Metabolic Interrelationships Between Vitamin B₁₂ and Pantothenic Acid in the Rat

A. S. AIYAR AND A. SREENIVASAN
Central Food Technological Research Institute, Mysore, India

Interrelationships between pantothenic acid and vitamin B₁₂ in the nutrition of different species of animals have been reported (Evans et al., '51; Yakowitz et al., '51; Welch and Couch, '54; Balhoun and Phillips, '57). Boxer et al. ('53) observed a fivefold increase in the coenzyme A concentration of liver in vitamin B₁₂-deficient chicks. Further studies with rats, although confirming the earlier observations, revealed that increases were also observable in the kidney, although not in the brain (Boxer et al., '55). It was also evident that the increase was due neither to a decreased destruction of coenzyme A in the deficient tissues, nor to a shift in the ratio of the oxidized to the active reduced form of coenzyme A (Boxer et al., '55). Similar observations have since been reported by others (Sanguinetti et al., '56; Wong and Schweigert, '56) and it has been suggested that since the vitamin B₁₂-deficient animal cannot utilize carbohydrate efficiently (Ling and Chow, '54), the increase in liver coenzyme A may be a physiological adaptive mechanism that increases energy production by providing more two carbon fragments from fatty acid oxidation. A similar deranged carbohydrate metabolism exists in diabetic animals and the impaired energy production appears to be offset by an elevation of liver coenzyme A stores. Cold stress observed to produce a vitamin B₁₂ deficiency (Ershoff, '53) also causes an increase in coenzyme A levels (Campbell et al., '60).

An increase in liver concentration of vitamin B₁₂ in pantothenic acid deficiency, first reported by Radhakrishnamurty and Sarma ('57), and confirmed by several others (Okuda, '57; Moruzzi et al., '58; Aiyar et al., '59) is also attended by increases in serum vitamin B₁₂ and in urinary excretion of vitamin B₁₂.

The reported increase in betaine-homocysteine transmethylase activity in pantothenic acid deficiency (Ericson and Harper, '55) and a decrease of the same in vitamin B₁₂ deficiency (Oginsky, '50; Williams et al., '53; Mistry et al., '55; Ericson et al., '56) lends further support to the reciprocal nature of the relationship existing between the two vitamins.

In view of the reported metabolic relationships between pantothenic acid and methionine (Ludovici et al., '51; Dinning et al., '54, '55), vitamin B₁₂ and methionine (Stekol and Weiss, '50; Bennett, '50; Fox et al., '59; Moruzzi et al., '60) and between the two vitamins themselves, it was thought worthwhile to study the metabolism of coenzyme A and certain related sulfhydryl compounds, in an attempt to elucidate the mechanism of the increased hepatic coenzyme A concentration in vitamin B₁₂ deficiency.

Observations on the changes in tissue levels of coenzyme A, glutathione and total soluble sulfhydryl in simple deficiencies of vitamin B₁₂ produced by feeding either a high vegetable protein diet or a purified casein ration devoid of the vitamin, and on the kinetics of in vivo biosynthesis of coenzyme A in rats with a single deficiency of vitamin B₁₂ and with double deficiencies of vitamin B₁₂ and pantothenic acid, from intraperitoneally administered precursors are presented and discussed.

Received for publication May 24, 1961.

1 This work was supported by a grant from the Indian Council of Medical Research.

3 Aiyar, A. S., and A. Sreenivasan, unpublished observation.
EXPERIMENTAL

Induction of deficiencies. (a) A simple vitamin B_{12} deficiency was produced by feeding weanling male rats (Wistar strain), weighing 45 to 50 gm, either a maize-groundnut meal diet (Fatterpaker et al., '59), or a purified 10% casein ration (Fatterpaker et al., '60) devoid of vitamin B_{12} for 8 weeks.

Control groups were also maintained with a supplement of vitamin B_{12} (200 µg/kg) to the respective basal diets.

(b) A double deficiency of pantothenic acid and vitamin B_{12} was produced in one group of rats by feeding the purified casein ration devoid of both calcium pantothenate and vitamin B_{12} for 8 weeks, by which time, the animals exhibited severe symptoms of deficiencies of both vitamins.

Four animals each from the groups fed the vitamin B_{12}-deficient and vitamin B_{12}-replete casein rations, were given a supplement of L-cysteine hydrochloride (0.1 gm per kg of diet), throughout the experimental period of 8 weeks.

Administration of vitamin B_{12} to deficient rats. To 8 rats made deficient in vitamin B_{12} by maintenance with the basal purified casein ration, vitamin B_{12} (10 µg) was administered intraperitoneally and the animals were sacrificed at intervals of zero, 4, 8, 16 and 48 hours from the time of administration.

In vivo biosynthesis of coenzyme A in vitamin B_{12}-deficient rats. Vitamin B_{12}-deficient and vitamin B_{12}-supplemented rats were injected intraperitoneally with 10 mg each of calcium pantothenate and cysteine hydrochloride and were sacrificed at intervals of zero and 8 hours. Intraperitoneal injection of vitamin B_{12} (10 µg) was given to one group of deficient rats three hours prior to administration of the precursors.

In vivo biosynthesis of coenzyme A in rats deficient in pantothenic acid and vitamin B_{12}. To rats deficient in both the vitamins, L-cysteine hydrochloride (10 mg) was injected with or without prior administration (three hours prior) of either calcium pantothenate (10 mg) or vitamin B_{12} (10 µg) and the animals were sacrificed 8 hours later.

Determinations. The animals were sacrificed at the end of the experimental periods by decapitation, and the livers, after perfusion with isotonic saline, were excised and chilled in cracked ice. The livers were accurately weighed and made into 10% homogenates in isotonic sucrose (0.25 M) using a Potter-Elvehjem type glass homogenizer fitted with a Teflon pestle.

The animals were sacrificed at the end of the experimental periods by decapitation, and the livers, after perfusion with isotonic saline, were excised and chilled in cracked ice. The livers were accurately weighed and made into 10% homogenates in isotonic sucrose (0.25 M) using a Potter-Elvehjem type glass homogenizer fitted with a Teflon pestle.

Total soluble sulfhydryl (Grunert and Phillips, '51) and methionine (Horn et al., '46) were determined colorimetrically essentially as described by the authors and glutathione was determined by the procedure outlined by Kasbekar and Sreenivasan ('59).

TABLE 1

<table>
<thead>
<tr>
<th>Group</th>
<th>Vitamin B_{12}</th>
<th>Total soluble sulfhydryl</th>
<th>Glutathione</th>
<th>Total methionine</th>
<th>Pantothenic acid</th>
<th>Coenzyme A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maize-groundnut meal diet</td>
<td>47 ± 7^a</td>
<td>1.02 ± 0.11</td>
<td>0.90 ± 0.08</td>
<td>5.07 ± 0.13</td>
<td>131 ± 16</td>
<td>165 ± 21</td>
</tr>
<tr>
<td>Maize-groundnut meal diet + vitamin B_{12}</td>
<td>92 ± 19</td>
<td>1.28 ± 0.03</td>
<td>1.15 ± 0.14</td>
<td>5.21 ± 0.01</td>
<td>81 ± 13</td>
<td>94 ± 14</td>
</tr>
<tr>
<td>10% Casein diet</td>
<td>49 ± 4</td>
<td>1.14 ± 0.07</td>
<td>0.88 ± 0.03</td>
<td>4.98 ± 0.09</td>
<td>120 ± 12</td>
<td>151 ± 14</td>
</tr>
<tr>
<td>10% Casein diet + vitamin B_{12}</td>
<td>87 ± 9</td>
<td>1.26 ± 0.14</td>
<td>0.99 ± 0.07</td>
<td>5.26 ± 0.11</td>
<td>66 ± 19</td>
<td>87 ± 9</td>
</tr>
</tbody>
</table>

1 Weanling male rats (45 to 50 gm) were reared with either a maize-groundnut meal diet or a purified casein ration deficient in vitamin B_{12}. Where indicated, vitamin B_{12} was supplemented at 200 µg/kg. Determinations were as detailed in text.

2 Results are averages of 4 independent determinations ± standard error of the mean and are expressed per gram of fresh liver.
Vitamin B₁₂ and pantothenic acid were assayed microbiologically using *Euglena gracilis* (Hoff-Jorgensen, '54) and *Lactobacillus arabinosus* (Skeggs and Wright, '44), respectively, as the test organism. Coenzyme A was assayed using the acetylating enzyme from pigeon liver by the method of Kaplan and Lipman ('48).

RESULTS AND DISCUSSION

Observations on changes in the hepatic stores of coenzyme A and related sulfhydryl compounds in vitamin B₁₂ deficiency are presented in table 1. Vitamin B₁₂ deficiency produced by feeding either the high vegetable protein diet or the purified casein ration resulted in a similar increase in coenzyme A concentration of liver, attended by a decrease in total soluble sulfhydryl, glutathione and methionine. Cysteine supplementation of the 10% casein diet, which is low in methionine, resulted in further increases in the coenzyme A levels with insignificant changes in total soluble sulfhydryl and glutathione in the vitamin B₁₂-deficient group. In the vitamin B₁₂-supplemented group, however, the increases in total soluble sulfhydryl and glutathione were more than the increase shown in coenzyme A (table 2).

In table 3 are presented data on the effects of administration of a single dose of vitamin B₁₂ intraperitoneally to deficient animals. Significant increases in total soluble sulfhydryl, glutathione and methionine were observed by the end of 8 hours after administration of the vitamin with practically no change in the coenzyme A level. By the end of 16 hours coenzyme A level showed a decline and was consider-

TABLE 2

<table>
<thead>
<tr>
<th>Group</th>
<th>Total soluble sulfhydryl</th>
<th>Glutathione</th>
<th>Total methionine</th>
<th>Total pantothenic acid</th>
<th>Coenzyme A</th>
</tr>
</thead>
<tbody>
<tr>
<td>10% Casein diet</td>
<td>1.14 ± 0.07²</td>
<td>0.88 ± 0.06</td>
<td>4.98 ± 0.07</td>
<td>120 ± 12</td>
<td>151 ± 16</td>
</tr>
<tr>
<td>10% Casein diet + L-cysteine</td>
<td>1.21 ± 0.03</td>
<td>1.07 ± 0.07</td>
<td>5.32 ± 0.09</td>
<td>143 ± 7</td>
<td>179 ± 7</td>
</tr>
<tr>
<td>10% Casein diet + vitamin B₁₂</td>
<td>1.26 ± 0.02</td>
<td>0.99 ± 0.07</td>
<td>5.26 ± 0.02</td>
<td>66 ± 11</td>
<td>87 ± 13</td>
</tr>
<tr>
<td>10% Casein diet + vitamin B₁₂+ L-cysteine</td>
<td>1.30 ± 0.04</td>
<td>1.19 ± 0.11</td>
<td>5.39 ± 0.10</td>
<td>87 ± 13</td>
<td>99 ± 19</td>
</tr>
</tbody>
</table>

¹ L-Cysteine (100 mg/kg diet) was supplemented to both the vitamin B₁₂-deficient and vitamin B₁₂-replete casein diets throughout the experimental period of 8 weeks.

² Results are averages of 4 independent determinations ± standard error of the mean and are expressed per gram of fresh-weight liver.

TABLE 3

<table>
<thead>
<tr>
<th>Hours after administration</th>
<th>Total soluble sulfhydryl</th>
<th>Glutathione</th>
<th>Total methionine</th>
<th>Coenzyme A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.14 ± 0.07²</td>
<td>0.88 ± 0.10</td>
<td>4.98 ± 0.07</td>
<td>151 ± 16</td>
</tr>
<tr>
<td>4</td>
<td>1.21 ± 0.01</td>
<td>0.97 ± 0.02</td>
<td>5.11 ± 0.11</td>
<td>148 ± 11</td>
</tr>
<tr>
<td>8</td>
<td>1.24 ± 0.03</td>
<td>1.03 ± 0.05</td>
<td>5.14 ± 0.09</td>
<td>147 ± 12</td>
</tr>
<tr>
<td>16</td>
<td>1.29 ± 0.08</td>
<td>1.14 ± 0.09</td>
<td>5.10 ± 0.02</td>
<td>139 ± 19</td>
</tr>
<tr>
<td>48</td>
<td>1.29 ± 0.03</td>
<td>1.14 ± 0.02</td>
<td>5.17 ± 0.09</td>
<td>113 ± 15</td>
</tr>
</tbody>
</table>

¹ Vitamin B₁₂ (10 µg/rat) was administered intraperitoneally to the deficient animals and sacrificed at intervals of zero, 4, 8, 16 and 48 hours.

² Results are averages for duplicate samples of liver for each of the groups of 8 rats ± standard error of the mean, and are expressed as per gram of fresh-weight liver.
ably reduced by 48 hours, whereas glutathione and methionine show a gradual rise.

Data on the in vivo biosynthesis of coenzyme A from intraperitoneally administered precursors in vitamin B_{12}-deficient and vitamin B_{12}-supplemented rats are presented in table 4. The biosynthesis of the coenzyme occurred more in the deficient group than in the supplemented group in which the synthesis of glutathione and total soluble sulfhydryl appeared greatly enhanced. Administration of vitamin B_{12}, three hours prior to administration of L-cysteine hydrochloride and calcium D-pantothenate to the vitamin B_{12}-deficient animal resulted in reduction in the biosynthesis of coenzyme A with attendant increases in the synthesis of glutathione, total sulfhydryl and methionine. A combined deficiency of vitamin B_{12} and pantothenic acid resulted in low hepatic coenzyme A levels and slightly decreased total soluble sulfhydryl and glutathione levels (table 5). Administration of L-cysteine hydrochloride led to a slight increase in the levels of total soluble sulfhydryl. Prior (three hours) administration of calcium pantothenate affected increased synthesis of coenzyme A, and of vitamin B_{12} favored increased synthesis of total soluble sulfhydryl and glutathione.

The results point to an increased channeling of cysteine into coenzyme A rather

<table>
<thead>
<tr>
<th>TABLE 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biosynthesis of coenzyme A in vivo in rats deficient in pantothenic acid and vitamin B_{12}</td>
</tr>
<tr>
<td>Compounds administered</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>—</td>
</tr>
<tr>
<td>+</td>
</tr>
</tbody>
</table>

1 Weanling rats were maintained with a purified 10% casein ration devoid of both vitamin B_{12} and pantothenic acid for 8 weeks.
2 Where indicated vitamin B_{12} (10 µg) and calcium pantothenate (10 mg) were administered parenterally three hours prior to L-cysteine hydrochloride.
3 L-Cysteine hydrochloride (10 mg/rat) was administered intraperitoneally and the animals sacrificed 8 hours later.
4 Results are averages of 4 independent determinations ± standard error of the mean and are expressed per gram of fresh weight liver.
than into glutathione or methionine in the vitamin B₆-deficient rat, possibly due to the reported participation of vitamin B₆ in the biosynthesis of glutathione (Kasbekar et al., '59) and in the formation of methionine (Oginsky, '50) from cysteine through homocysteine. The increase in coenzyme A is possibly a metabolic adaptation necessitated by the impaired carbohydrate metabolism, for more effective concentration of the coenzyme to participate in fatty acid oxidation, in the vitamin B₆-deficient animal (Wong and Schweigert '56).

SUMMARY

1. The elevation in hepatic coenzyme A in the vitamin B₆-deficient rat was attended by decreases in total soluble sulfhydryl, glutathione and total methionine. The changes were reversed and the levels returned to almost normal values within 48 hours after administration of a single dose of vitamin B₆.

2. Supplementation of a low-methionine diet with l-cysteine hydrochloride resulted in increases in liver stores of coenzyme A, total soluble sulfhydryl, glutathione and methionine, the rise in coenzyme A level being more in the vitamin B₆-deficient rat than in the supplemented one.

3. The vitamin B₆-deficient animal showed greater in vivo synthesis of coenzyme A from intraperitoneally administered precursors, than the vitamin-supplemented animal. Prior administration of vitamin B₆ to the deficient animal decreased the coenzyme A synthesis.

4. Administration of l-cysteine hydrochloride to rats deficient in both pantothenic acid and vitamin B₆ was without appreciable effect on the liver levels of coenzyme A, total soluble sulfhydryl, glutathione and methionine. Prior administration of pantothenic acid or of vitamin B₆ favored increased synthesis of coenzyme A or of total soluble sulfhydryl, glutathione and methionine, respectively.

ACKNOWLEDGMENTS

Our grateful thanks are due to Dr. V. Subrahmanyan, Director of this Institute, for his interest and encouragement.

LITERATURE CITED

—— 1955 A biochemical basis for the interrelationship of pantothenic acid and methionine. Ibid., 59: 431.

Ershoff, B. H. 1953 Decreased resistance of vitamin B₁₂ deficient rats to cold stress. Ibid., 84: 615.

Okuda, K. 1957 Utilisation and metabolism of vitamin B12 in pantothenic acid deficiency in rats. Cited in Metabolism, 6: 397.

