product of a scalarλ of modulus unity and at mostN(N − 1)/2
unitary operators, each of which is elementary with respect to the basis{|x1x2 . . . xn〉, xi ∈
Zdi , 1 ≤ i ≤ n}.

Now consider a pair of product vectors of the form

|x1x2 . . . xn〉, |y1y2 . . . yn〉 where #{i|xi = yi} = r.

After an appropriate permutation of{1, 2, . . . , n} (or equivalently, a shuffling of the wires)
we may assume, without loss of generality, that

(x1, x2, . . . , xn) = (c1, c2, . . . , cr , a1, a2, . . . , ak),

(y1, y2, . . . , yn) = (c1, c2, . . . , cr , b1, b2, . . . , bk)

wherek+ r = n andai 6= bi for every 1≤ i ≤ k. By addingr more wires to the circuit in
Lemma 5 and putting controls atc1, c2, . . . , cr on these wires above each of the gates we
observe that a gate which is elementary with respect to our fixed coordinate system and
rooted in the pair{|c1c2 . . . cra1a2 . . . ak〉, |c1c2 . . . crb1b2 . . . bk〉} can be expressed as a
composition of(2k− 1) gates fromCn−1. Now an application of Lemma 4 shows that this
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same elementary operator can be expressed as a composition of at most(2k−1){2(n−1)+
[2(d + 1)]n−2} gates fromC0 ∪ C0

1. ThusU can be expressed as a composition of at most

N(N − 1)

2
(2n− 1){2(n− 1)+ [2(d + 1)]n−2} (2.7)

gates fromC0 ∪ C0
1. Any gate inC0 ∪ C0

1, is, indeed, an(i, j) gate. ChoosingD equal to
the expression in (2.7) the proof becomes complete. �
Remark1. Whendi = d for everyi andn increases to∞ the numberD in Theorem 1 is
O(n[2d2(d + 1)]n).
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