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On the Rogers-Ramanujan continued fraction

K G RAMANATHAN
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Abstract. In the “Lost” note book, Ramanujan had stated a large number of results regarding
evaluation of his continued fraction

R@) €xp2rit/S exp(2mit) exp (4mit) *
T)= PR

1+ 1+ 1+
for certain values of =. It is shown that all these results and many more have their source in the
Kronecker limit formula.
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1. The continued fraction

1 x x? x3 x| <1
I+ 1+ 1+ 1+ 1%

was introduced by Rogers [7]inhis work on expansions of infinite products. He proved
that

1 3 ﬁ (1_x5n-1)(]__x5n—4)
I+ 1+ 1+ 777 L =X )1 =y

Nearly twenty years later, in 191 2, Ramanujan rediscovered this continued fraction and

~evaluated it for various values of x. If we put T = x+1iy, x, y real and y > 0 and put

R(z) = exp (2nit/5) exp (2rit) exp (4nir) N

- 1
1+ 1+ 1+ O

then Ramanujan proved
_n(t/5) @)

~———1—R(1) = ,
R(7) @ n(57)
where #(7) is Dedekind’s modular form
n() = exp(nit/12) [] (1 — exp (2nnic)).
n=1

Ramanujan’s proof of (2) is found in his unpublished manuscripts in the Oxford
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Mathematical Library. He also showed that

(LY ; ("@)
(R(r)) H=REY =369

(See [4]). From (2) it follows that R(z) is an elliptic modular function. Indeed it belongs
to the principal congruence subgroup

a b 1
(c d)E(O 1)( mod 5)

of the modular group [[2], p. 383]. If we put (z + 5)/2 instead of T we then have

G)

_oft+5 exp(nit/5) exp(mit) exp (21m:)
—S(T)——R( 5 >__ ( - o - ) (4)
Analogous to (2) and (3) one has
L o n/5)f@/5)
s T 0= Nsar6a ®
YL n0).f(x) )
(S(r)) 1= = (A ©
where f (1) is Schldfli’s modular function ‘
141
, "( 2 ) ,
f(@) = exp[—(ni/24)] o (7)
It is well-known that f(r) and 5(z) satisfy the transformation formulae
f(=1/7) = f(z); n(=1/7) = (= it)' *n(2), (®)

where (—it)*/? is positive for t on the imaginary positive axis.
In his Note books [ [ 5] Vol. II, p. 204] Ramanujan stated the two following formulae

(et )L ) (452
e A L N

where a > 0, § > 0 and o = 1. A proof of this was given by Watson [9]. Recently we
gave [3] a simple proof of these and in addition proved two new formulae

[(1%_1) + (R(io)) }[(.\ﬁi’i) + (R(iB)) J—s\/s(‘/s“”) (10)

[(1%_{)5+(S(ia))s][(;/_§i:1> +(S(iﬁ))5]=5\/5(*/ ) an

whenever « > 0, > 0 and af = 1/5. ~
Ramanujan stated (10) in his unpublished manuscripts but (11) is not to be found
anywhere though Ramanujan must certainly have known it.
In the “Lost” Note book Ramanujan [ 6] states a number of results on the continued
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fractions R(t) and S(z). Indeed on one page he states:

I— 14+ 1- 14"

Z _ 5 _ 1071/2Y1/5
= {5 [ (4T
{F(exp(—n/\/ﬁn

F(exp(—n\/g/—g)) =
F(exp (—n/5)) =

{F(exp(fn/\/ﬁg)) = [5J/5-7 + (35(5—2./5)) 12119
Flexp(—ny/7/5)) = [—5/5—7+(35(5+2./5))1/2]1/5

{ F(exp (—n/,/45)) =
F(exp(—n./9/5)) =

...................

It is obvious from the way he brackets the results, that they are related to (11) which
Ramanujan must have known.

Our object in this note is not only to prove these results and other results of -

Ramanujan’s stated in the Note books, but also to show that the real source of such
results is to be found in the Kronecker limit formula. We thus obtain many other results
not given by Ramanujan.

2. Clearly S(ix) = F(exp (— na)), o > O.
We shall therefore first deal with the two simple cases given by Ramanujan

_ 1
o= =3

7

1
If we put « = f = —in (11) we at once get

NG
(\/52“ 1)5 +(86//3)° = [5\/5 (ﬁzul)s}m
which shows

[exp<—n/sﬁ> exp(—7/\/5) exp(=21/,/3) ] __ <¢§ - 1)5 .

1— 1+ 1— 2

-

T e
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Hence we have

exp(=n/5./5) exp(~//5) exp(=27/./5)
1- 1+ 1-

- /5
[R5 )]
Next let us take « = f =1 in (9). Then

s=(138) " o=

2 2
In (11) let us take « = 1, § = 1/5. Then

(L)

V51V [(5=B\2 (L S-1\)°
2 ) T\ T2 2
We could simplify this and obtain finally

exp(—mn/25) exp(—=n/S) exp(—2n/5)
1- 1+ 1- o

LR

3. Let n > 0 be an odd integer and let us take = = i/,/5n in (6). Using (8) we obtain

5—1\°
(SG/5))° = —(\f 3 )

o
+
S
‘\_/
>
w
|
.
| I |
(o )
—~
.
W
N’

14+./—5n 6
REIRRCE) R e
2

P Let us now assume that —5n is a fundamental discriminant i.e. that the imaginary

quadratic field F = Q(/— 5n) has discriminant — 5n. Furthermore let every genus of
ideal classes of F have only one class in it. Such discriminants are listed in [1].

Let us assume for simplicity that F has class number 2. From the tables in [1] we see
that

n=3,17, 23,47 (15)

are numbers with this property. The two ideal classes in F = Q(\/—5n) will be
represented by the ideals 4 and B with minimal bases

4 (11+ —-5n> <1+\/'—§/5
(b4 o

(16)

T i st bl i e o
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and withnorms 1and 1/5 respectively. Since the class number is 2, there is only one non-
trivial genus character y and this corresponds to the decomposition

~51=—n-5

(Note fhat since —5n = 1 (mod 4), —n = 1 (mod 4)). The L-series of F corresponding
to this character has the property (Siegel [8])

~ h(=n) log\/g2+1 (17)

L.(l,x)=

Uy, ° o /5
where u, is the number of roots of unity in F and h(—n) is the class number of

(/= n).
The Kronecker limit formula gives ([18] p. 71)

(1+\/?§r1)2 U(1+\/2?§E/5)2

log|{n 7

—log

7
_2h(=n), J5+1

. 18)
w087 (18)
Combining this with (14) we have the

TueoreM 1. If —5n is the discriminant of the imaginary quadranc field
F = Q(\/ — 5n), where n is odd and F has class number two, then

exp(— n/S\/ﬁz) cxp(——n/\/g;) exp(—2n/\/§z)
1— 1+ 1— '

1/5

- {-‘-(a+(a2 +4)“2)}
where a=11 -—5\/-(\/— )GM ")/u.

h(—n) is the class number of Q(,/—n) and u, the number of roots of unity in it.
We can obtain a companion result either by using (11) or by proceeding as for the
previous theorem:

TueoreM 1': Under the same conditions as for theorem 1,

exp[(=n/5)(/n/5)] exp[ —n(/n/5)] exp[—2m(/n/5)]
1— ‘ 1+ : 1~ '

— LB+ (B s 20)

: +1 6h(—n)/u,
where ﬁ=11—5\/5<\[2 ) .

We now give some examples which include Ramanujan’s given in §1.

N
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(i) Let n=3. Then h(—3) =1 and u3 = 6. This gives
exp(—n/5,/15) exp(—n/./15) exp(—2n/./15)
1- 1+ 1—-

4
exp[(—n/5)(/3/5)] exp(—n./3/5) exp(—2n./3/5)
1—- 1+ 1- o

_ [—3 +5./5+ (30(5+\/§))“2]”5

[-—3 —-5/5+(30(5 - ﬁ))l/zJI/S
. .

(i) Let now n =7, then h(—7) = 1 and u; = 2. This gives the Ramanujan results

exp(—n/5- \/3_5) exp(—n/\/g) exp(—-2n/\/3§) _
1— 1+ 1- o

=[~7+5/5+(35(5~-2,/5))12]1/5
exp[(—n/5)(v/7/5)] exp(—n./7/5) exp(—2r./7/5)
1— 1+ 1— ‘e

=[(-7 —‘5\/5 +(35(5+2./5))/2]1/s

(iii) Let now n = 23 which is given in (15). Then from [1] we see that h(—23) =3 and
Upy =2,

exp(—n/5./115) exp(—n/, /115) exp(—2n/,/115)
1- 1+ 1— o

= [-207+95./5+3((1955 — 874, /5)5))t 1271/

exp[ (— /5)( 23/5)] exp(—= 23/5) exp(—2mn./23/5)
1_\/ 1+\/ 5

= [—207-95,/54+3(5(1955 + 874,/5))1/2]1/s

One can consider the case where Q(y/ —5n), with n odd has class number 4 and with
four genera, for example ’ :

n =139, 87, 111, 119, 159, 287.

However we shall omit dealin g with this here since an analo gous situation with neven is
studied in the next section from which the method would become obvious.

4. We shall consider the case of R(ia) where

o= ,m>0

1
~10m
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and 10 mis an idoneal number of Euler. In this case F = Q(,/ — 10 m) has one class in
each genus. If we use (8) we have

() - Gm)) =+ [

Since F = Q( / —10m) has one class in each genus, it follows from the table [[1]
(p. 426-427)], that

10 m = 10, 30, 70, 130, 190, 210, 330 ' (22)

We have taken only the cases where m is odd. Of these numbers 10 is the only number

for which Q(,/ — 10) has class number 2 (with of course 2 genera). The numbers 30, 70,

130 and 190 are all associated with fields having 4 genera with one class in each genus.
We shall consider only the two cases 10 and 30 which illustrate our methods.
The two classes in F = Q(\/ — 10) are represented by the ideals

A=(1,/-10), B=(1,./—10/5)

with norms 1 and 1/5. There is one non-trivial genus character y corresponding to the
decomposition

—40 =—8.5

and so the L-series of F has the value

V@+1
L1, x)= 2\/— B

and by the Kronecker limit formula,

1 —10\? -1
logn(./-IO)z——log%n( 50> =1og‘/§2 . (23)

From (21) and (23) we obtain

() -l 52

This gives at once

exp(—2n/5,/10) exp(— 21:/\/1—0) exp(—4n//10)
1+ 1+ 1+ o

=[—-18+ 5\/5 + 3(\/E(5 _2\/3))1/2]1/5-

Similarly

exp[ (—27/5)(1/2/5)] exp(—2m/2/5) exp(—4n/2/5)
1+ 1+ 1+ o

= [ —18—5./5+3(/10(5 +2,/5))}/2]/5

The field F = Q(/ —30) has 4 classes and 4 genera. The four classes are represented
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by the ideals 4, B, C, D with bases A=(1,\/—30, B=(1,/—30/2), C
= (1, /—30/3), D = (1, \/—30/5). For any character ¥ of the group of genera ([ 8]
p. 62-71).
log F(A) + x(B) log F(B) + x(C) log F(C) + (D) logF(D) } .
- /120 - (24)
;/ Le(1, %)
4

Let x,, x3 and x5 be the three non-trivial characters, corresponding respectively to the
decompositions

22 —120= —158
230 —120= —3.40
Xs: —120= —24.5

From their definition ([8] p. 60)

LA =118 =11C)=—1, 1,(0)= —1 } o5
13A) =1,13(B)= —1,13(C) = 1, x3(D) = —1

From (24) and (25), it follows that

120
togF(A)~log FD) = ~ Y22 (11101 1,01, 1)

However
Le(l 1) = —2 h(~15) h(8) log (/3 + 1)
2. /120
Le(L, 13) = — e h(=3) h40) log (3 + T0)

6./120

and therefore

(R(—’l_—_))_s-u—(k(—;))s = 53(—»———__"(‘/_.:_36) )6
/30 \/30 n(y/ —30/5)
= 5/5(J2+ 153 + JT0)". (26)

The solution of the quadratic equation in- (R(i//30))° leads -to the value of
R(i/ /30).

It is now obvious how one should proceed in other cases where Q(,/—5n) or
Q(/—10n) have 4 or 8 or even 16 genera with one class in each genus. It might be
interesting to evaluate R(i/\/10n) or S@/ \/ 5n) in other cases related to quadratic

‘binary forms with one class in each genus.’
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5. We conclude this note by proving another of Ramanujan’s étatements which is
however incomplete and which is given in the Note books ([5] Vol 1, p. 311).

This concerns the evaluation of R(2ia) for o =1, 2, 4. Let us take the continued
fraction

R = exp(—4n/5) exp(—4n)exp(—8n) N

1+ 1+ 1+
In order to evaluate this, observe that since by (2)
R—(gi_) —1—=R(2i) =.%((—211(/)-f)l,
we have only to find the value of n(2i/5)/n(10i). Clearly if we put
2i/5
':7((1(/)1,)) =201
then |
R(2) = (C*+ 1)} —C. @7
Let, in the usual notation of elliptic functions
L S O
K 5L

and k,k" and LI the respective associated moduli. Then
n(i/5)
n(5i)

Let us further assume that
K, K L, _L
il N Bl R Yol

and ko, kq and Iy, l; the associated moduli. Then
n(2i/5)
n(10i)

On the other hand, by the formulae of Jacobi-Legendre,

= (K/L)Y2- (ki /1')\16

= (Ko/Lo)l/2 : (koktl)/loltl))lm-

1
K, = —;- K(+K), Lo =3 L(1+1)

and

1-k . _2Jk  _1-1 21
CTIFK T Ik O T T4 '

Therefore we finally have

T = (/L) ) )
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Since from (8), n(i/5) = /5 n(5i), we have
(K/L)'2 = /5(l'[kk')!8
Substituting we finally get
n(2i/5)
(101)
In order to find k, k', | and ', notice that since K'/K =1 /5
J(/5) = 218/ (kk')1 112,
On the other hand f(i/5) =f(5i) = 2”‘5/(11’)1/12 From the tables of Weber and
Ramanujan
F5i) = (J5+1)/2%*

which gives

()] -

(Itis interesting to note that this result is given by Ramanujan [[5] Vol. 1, p. 287] ). One
can simplify this using the fact that

Vi1 51
2 2

= 5 (k/DHE (k2. (28)

Thus | |
T
=;_'( ‘/3;~1)6(9+4J5+12:/§)
- %( - 1)5(3+2 5.

Since k'? = 1 — k2, we have

k2 (\/5 )(3 245y,

Now f(i/5) = f(5i) and so k? + I2; but since kk’ = IV, we have k? = I’ and k'2 = I2.

Taking k, k', I, I' positive we have

”(Zi/é) - \/—5_'(’(/’(')1/‘ =\/§'<§_—t§_§_’5_5:)1/4.

n(10i)
It is easy to verify that

(H5£1* =201+ J5)B312Y5).

We thus finally arrive at Ramanujan’s result (not completely stated),

L5
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TreEOREM 2. If ({*/§+ 1/{‘/5— 1) \/5 = 2C+ 1, then

exp(—4n/5) exp(—4n) exp(—8n)
1+ 1+ 1+

= (CP+2
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