Classroom

In this section of Resonance, we invite readers to pose questions likely to be raised
in a classroom situation. We may suggest strategies for dealing with them, or invite
responses, or both. “Classroom” is equally a forum for raising broader issues and
sharing personal experiences and viewpoints on matters related to teaching and

learning science.
Are All Matrices Diagonalisable?

The author's version of the answer is given below.

The author has frequently used the above question to gauge the

solidity of the mathematical training of another person. The
incorrect responses vary between:

An unhesitating "Yes".

An unhesitating "No" with no counter-example forthcoming.
A "Yes" after some thought.

"Yes, over the field of complex numbers".

The author holds the opinion that Linear Algebra forms the
heart of modern mathematics. It is thus disappointing to see the
number of students confused about such an important issue.
This note is an attempt to show the ramifications of this question
and provide a detailed answer. In what follows, F is either the

field of real numbers or the field of complex numbers (or more
generally any perfect field, e.g. a finite field).

To begin with a matrix A with entries from F is said to be
diagonalisable over F if it is a square matrix and there is an

invertible matrix B with entries from F such that B 4B is a
| diagonal matrix. So we need to restrict ourselves only to square
matrices for the purposes of our discussion. Now itis clear that if
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{e;5...,¢,}isthe standard basis for vector space F" on which A

acts, then {Be,, ..., Be,} is another basis with the property that
each of the basis vectors is an eigenvector and the diagonal entries
of B! AB are just the eigenvalues of A. Thus an equivalent

definition of diagonalisability is that there be a basisconsisting
of eigenvectors.

If A is a symmetric matrix over 2 then one can show that there
is an orthogonal basis of eigenvectors and thus we obtain the
diagonalisability of symmetric matrices. One can argue similarly
for some other classes of matrices. This is perhaps what people
who give the third answer are thinking of. However, there is an
important class of matrices of which none except the zero matrix
is diagonalisable (see below).

Now it is clear that a matrix like (__(i (1)) cannot have eigen-

values over the field of real numbers; hence it is not diagonali-
sable over the real numbers. However it is diagonalisable over
the field of complex numbers with eigenvectors (1,0) £

J=1+(0,1). One might be tempted to think that the problem
dis-appears if we consider the field of complex numbers!
However, this is not the case. From now on let us consider
matrices only over the complex field. From the second definition
of diagonalisability and the usual definition of eigenvectors we
know that we should be looking at the roots of the characteristic
polynomial P, (t) = det(4 —¢I). Since we are working over the
field of complex numbers we do have all roots of P, (#). Thus we.
have eigen-vectors corresponding to every eigenvalue. This is
perhaps the reasoning of people who give the fourth answer.
However, the problem is that if an eigenvalue occurs with

multiplicity greater than one it is not clear that we can find two
or more (linearly independent) eigenvectors.

Of course the correct answer is "No" because of the phenono-

menon of nilpotent matrices. A matrix such as (8 é) has 0

as its only eigenvalue but is not the zero matrix and thus it is not
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diagonalisable. It is clear that if N is a nilpotent matrix (i.e.
Nt=0 for somek) then it is diagonalisable if and only if N=0. In
fact, the role of nilpotent matrices is made more precise by the
Fordan decomposition theorem which says that any matrix A over
the real numbers (or more generally over a perfect field) can be
written as A=S+N where S and N commute, N is nilpotent
and S is diagonalisable over the complex numbers (respectively
over an algebraic extension of the ground field).

Now we can approach the question from a different viewpoint
and ask for conditions which ensure that the nilpotent matrix N
is zero. One way to do this is to ensure thatP, (¢) has distinct
roots. In this case we clearly have a basis of eigenvectors. Let
f@)="+cg !+ ...+ c, beany polynomial. Thereis a (universal)
nonzero polynomial D _(C, ..., C,) called the discriminant with

the property that D, (c,, ...,¢,)=01if and only if f(z) has mul-

tiple roots (e.g. forn=2 we have D,=C? - 4C,). Now, the coeffi-
cients of the characteristic polynomial of a matrix A are
polynomials in the matrix entries of A.

Thus if a,, a,, ..., a, are the coefficients of the characteristic
polynomial P, (t) of 4, P, (t) has multiple roots if and only if
D_(a,,a,...,a,)=0.Now, the zero set of a non-zero polynomial
is always a 'thin set' in the sense of measure theory. In other
words, if we bound the matrix entries of 4 and choose them
randomly i.e. uniformly (or in fact from any distribution with a
continuous density) within these bounds then with probability I
we will find a diagonalisable matrix. Thus my own answer to the
question posed above is two-fold:

® Every matrix is not diagonalisable. Take for example
non- zero nilpotent matrices. The Jordan decomposition tells us
how close a given matrix can come to diagonalisability.

® If we choose our matrix 'randomly' (in a uniform distri-
bution) from within a bounded region, then it will turn out to
be diagonalisable over the complex numbers with probability 1
(in other words 'almost always' in the sense of probability).
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