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I. INTRODUCTION

THE investigation of the possible modes and frequencies of vibration of the
atoms in diamond about their positions of equilibrium is a necsssary step
for the interpretation of the Raman and infra-red specira of this solid. Such
an investigation is also essential for the interpretation of the emission and
absorption spectra of luminescent diamonds at low temperatures and indeed
also the other physical properties in which the vibrations of the atoms are
involved. The spectroscopic behaviour of diamond has during recent years
been thoroughly investigated at Bangalore by the several distinct methods
mentioned above. In particular, the present author has recently carried out
a detailed experimental study (1946, 1947) of the infra-red absorption spectra
of numerous samples of diamond. It has accordingly become necessary
to consider in some detail, the nature of the vibration spectrum of this sub-
stance.

According to the new theory of crystal dynamics recently put forward by
Sir C. V. Raman (1943), the structure of diamond is capable of nine indepen-
dent normal modes of vibration out of which the frequencies of two are the
same, thus giving rise to a spectrum having eight numerically different vibration
frequencies. Following Nagendra Nath (1934), Bhagavantam (1943) and
Chelam (1943) have derived expressions for the frequencies of vibration of
the various modes. But their treatment of the problem with three constants
alone to represent the interatomic forces is inadequate. A more general
and Tigorous dynamical treatment of the problem is obviously called for,
and this has been carried out in the present work on the lines indicated by
Sir C. V. Raman in his theory of the dynamics of crystal lattices.

2. DESCRIPTION OF THE MODES

The new theory of crystal dynamics leads to the result that the structure
of a crystal consisting of p non-equivalent atoms in each unit cell is capable
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of (24p—3) modes of vibration, out of which (3p—3) represent vibrations
in which the dynamic repeating pattern is the unit cell of the crystal. The
remaining 21p modes represent vibrations in which the dynamic repeating
unit is a super-cell having twice the linear dimensions of the unit cell. In
the case of a face-centred cubic lattice having one atom per unit cell, it can
be shown that the normal and tangential oscillations of the octahedral planes
of atoms and the normal and the tangential oscillations of the cubic planes
of atoms having degeneracies of 4, 8, 3 and 6 respectively, correspond to
the 21 degrees of freedom representing the vibrations of the superlattice.
In a case like diamond where there are two non-equivalent atoms in the unit
cell, there are two possibilities corresponding to every one of the above four
distinct modes of the face-centred cubic lattice, since the two non-equivalent
atoms in the unit cell can now move either in the same phase or in opposite
phases. In adddition, there will be one other frequency corresponding to
the (3p—3) modes, having a degeneracy of 3 which represents the oscillation
of the two interpenetrating lattices of carbon atoms against each other, thus
making up a total of nine independent modes having degeneracies of 4, 4,
8, 8,3,3,6,6 and 3. However, because of the numerical equivalence of
the frequencies of the two triply degenerate modes of the superlattice, there
will be only eight distinct frequencies in the vibration spectrum. The 45
degrees of freedom together with three transitions make up 48 which agrees
with the number of degrees of freedom to be expected for the 16 atoms in
a supercell having twice the linear dimensions of the unit cell. Table I

TaBLE I
o
o g Relative
] 5 N Observ-
§ a:.)a Oscillating units glffgggi pf:::e:tf Operative Force-constant ed fre-
Z o layers quencies
7} /A
cm.™t
1 3 | The two lattices | Arbitrary | Opposite ;] P—4Q+4S+8U—123 1332
11 8 | Octahedral planes fo11] Opposite | P—2Q—2R+4W +62+62 | 1250
III| 6 | Cubic , [01]] | *Same | P—4R-4S5-120 1232
v 4 | Octahedral ,, [111] Same P+2Q—-4R-8W-62+120| 1149
v 3 | Cubic ’ [100] | Opposite| P+45—-8U 1088
| VI 3 | Cubic " [100] Same P+4S-8U 1088
VII 4 | Octahedral ,, [111] | Opposite | P—2Q+4R—-8W+6Z - 1282} 1008
VIII | 6 | Cubic . [011] [*Opposite | P+4R—4S+1282 752
IX | 8 | Octahedral ,, [01I] | Same P+2Q+2R+4W-62-612 620

* See text for some explanatory remarks in these two cases.

contains a full description of the nine normal modes of vibration arranged in

a descending sequence of the magnitudes of their frequencies determined
as explained later.
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3. Tue EQUATIONS OF MOTION

Since in any particular normal mode of vibration of any conservative
dynamical system, all the particles vibrate with the same frequency, it is
enough, in our present case, if we consider the equation of motion of any
one atom, in order to obtain expressions for the frequencies of vibration of
all the different modes. It is necessary here to decide as to how many of
the neighbouring atoms are to be taken account of in deriving the equations
of motion of a particular atom. There can be no question that the influence
of the neighbouring atoms decreases rapidly as we go to the more and more
distant ones. There is therefore no reason why we should not confine our

attention to a limited number of neighbours in framing the equations of -

motion of a particular atom. In the present treatment, we shall take account
of the influence of 28 atoms nearest to the one under consideration, these
falling into three groups comprised of 4, 12 and 12 atoms respectively,
situated at the same distance from the particular atom. We shall suppose
this latter to be situated at the origin of a Cartesian co-ordinate system having
its three axes along the three cube directions. Also let the suffix 0 represent
this atom in what follows. Then the four atoms (1 to 4) situated at the ends
of the tetrahedral axes are the nearest neighbours. The point 0 is common
to twelve cube faces, four of them parallel to YZ, four to ZX and the remain-
ing four to the XY planes of the co-ordinate system. The twelve atoms at
the face centres of these twelve cube faces (5 to 16) represent the next-nearest
neighbours of atom 0. The positions of the twelve atoms (17 to 28) can be
arrived at by the translations of the four nearest neighbours, by the length
of the edge of the unit cube along x, y and z axes in positive or negative
directions according as atom 0 is situated in positive or negative directions
of the co-ordinate system with respect to these atoms. The co-ordinates of
all the 28 neighbours in fractions of the length of the edge of the unit cube,
are contained in Table II.

Let x, y, z denote the displacements of the atom 0 and x;, y;, z;, the dis-
placements of the 28 neighbours from their equilibrium positions at any
instant of time z. Then, if m denotes the mass of the carbon atom, the three
equations of motion of atom 0 are:—

2 2
dl x0 1 xi 1 yi 1 zi
2 2 28
mY B =P+ Iy F + I F 2)
dt yo 1 xi 2 yi 1 z
d*z 20

maa—F, ~ I B 4 IpE 4L, (3)
dt 1 xi 1 b ! 4
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TABLE II
Showing the Co-ordinates of the 29 atoms

Atom No. X y Z { Atom No. X ¥y z
0 0 0 0
1 % X % 2 4 -% -4
3 -% e ~ % 4 - % -% %
5 0 % Y 6 0 -% -4
T 0 % -% 8 0 - Ya
9 % 0 % 10 ) 0 -1
11 -4 0 -Y% 12 - % 0 |24
13 % % 0 14 )/ -1 0
15 -4 % 0 16 -1 -4 0
17 -¥% % Y 18 % -% 74
19 % X -y 20 -% - % - %
21 % % -4 22 X -% ¥
23 % A -% 24 -¥ -¥ - %
25 - X A % 26 % -4 A
27 - % % Y 28 -¥ -y 3y

F=, Fw and F are the restoring forces along the three directions for unit
displacements of atom 0. The contribution by any atom to each of the
above three equations consists of three different terms. The three tearms on
the right hand side of equation (1) rspresent the forces produced in the x
direction on atom 0, due to displacems=nts of atom i in the x, y or z direction
“respectively. Similarly the terms on the right hand side of equations (2)
and (3) represent the forces along the y and z directions respectively due to
x, y and z displacements of atom i. Since the summation is to be carried
out over all the 28 neighbours, the three equations contain (28 X 9 4 3)
= 255 force components. Actually, however, the number of independent
force constants appearing in the equations is reduced considerably by
reason of the high degree of symmetry of the crystal. The exact manner in
which this reduction is carried out is described below.

1t 1s well known that every crystal by virtue of its symmetry is character-
ised by a set of symmetry operations which have the property of transforming
the entire crystal into itself. In what follows, we shall deal only with sym-
metry operations which leave the position of atom 0 unchanged. This res-
triction is essential because we are concerned here with the forces produced
at the point 0 due to dispiacements of the neighbouring atoms. Any sym-
metry operation can now result only in the interchange among themselves
of the individual groups of atoms (4, 12 and 12) which are equidistant from 0.
All the atoms of each such group belong to one or the other of the two inter-
penetrating lattices of carbon atoms. It is also easy to see that digonal
rotations about the three cubic axes passing through O and reflections in the
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six planes of symmetry containing atom 0 and belonging to the tetrahedral
group of operations, are sufficient to enable us to bring into coincidence
any atom of a particular group with any other atom of the same group.

In the general case of interaction between any two atoms, there will be
nine force-components as mentioned above, because corresponding to each
one of the three displacements of one of the atoms, there will be a compo-
nent of the force produced along all the three directions on the second atom.
In order to illustrate the manner in which some of the force-components
transform among themselves, we shall associate every one of the neighbour-
ing atoms of 0 with three vectors F,;, F,; and F,; corresponding to the three
displacements, and the atom 0 with three vectors F*, F*” and F* corres-
ponding to the directions of the force components. Every force component
will then be connected with two vectors, one corresponding to the direction
of the force component on atom 0 and the other corresponding to the direc-
tion of displacement of the atom producing the force. For example, the
force component F is associated with the two vectors F” and F,;. [If,
by the application of a symmetry operation, the two vectors associated with
a force component due to an atom i are transformed into the two vectors
associated with a force component due to another atom j, then the magnitudes
of the two force components will be the same. For instance, if the two
vectors F”” and F,; are transformed respectively into F” and F,; then
Fro = F% (in magnitude only). The two components have the same sign
if by the application of the particular operation, the signs of both the vectors
associated with one of the force components remain the same and also when
both of them are reversed. If however, the sign of one of the vectors is
reversed while the sign of the other remains the same, then the two force
components will be of opposite sign. In this manner we can determine the
relative signs of the force components due to a particular group of atoms.
In order to fix the absolute signs of the components with respect to our co-
ordinate system, we can consider those components having both their vectors
along the positive directions or both along the negative directions of the
co-ordinate system, to be negative. Obviously then, the force on any atom
P which is proportional to its own displacement, for which the directions of
the displacement and of the force are opposite will be positive.

In the case of diamond we find that in addition to the force P, the forces
due to the displacements of the nearest neighbours of any atom can be repre-
sented by two constants Q and R, of the next-nearest neighbours by five
constants S, T, U, V and W, and of the atoms 19 to 28 by five constants
a, B, y, 8 and e A description of the 255 force-components appearing in
the three equations (1), (2) and (3) is contained in Tables III, IV and V.
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TaBLE III

Force-components acting in the x-direction on atom 0

Atoms responsible for the forces, the directions

Symbol of their displacements being
x ¥ -y z -3

P 0
Q s/ 1to 4 .e - oe
R 1,4 2,3 1,3 2, 4
S .| 5to8
T 58 6, 7 5,7 6, 8
U .| 9to 16 . oo
\% 9,12 10, 11 13, 15 14, 16
w 13, 16 14, 15 9,11 10, 12
a .| 18,19,

21, 22,

24, 25,

27, 28
g .- . 18, 27 21, 24 19, 25 22, 28
Y . .. 19, 28 22, 25 18, 24 21, 27
3 ..| 17,020

23, 26
e .o . 17, 26 20, 23 17, 23 20, 26 l

The exact manner in which the force-components are reduced to 13
independent constants can be understood from these tables. Table III for
example, describes the force-components acting on atom 0 due to all possible
displacements of the 29 atoms capable of producing a force on atom O in
the x-direction. The symbol at the head of each column in Table III de-
notes the direction of displacements of the atoms which result in a force-
component along the positive direction of the x-axis on atom 0. The
symbol at the head of each row denotes the magnitude of the force per unit
displacement. If we take for instance atom 12, the three X components of

force on atom 0 due to x, y and z displacements of the former along the
positive directions of the axes are:—

Fz,=U, Fg,=V and Fz, = —

¥12 +z12

The negative sign occurs in the last equation because it is seen from Table
III that the z-displacement vector of atom 12 is negative. Thus Table III
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TaBLe IV
Force-components acting in the y-direction on atom 0
Atoms responsible for the forces, the directions
of their displacements being
Symbol
T -x ¥ 2 -z
P . 0
Q T . . lto 4
R 1,4 2,3 . 1,2 3, 4
) 9to12
T 9,12 | 10,11 . 9,10 | 11,12
U . bto8& o8
13 to 16
A J 5,8 6, 7 .- 13,14 | 15,16
w o 13,16 | 14,15 . 5,6 7,8
a . . - 117,19, 20,
22,23, 25,
26, 28,
B . 1726 | 20,23 . 19, 22 | 25, 28
y -+| 19,28 | 22,25 o 17,20 | 23,26
8 LX) .o X 18, 21,
24,27
] .0 18,27 | 21,24 . 18 21 | 24,27

directly gives us the values of the 85 x-components, Table IV the 85 y-compo-
nents and Table V the 85 z-components of force acting on atom 0. The
255 force-components being known, we can at once write down the equa-
tions of motion of any normal mode of vibration, by substituting the proper
displacements of the various atoms (taking care to insert the correct signs)
involved in the particular normal mode.

4, THE EXPRESSIONS FOR THE FREQUENCIES OF VIBRATION

In order to express the frequencies of vibration of the different normal
modes in terms of the force constants, it is necessary to substitute the dis-
placements of the different atoms from the equilibrium configuration in any
particular normal mode, in the three equations 1, 2 and 3 and solve them
for the frequency. It should be borne in mind that the x, y and z displace-
ments of any atom are numerically equal to the corresponding displacements
of every other atom in the structure, The method of solution can be best
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TABLE V
Force-components acting in the z-direction on atom 0
Atoms responsible for the forces, the directions
Symbol of their displacements being
x - ¥y -y z
P oo . . )
Q 1to4
R 1,3 2,4 1,2 3,4
S o 13to 18
T 13,15 | 14,16 | 13,14 | 15,16
U o 5to 12
v 5,1 6, 8 9,10 11, 12
w 9,11 | 10,12 5,6 7, 8
a . .- 17, 18,
’ 20, 21,
23, 24,
26, 27
B L1723 )20, 26 18,21 24, 27
b4 <1 18,24 21, 27 17, 20 23, 26
3 19, 22,
25, 28
€ «o| 19, 25 22, 28 19, 22 25, 28 .

explained by illustrating it with a particular case. In mode 2 of Table I
representing the tangential motion of the octahedral planes of atoms, if we

assume the motion to be in the yz plane, then the x displacements of all
the atoms are zero. The y displacement:are given by

Y == Y1 = Yg= Y10= Y12= Y14= Y15= V20 10 Vs

==Yy 10 —Ys= — Vo= — Yu= — Y13= — Yis= — Y17 0 — V1

and the z displacements are given by z;=ky, k being an arbitrary
constant.

Equation 1 becomes zero, while 2 and 3 are reduced to
2

d
may = (P — 2Q + 2kR — 4kW + da — 2kB—2ky + 286 — 2ke)y  (4)

km S Y= (kP + 24Q + 2R — 4W + ko — 28— 2+ 2k5 — 29y (5)
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On subtracting (5) from (4) the constant k vanishes, showing that the fre-
quency is the same for all values of k including our particular value (k = — 1)
and we get

ne —yP-2Q-RH4W 22+ ) +2B+y+ ) ©

The frequency of vibration is therefore given by
4ntvicim = (P — 2Q — 2R + 4W 4 62 4 692) (7)

where =% (2a + 8) and 2=3(8 + y -+ ¢) and v and c are respectively
the frequency in wavenumbers and the velocity of light. In a similar manner,
the expressions for all the modes can be obtained easily and are contained in
column 6 of Table I. Table I also contains a detailed description of all the
modes in columns 2 to 5. There is however an ambiguity with regard to
the description of the relative phases of nearest layers in the case of the modes
III and VIII. The ambiguity arises because the cubic planes of atoms in
diamond are arranged at equal intervals. This fact does not make any
difference with regard to the description of modes V and VI because the
expressions for the frequencies of these two modes are the same. The ambi-
guity in the case of III and VIII can be cleared up if we consider any two
neighbouring layers for which the phases of motion are the same, and then
describe the direction of motion in the two cases, with respect to the plane
of the valence bonds joining the two layers. In such a case the direction of
motion in III will be perpendicular to the plane of the bonds and in VIII
parallel to the plane.

It will be noticed that the constants T and V do not appear in any of the
equations. These represent two of the three transverse force-constants
due to the displacements of the twelve next-nearest neighbours previously
described as situated at the face centres of the twelve cube faces originating
from the point 0. Owing to the nature of the displacements of these atoms
in the various normal modes, they cancel out from the frequency formule.

5. THE FORCE CONSTANTS

In addition to the eight expressions for the frequencies of vibration of
the various modes, we can obtain one more relation between the constants
which corresponds to the translation of the entire crystal having zero fre-
quency. Substituting the values of the force components appearing in equa-
tions 4, 5 or 6, we obtain for the case of diamond

P+4Q +4S+8U+ 122)=0 &)

We have now got nine expressions involving the eight constants P, Q, R,
S,U,W,Z and 2. The constants are therefore perfectly determinate if
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the frequencies corresponding to each one of the different modes are taken
from the results of the experimental investigations on the vibration spectrum
of diamond. The identification of the frequencies contained in column 8
of Table I with the different modes has been carried out with the help of the
sequence contained in the same table. The two low frequencies appearing
as the last two in Table I have not been measured very accurately. But,
a combination of these two has been found to occur at about 1370 cm. ™! in
infra-red absorption and in luminescence and absorption at low temperatures
in the visible region. The eight constants appearing in the equations have
therefore been determined by using the values of the six accurately known
frequencies and the fact that the sum of the low frequencies is at about
1370 cm.~! The values of the constants obtained are contained in Table V1.

TABLE VI

Numerical values of the force-constants X 107% dynes per cm.

Atom 0 Atoms 1 to 4 Atoms 5 to 16 Atoms 17 to 28
P Q R S U w p Q
7.85 —1:39 ~0-858 -0.0056 | —0-131 ~0-114 —0-06 +0.006

The fourth, fifth and sixth columns of Table VII show the frequencies
calculated from abbreviated formule containing only the force constants

TABLE VII
Calculated values of the frequencies
Frequencies from abbreviated
formulz
Sequence Deriix;e- Operative Force-constant ggﬁiff
P only P, Q,R 1;’ I?" \%
! cm,™1 cm,? cm."1, cm. ™!
I 3 | P-4Q+45+8U~122 1020 1351 1294 1332
I 8 P—-2Q-2R+4W +62+6(2 1020 1294 1269 1250
I1I 6 | P—4R—45-120 1020 1234 1236 1232
Iv 4 | P+2Q-4R-8W-6=-+1202| 1020 1064 1123 1149
V&VI | 3+3 | P+45-8U 1020 1020 1088 1088
VII 4 | P-2Q+4R-8W+62-1202| 1020 - 973 1038 1008
VIl 8 | P+4R—45+120Q 1020 744 146 752
IX 8 P+2Q+2R+4W~-6=-6 12 1020 635 £82 620

shown, the number of neighbouring atoms taken into account being res-
pectively 0, 4 and 16, The last column gives the experimentally observed
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values which are also those given by the complete expressions taking all the
force constants for the 28 neighbouring atoms into account. The values
of the constants assumed are in every case those shown in Table VL.

It will be noticed from Table VI that P, Q and R are numerically by far
the largest constants, as is to be expected since the four nearest atoms are
linked directly by valence bonds to the atom under consideration, while the
other atoms are only indirectly connected with it. Further, all the constants
except P and £ are seen to be negative. This could have been foreseen from
equation (8), since P being taken as positive, then by the nature of the case
the quantities Q, S, U and Z should be negative, while the constants R and
W come out negative by reason of the convention adopted regarding their
sign. Table VI further shows that P is greater than 4Q, as could also have
been foreseen from relation (8). The constant S comes out as practically
negligible, and this is not surprising since it represents the forces on any
atom due to others situated in the same cubic plane but not directly linked
with it, the direction of both force and displacement being normal to the
plane.

Column 5 of Table VII shows that the three constants P, Q, R suffice
to give a tolerable fit with the experimentally observed values. The rela-
tive values of P, Q and R determine the sequence of the frequencies calcu-
lated from the formule, and this is the same as that of the observed fre-
quencies provided that numerically 2R > Q > R, as is actually the case.
That Q would be numerically greater than R could have been expected since
the former is the longitudinal and the latter the transverse component of
the force exerted by one atom on another linked to it by a valence bond.
If 2R < Q, mode IV would have a lower frequency than mode VII which
would scarcely have beemn possible in view of the much larger bond-length
variations involved in the former mode.
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SUMMARY

Exact expressions have been derived for the frequencies of the nine
normal modes of vibration of the diamond structure, which take account
of the forces of interaction between each atom and its 28 nearest neighbours.
The formule involve 8 independent constants together with an additional
relation between them, and the constants are thus perfectly determinate
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if the frequencies are known, The interactions decrease very rapidly with
the increase of distance and their magnitudes and directions as evaluated

from the observed frequencies are also otherwise in accord with theoretical
expectations.
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