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THE object of this paper is to exhibit the application of Ramanujan’s trigono-
metrical sum! to two arithmetical theories, the theory of Relative partitions
(mod m) of Von Sterneck? and the theory of the class division of the
integers mod m of Dr. R. Vaidyanathaswamy.?

If n =e¢ +e....(mod m), nis said to be relatively partitioned
(mod m). Von Sterneck obtained explicit expressions for various numerical
functions in this theory. He showed that these functions assume neat forms
when expressed in terms of a certain arithmetic function f(n, m) of two
arguments. This function of Von Sterneck was recently proved by met
to be identical with Ramanujan’s trigonometrical sum C, (n). Using this
fact I prove all of Von Sterneck’s results by a method which besides being
easy and direct shows clearly the fundamental nature of the trigonometrical
sum in this theory.

Dr. R. Vaidyanathaswamy studied a class division of the integers
mod m, in which these integers are divided into a certain number of classes
C, C,....according to their g.c.d. with m. He proved the remarkable
theorem that these classes combine by addition, i.e., that they form elements
of a linear associative algebra with the scheme

Cz’ CJ =2 ‘Y?J Ck
k

where C; C; means the set of numbers, obtained by adding each number of
C; to each number of C;. It is shown here that % could be expressed in
terms of Ramanujan’s sum. In fact

1
Va =5 & Cn (8) G (0) Cp (1)

* I am indebted to Dr. R. Vaidyanathaswamy for his help in the preparation of this paper.
1 Collected papers of S. Ramanujan {Cambridge), 1927, p. 179.
2 Bachmann, Niedere Zahlentheorie, Bd. 2, 222-41.
3 Proc. Ind. Acad. Sci., 1937, 5, 63-75.
4 Journal of the Madras University, 1943, 15, 1-9.
These references will hereafter be quoted by the numbers given above,
&N
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I prove more generally that

THEOREM.—C%: C. ... =2 A; G where
k
A, = 1}1 2 Cy()Cy ®)...... C,, (t2)-
" h 1 5

I find also an expression for a certain numerical function connected with
the theory of relative partitions (mod m), the set of integers used being those
less than and prime to m. I prove also the interesting results.

(1) If m is even then every odd number is the sum mod m of three and
every even number is the sum mod m of two numbers less than and prime fo m.

(2) If m is odd then every number is the sum mod m of two numbers less
than and prime to m.

2. Ramanujan’s sum is
C, ) =2 =C, (=)
I

where k runs through all the integers less than and prime to m. Hardy®

proved that
C,, (1) Cp (1) = Cpr (1) (m, ) =1

and C, () =2p (1’8_") 5

the summation being over the common divisors of m and n and p (n) is the
Moebius function® we shall now prove the

Lemma A*—C,, (n) =p (%)M d = (m, n)

m
+(7)
where ¢ (n) is Euler’s function.
m m d
— — mMYs _ 5, (2-8)%:
Proof—C,, (n) ;‘IZ;/.L(S)B a/a'u(d )8
We might sum, naturally, for those divisors d, of d which are prime to % for

otherwise u (% -8) vanishes. Thus _
C,(m) =d = u(% @) d™
m (1) di:“’(d)l"'(l) i

—dp () 2 pu(d) dit
I ( d) - p (dy) dy
which is the right-hand side of the lemma.

5 Proc. Camb. Phil. Soc., 1921, 263-71.

¢ Hardy and Wright, Introduction to the Theory of Numbers, p. 231.

* There is another proof in my paper, Ref, 4. Se¢ also §. Holder, Prace, Matematyzng
Fizycyn, 1936, 13-23, ' '
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Corollary.—C,, (n) depends on n only throughits g.c.d. with m so that
Cp (1) = Cy (d).

Lemma B—If f (m, 1) and ¢ (m, 1) be two arithmetic functions possessing

the modulus m and if 2
11

f(m, e =¢(mn p=e"

then mZ' d(m, k) " =mf(m,r)
k=0
Proof.— "5 ¢ (m, X)pN = 2 s f(m, k) p®="
A=0 =0k=0
=% f(m, k) Z' p‘"”"

k=0
The inner sum is zero except when k =r when its value is m.
Lemma C.—If ¢ (m, 1) depends on t only through its g.c.d. with m then .

so does f (m, 1) and then each of them can be expressed in terms of the other
and Ramanujan’s sum.

Proof — For if (m,7r) =¢(m, 8 & =(m,r)
then " hm )t = 2 b(m d) S p
r=0 dfm ¢

t running through all the integers mod m having with m a g.c.d. equal to 4

and "
2" =C,0®

d
so that mf(m, k) = a}: ¢ (m, 3 C_ (k)
. m 3
¢ (m, k) = ;f‘a’"‘ fm,8)C, (k).
B

3. We shall now prove Von Sterneck’s results by using the above
lemmas.

THEOREM . Co(m = .Z' (—- 1)’E (n)© = 2 (—1y

where (n)\® is the number of ways of expressing n as the sum mod m of k
different elements of the set 1,2, 3....(m — 1) and v is the number of parts
in a rejative partition of n mod m into distinct parts not including zero.
2ni
Proof —If p =e™ then
A==l =pm™) = T f(m, k)

k=0

where fm k) ="2 (= 1y (ko
t=9
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But (I1—-p)(1 —p¥)....(1 —p™* V) =0 (m,r)>1
=m (mr)=1

so that using lemma (c) we have
mfmk)=Zmp™* (.m=1 1<r<m
=m C,, (k).

This is a direct and simple proof of the identity of Ramanujan’s sum and
Von Sterneck’s function.

THEOREM 2.—
A, n) ="Z (n)® = 2i I 278 Cy (n)
t=0 m

summation being for all odd divisors of m.
Proof.—It is easy to see that

AR =TT (L+p) =140 n)

k=0

where ¢ (m, r) = II (1 + p™).
A=1

The value of ¢ (m, r) depends on r only through its g.c.d. with m so
that using lemma C we have

mA(m,n) =3 52 é (m, d) C.'l’ (n).

But ¢ (m ) = {[1+e ()] [1 +< ()] 1 +e(5)]}

2nix
where e (x) =e "

Since %?—ni%f =2"-1sin (0 + B)....sin (6 + m — 1B) where B =

>3

34

we see that, by putting 6 = 727

[1 +e(%):| [1 te (___,_)] —sin® ,><(—1)

Substituting this value we have the required result.

THEOREM 3.—If (n); denotes the number of ways of expressing n as
the sum (mod m) of k integers of the set 0, 1, 2....m — 1 repetitions being
allowed then

1 |
re=5 2 °p |G

where (n]:;) is the usual coefficient which vanishes if n or m is non integral.
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Proof —It is easily seen that if n < m and

- 2ni
A0)="F K"  p=e”
k=0 .
then A, (r) is the coefficient of x* in the expansion_ of [(1 — xp”) (1 — xp*")
....(1 = xp™)] as a power series in x. But (1— xp”)....(1 — xp) =

(1 —x" "5)8 where § = (m, r) so that A, (r) is the coefficient of x* in the
-5 ‘
binomial expansion of (1 — x™9)
A, (") =0  if m/8 does not divide a

=(—1p (38) when A ==En—i-

Thus Az (r) = 58 [n]e ™ and by lemma C we have the result.

n=0 '
THEOREM 4.—If (n); denntes the number of ways of expressing n as the
sum (mod m) of k distinct integers of the set 0, 1,....m — 1 then
e =" 2 (=% () G ()

Proof.—As in the previous theorem we see easily that B, () = "3 k),
k=0

¢* is the coefficient of x* in the expansion of (1 + xp”) (14 xp?). .(1 + xp™").
But (1 — xp) (I — xp®)....(1 — x5™) = (1 — x"15)".
B,(r) =0ifm/s does not divide a.

8 as
(=1 (A) X (—1) ’ when A = =,

s
=07 (3)
m—1
w Bi() =2 (mep™.
. n=20
By lemma C we have the theorem.

4. We now proceed {o the class division of the integers mod m. Let
tL(=1), t5,...., (=m) [A =d (m)] the number of divisors of m be the
disti_n«ct divisors of m. Dr. R. Vaidyanathaswamy® divides - the integers
L 2....minto A classes Cy, C,,....C, in such a way that C, contaiiis those
integers mod m which have with m a g.c.d. equal to ¢,. Thus the number of

elements in any set C, is ¢ (t;) These classes combme among themselves
by means of addition. Let C, consist of the integers By,, B,,..

. _ - - - B, where
g, gé(z) ‘We shall prove the following :
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THEOREM 5. | ,
C; Cy =2yj; Cp where
1 .
Vo = m Z Cm.(a) Cin (8) Gy (22).
dim 7 e 5
i 7

an )

Proof —If p =e™ and o
(p"ﬁn: + p’Bzz Lo ﬁg,l)( By p"ﬁzx o+ p”ﬁgJJ)
| =" f (m, n) PW
n=29

then f(m, n) is the number of ways of expressing n as the sum' (mod m) of
two numbers one from each of the sets C; and C;.

It is easy to see that 2 p®” where a runs through all the elements of the
set Cz has the value C,, (r). Thus
ty
"E f(m, n) P = Cp (N Cp (1)
n =0 ?, E;‘
By .lemma C we have the result.

THEOREM 6. :
- Ce:Caa. ... =2A;C,  where
k
Ay = l Z:Cs (3)....Cp (1)
ti 5

Proof. —If f(m, n) represents the number of ways of expressmg n as
the sum (mod m) of «, numbers of the set C,, a, numbers of the set C,. .. .then

m— A £t a
B ) ="E fomn) g =10 (£ 5P

n== 0 t=1 a=1 ‘

- "By an argument similar -to the one used in the previous theorem we
have the result.

- THEOREM 7.

C; — 2 A; C; where |

A, =8 T == (=177 [0 =)™ = (= D™
. PTth
p being a prime number, ¢ (m) [ (m)]” and ¢ (m) is Euler’s totient function.-

Proof.—As- before if f(m, n) is the ‘number of representations of n as
the sum (mod m) of r integers of the set C; then we have easily

m-1

I flmm)p™ =G, O

=20
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and by the usual inversion (lemma C) we have

_1 .
f(m,n) = o 5{” C, (9) CL: (n).
By lemma A we have

fmm =20 2 E0 ¢, 6

_¢(m 1y
_*’fl_)nm [1 +§6,( )) c,(n)]
But® Cy(n) =— 1if pfnand =p —1if pn. Using this we have the
required result.

Corollaries—(1) If m is even then every odd number is the sum (mod m)
of 3 and every even number is the sum (mod m) of 2 numbers less than and prime
fo m.

(2) If m is odd then every number is the sum (mod m) of two numbers
less than and prime to m.

These follow easily from the above theorem because we have merely to
find the least » for which no A; is zero when mis even all A,’s, for which the
corresponding t;’s are even, are zeroes. When mis odd, » = 2, no A, is zero.

" . g _ (__ 1‘)1‘,1
© Fam=sem m[i- =10

This follows easily from the result & f(m,n) p™ = Cr(}) by using lemma
" A and putting n = B

(4) Z' Ca (k) = m¢ (m).

5. We shall study the problem similar to that considered by Von
Sterneck but confining ourselves to the integers less than and prime to m-

TueorFM 8.—If f(m, n) denofes the excess of the number of relative
partions of n (mod m) into an even number of parts over those inte an odd
number, the parts being all distinct and chosen from the set of integers less than
and prime to m then

f(m, n) = ’% 2 Ezxp. C,, ()

m
( ) /7
where Exp. (x) means ¢ and A\ () is the arithmetic function defined by

_4 =5 A0,
Hlogll) =2 S5

¢ (s) heing Riemann zeta function.
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Proof —Using the notation of Section 3 we have
-1
(1 — pﬁn") (1 _ Pﬁmf L (1 _ pﬁmr) =k 20 f(m, k) p’v‘- |
But it is known? that ‘
1- — pfu (1- o pﬁ o ™ and therefore

/\ ’" ¢(m)

T f(m k) ¢ =Eap
k=0

using lemma C we have the required result.

6. It is well known” that if p;, ps....py A = ¢ (m) be the primitive mth
- roots of unity then

(x '—'Pl) (x — pg). .. .(x -'—pA) =£ (xd..._ l)#(z).

It is known from Newton’s theorem that the coefficients in the product
could be expressed in terms of the sums of powers of roots. But

etk =Ch(k)
and thus we get

. d m A
7 (x — 1)“ (d) =X A, xX"  where
dim re=0
(=1
A, =7 c,()1 0'. ............... 0
C, (2)C, (1) Y 0

................................

C,r—1,C,r-2...... C, D) (-1
: C,nCur—-1 ...... A C.(1)
which shows that if m has a square factor (at least) prime tor ! A, and all
the previous ones therefore vanish. It i is also of interest to notice that since
A(m)
(1 =p)( --pz)----(1 —p)=e
A(m)
we have Ay +A +A+.... +A, =
which shows that a cyclotomic equatlon (Kre1ste11ungsgleichung) of degree

¢ (m) has the sum of the positive coefficients greater than the negative ones

. A(m) " .
always. since e is never negative.

"7 B, L. Van der Waerden, Moderne Algebra, Bd. 1, p. 108.




