

CONGRUENCE PROPERTIES OF RAMANUJAN'S FUNCTION $\tau(n)$

BY K. G. RAMANATHAN

(*Research Scholar, University of Madras*)

Received January 26, 1944

(Communicated by Dr. R. Vaidyanathaswamy, F.A.Sc.)

RAMANUJAN'S multiplicative arithmetic function $\tau(n)^*$ is defined by

$$\sum_{n=1}^{\infty} \tau(n) x^n = x [(1-x)(1-x^2)\dots].^{24} \quad (1)$$

He stated, some congruence properties of $\tau(n)$ for the moduli 5, 7 and 23. These were later proved by L. J. Mordell.¹ In this paper I prove congruences to moduli which are divisors of 24, *viz.*,

- (a) $\tau(n)$ is odd if and only if n is the square of an odd number.
- (b) $\tau(3n-1) \equiv 0 \pmod{3}$.
- (c) $\tau(4n-1) \equiv 0 \pmod{4}$
- (d) $\tau(6n-1) \equiv 0 \pmod{6}$
- (e) $\tau(8n-1) \equiv 0 \pmod{8}$.

These imply in turn

- (f) $\tau(12n-1) \equiv 0 \pmod{12}$
- (g) $\tau(24n-1) \equiv 0 \pmod{24}$.

I think, these congruences have not been stated before [except (a) and (e) proved by Mr. Hansraj Gupta]. These resemble the congruences to $\sigma(n)$ proved by me namely,

If $\sigma(n)$ is the sum of the divisors of the positive integer n then

$$\sigma(kn-1) \equiv 0 \pmod{k}$$

for $k = 3, 4, 6, 8, 12$ and 24 and $n \geq 1$.

2. We shall now prove the congruences of $\tau(n)$. It is well known¹ that $[(1-x)(1-x^2)\dots]^3 = 1 - 3x + 5x^3 - 7x^6 + \dots$

$$= \sum_{n=1}^{\infty} (-1)^n (2n+1) x^{\frac{n(n+1)}{2}} \quad (2)$$

* It might be pointed out that Hardy's statement that $\tau(23n) \equiv 0 \pmod{23}$ given on p. 165 is false since $\tau(23) = 18643272 \not\equiv 0 \pmod{23}$.

so that $\sum_{n=1}^{\infty} \tau(n) x^n = x [1 - 3x + 5x^3 - 7x^6 + \dots]^8$ (3)

But if $f(x)$ is any rational integral function of x then

$$[f(x)]^8 \equiv f(x^8) \pmod{2}. \quad (4)$$

Therefore

$$\begin{aligned} \sum_{n=1}^{\infty} \tau(n) x^n &\equiv x \sum_{n=0}^{\infty} (-1)^n (2n+1) x^{4n^2+4n} \pmod{2}. \\ &\equiv \sum_{n=0}^{\infty} (-1)^n (2n+1) x^{(2n+1)^2} \pmod{2} \end{aligned}$$

which shows that: $\tau(n)$ is odd if and only if n is the square of an odd number. (5)

3. Differentiating logarithmically both sides of (1) we obtain

$$\sum_{n=1}^{\infty} n \tau(n) x^n = P(x) \sum_{n=1}^{\infty} \tau(n) x^n \quad (6)$$

$$\text{where } P(x) = 1 - 24 \left(\frac{x}{1-x} + \frac{2x^2}{1-x^2} + \dots \right)$$

$$= 1 - 24 \sum_{n=1}^{\infty} \sigma(n) x^n \quad (7)$$

where $\sigma(n)$ is the sum of the divisors of n .

Equating coefficients of like powers of x we get

$$(1-m) \tau(m) = 24 \sum_{r=1}^{m-1} \sigma(r) \tau(m-r) \quad (8)$$

which shows that since $\tau(n)$ and $\sigma(n)$ are integers.

$$(m-1) \tau(m) \equiv 0 \pmod{24} \quad m \geq 1 \quad (9)$$

Putting in succession $m = 2n, 3n, 3n-1, 4n, 4n-1$ we get

$$\tau(2n) \equiv 0 \pmod{8} \quad (10)$$

$$\tau(3n) \equiv \tau(3n-1) \equiv 0 \pmod{3} \quad (11)$$

$$\tau(4n) \equiv \tau(4n-1) \equiv \tau(4n-2) \equiv 0 \pmod{4} \quad (12)$$

As regards $\tau(6n-1)$ we see that, since -1 is a quadratic non-residue of 6, $6n-1$ cannot be a square and by (5) $\tau(6n-1)$ is even.

Also by (11) $\tau(6n-1)$ is divisible by 3. Thus:

$$\tau(6n-1) \equiv 0 \pmod{6} \quad (13)$$

For $1 < r \leq 8n-1$ we have

$$\tau(8n-r) \sigma(r-1) \equiv 0 \pmod{2}. \quad (14)$$

Because if $r \equiv 7 \pmod{8}$ then $r - 1 \equiv 6 \pmod{8}$, i.e., $-1 \pmod{4}$ so that $\sigma(r - 1) \equiv 0 \pmod{2}$. For all other r 's we see that (14) holds in virtue of 10, (11) and (12) and the congruences of $\sigma(n)$ stated by me.³

$$\begin{aligned}\therefore 2(1 - 4n) \tau(8n - 1) &= 24 \sum_{r=2}^{8n-1} \sigma(r - 1) \tau(8n - r) \\ &\equiv 48 \pmod{8} \\ \therefore \tau(8n - 1) &\equiv 0 \pmod{8}\end{aligned}\tag{15}$$

(11) and (12) imply $\tau(12n - 1) \equiv 0 \pmod{12}$ and
(11) and (15) imply $\tau(24n - 1) \equiv 0 \pmod{24}$.

REFERENCES

1. Hardy, G. H. .. *Ramanujan*, Cambridge, 1940, Lecture X, pp. 165-69.
2. Hansraj Gupta .. *Abstracts of Papers presented to the Thirteenth Conference of Ind. Math. Soc.*, 1943, p. 6.
3. Ramanathan, K. G. .. *Ibid.*, 1943, p. 6.