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1. Introduction

In this paper, we will introduce the Seiberg—Witten moduli space, which is a moduli space
to a system of equations known as the ‘monopole equations’ (taken modulo a gauge group).
This leads to invariants for 4-manifolds, which are more manageable than the earlier
SU(2) instanton invariants, and have had some notable new consequences, such as the proof
of Thom’s conjecture due to Kronheimer and Mrowka (see the accompanying paper [PD).

The break-up of this paper is as follows. In §2, the linear algebra related to Spin and
Spin, groups is introduced. Section 3 discusses Spin, structures On 4-manifolds, and a
proof of the theorem of Hirzebruch—Hopf, i.e. that every compact orientable Riemannian
4-manifold admits a Spin, structure is presented. Thereafter, in § 4, Spin, connections, the
Dirac operator and monopole equations, and the relevant gauge group is introduced, and
on quotienting out by its action, the moduli space for the space of solutions (the Seiberg—
Witten moduli space) is constructed, and its virtual dimension calculated from Fredholm
considerations. Section 5 contains a proof of the Weitzenbock formula for the Spin,-Dirac
operator, and is included for the sake of completeness (even though it is standard).
Section 6 contains the proof of the crucial properness result which results in compactness
of the moduli space constructed, and the dependence upto-cobordism of the moduli space
on the Riemannian metric on the 4-manifold is proved (for a more detailed discussion of
this matter, see [P]). The last § 7 contains calculations for the case of a Kahler manifold.

For a rapid primer on Fredholm theory, the reader may look at the appendix of the
accompanying paper [P]. '

2. Spin groups
We recall some constructions of spin groups in low dimensions.

2.1 Dimension 3

Let W be a vector space of dimension 2. Consider the representation of GL(W) on End®(W),
the space of all traceless endomorphisms of W. There is a natural non-degenerate form {,}
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on End’(W) given by
{f,8}=Tracewfog.

Moreover, we have a sequence of isomorphisms of representations of GL(W),

3 4 4 2 2
AEnd’ (W)= AEnd(W)=A(W* @ W)= (AW*)®? @ (AW)® =1,

where 1 denotes the trivial representation. Thus we obtain a natural homomorphism
GL(W)— SO(End’(W)). Over the complex numbers this identifies GL(2) with the
“Cspin’ group of SO(3). The subgroup SL(2) is identified with the spin group.

2.2 Dimension 4

2 2
Let W, and W_ be two vector spaces of dimension 2 and let ¢ : AW_— AW, be an
isomorphism. Then the vector space U = Hom(W,, W_) is isomorphic to its dual via a
map B : U — U*=Hom(W_, W,) defined by the identity

¢(f(ws) Aw_) =w, AB(f)(w-).
Thus we have a non-degenerate pairing
(f,8) = Tracew, B(f) o g = Tracew_g o B(f)

which can be seen to be a symmetric form. The group of automorphisms of the triple
(W+7 W—a d)) is ‘

S(GL(Wy)x GL(W_)) = {(g,h) | det(g) = det(#)}.
We have a sequence of isomorphisms of representations of this group
MUY= AWE @ W)= (W) & (Rw_)® %9 1.
Thus we obtain a morphism
S(GL(W.)x GL(W_)) —SO(Hom(W,, W_)).
Over the complex numbers this identifies the group S(GL(2) x GL(2)) with the ‘Cspin’
group of SO(4) and the subgroup SL(2)xSL(2) is identified with the spin group of
SO(4).
2.3 Dimension 6

4

Let U be a four dimensional vector space and let 1) : AU —1 be a chosen isomorphism so
tzhat the group of automorphisms of the pair (U,%) is SL(U). Consider the pairing (, ) on
AU given by the composite '

2 2 a4y
ANUR AU = AU S 1.

This is symmetric and non-degenerate. Moreover, we

have a natural seqilence of isomor-
phisms of representations of SL(U)

6 2 4
AAU) = (ADY®S 5 1.

2
Thus we have a representation of SL(U) in SO(AU). Over the complex numbers this
. identifies SL(4) with the spin group of SO(6).



O i s

[
i
1

[
&
|
4
:
|
1

;

Seiberg—Witten invariants 259

2.4 Combination of the above

Now consider the situation of (2.3) where U= Hom(W.., W_). In this situation U carries
a non-degenerate pairing (, ) as described above and hence there is an induced pairing on

AU which we also denote by (, ). We then have an automorphism * on AU defined by the

identity (c, 8) = (@, *3). Now the fact that ¢ = é ® ¢ satisfies (¥, 7)) = 1 implies that
+2 = 1. Moreover, one can see that the positive (resp. negative) eigenspace A™ (resp. A7)
of x is of dimension 3. Thus the combined representation

2
S(GL(W.)x GL(W_))— SO(U)— SL(U) — SO(AU)

gives a morphism into SQ(A+) x SO(A™). Now we have natural maps
S(GL(W,)x GL(W_)) — GL(Wx)

and hence we have representations of S(GL(W.)x GL(W-)) into SO(End®(Wy)).
Consider the homomorphisms of representations of S(GL(W-.) x GL(W_-))

/Z\U-—> End®(W,) where f Ag—B(f)og— B(g)of

and similarly

2

AU — End®(W_) where f Agr— foB(g)—¢ o B(f).
These induce isomorphisms of End®(W.) with A*.
2.5 Compact forms

Let us fix hermitian structures h+ on W so that ¢ is an isometry. The group of auto-
morphisms then becomes S(U(W..) % U(W._)). We define a C-anti-linear automorphism
frf! defined by the identity
B (ff (W), W) = hs (w, B(f)(W))-
One sees that f1T = f. Thus we obtain a real vector space T so that U= T + (T. Moreover,
one sees that the form (,) restricts to a positive definite form on T; hence we obtain a
representati%n S(U(W,)xU(W_))— SO(T). The above discussion then gives us a decom-
position of AT into Ag.
We have a C-anti-linear endomorphism f — fT of End’(W.) given by

e (flw, W)= ha(w, f(W)).

One shows that under the isomorphism between End®(Wy) and A* = AR+ LA%, we obtain
identifications of Ajf with the spaces EndO(Wi)“h consisting of f = — ft.

We note that for any pair of elements ®, ¥ of W, we have an element o(®, ¥) of
End’(W.) given by

wi i(hy(w, ¥) - @ — 1 hy (2,F) - w).
When & — U this is an element of End®(W,)™. We identify this with an element of Af.
2.6 Unitary group case

We now further specialise to the case when W, =1@® det W_. For ease of notation we
use W for W_. In this case, we have a natural sequence of identifications '

Homg (W, W_)=W e W'=W oW=W®rC.

[ “ -
S L o
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Thus we can identify the special orthogonal representation T’ with the underlymg real
(2,0)
vector space of W. Now let A T denote the underlying real vector space to /\q:W and
{1,

1) (L1)
let AT the real vector space such that W ® W= A T ®g C. We have a natural
decomposition

2 (2,0 (1,1)
ANT= ANT& AT.

The imaginary part of the hermitian metric on W gives a natural element w of the latter
space. One then computes that

2,0) L@y
A = /\TEBR wand Ag=w"N AT.

Moreover, under the identification between A and End(W,)* we obtain identifica-
tions

2,0
AT =Homg(1l,detW)=detWand R=R-w = Ri - 1gerw-

3. Spin structures on four manifolds

Let X be a compact oriented four manifold. For any metric g on X we have the principal
SO(4) bundle P on X which consists of oriented orthonormal frames. This corresponds to
a class [P]in H'(X,SO(4)). Using the exact sequence

1 — U(1)— Spin,(4) — SO(4) — 1

we see that we have an exact sequence

H'(X, U(1))— H'(X, Spin,(4)) — H' (X, SO(4)) — H*(X, U(1)j.

We see that the obstruction to giving a reduction of structure group from SO(4) to Spin,(4)
is given by a class in H*(X, U(1)). Moreover, from the exact sequence

1— Z/2Z — Spin(4) — SO(4) — 1

we see that the obstruction to giving a spin structure lies in H2(X,Z/2Z). Under the

natural inclusion of Z/2Z in U(1), the obstruction for spin maps to the obstruction for
Spin,. In fact consider the diagram

1 1
! L
1 — Z/2Z — Spin(4) — SO(4) — 1
l ! I
1 — U(1) — Spin,(4) — SO(4) — 1
! !
Ul) = U(Ql)

l l
1 1

_
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By the associated diagram of cohomologies

| | | !
— H'(X,Z/2Z) — H'(X,Spin(4)) — H'(X,50(4)) — H*X,Z/2Z)
! ! | !
— HY(X,U(1)) — H'(X,Spin,(4)) — H'(X,50(4)) — H*(X,U(1))
! 1 !
H'(X,U(1)) = H'(X,UQ1) H*(X,U(1))
! !

we see that the distinct lifts of a given SO(4) bundle to a Spin,(4) bundle correspond

exactly to the different lifts of the Spin(4) obstruction class in H*(X,Z/2Z) to a class in

H(X,U(1)). We note that the latter is the group of metrised complex line bundles.
Now we have a natural exact sequence (the exponential sequence) of sheaves

0—Z—C®—=U(1)—1

which gives the natural isomorphisms H'* (X, Z) = Hi(X,U(1)). Moreover, under these
isomorphisms the exact sequence

SH'(X,UQ1)—H (X, U(1)—H*(X, Z)27)—H*(X, U(1))—H*(X, U(1))
is the same as the exact sequence :
- HY(X,Z)— HA(X,Z7)— H*(X, Z/22) — H* (X, Z) — H(X,Z).

To summarise, the obstruction to giving a Spin,(4) structure is the jmage in H* (X, Z) of
the obstruction to a Spin(4) which lies in H*(X, Z/2Z). If the former is zero then the
different Spin,(4) structures correspond to the different lifts of the Spin(4) obstruction
class to H*(X, Z).

In the case when the principal bundle is the one associated with the metrised tangent
bundle as above, we have the result that the obstruction to having a spin structure is given
by wy(X) in H*(X, Z/2Z); the second Stiefel-Whitney class of X. Then we have Wu’s
formula which implies that for any y in H*(X,Z/2Z) we have w2 (X)Ny=ynNy. Now
consider the image w of wo(X) in H3(X, Z); this is a 2-torsion class. Let H 2(X,Z), denote
the group of torsion elements in H?*(X,Z). There is a natural duality between the 2-torsion
in H*(X,Z) and the group H*(X,Z), ® Z/2Z; this duality is given as follows. Let
a € H%(X,Z), be a torsion class and let b € H 3(X,Z) be a 2-torsion class. Let b’ be a class
in H2(X,Z /2Z) whose image is b. Let a' be the image of a in H*(X,Z/2Z), then (a,b)=
(¢, b'). By this identification we have ,

(a,w) = (d',w2(X)) = Trace(d' N wz(X)) = Trace(d'Na’)=0

for all a in H2(X, Z),. But then by the duality we see that w is 0. Hence, in this case we
obtain that wy(X) is the reduction modulo 2 of an integral cohomology class; in other
words an oriented compact Riemannian four manifold always has a Spin,(4) structure.

4. Monopole equations and their moduli space

In this section we describe the monopole moduli spaces and compute the expected
dimension.
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4.1 Connections for Spin structures

Let (X, g,c) be a compact oriented Riemannian four manifold with a Spin, structure
(denoted by c). Let Q denote the corresponding principal Spin,(4) bundle over X. Then the
principal bundle of oriented orthonormal frames on X is given by P= Q/U(1). We have a
natural torsion free connection on this bundle called the Riemannian connection. The pull-
back of this to Q gives us a 1-form on Q with values in Lie(SO(4)) which is invariant for
the action of Spin,(4). Now consider the principal U(1) bundle Q/Spin(4) associated with
Q which is just the space of all unit vectors in the line bundle L = det(W..). Let A be
connection on this line bundle. We can pull this back to a form on Q. Adding the above

two forms together we obtain a connection on Q which we shall denote by V4 since the
Riemannian connection is unique whereas A can be varied.

4.2 Dirac equation

Fixing A for the time being we have the differential operator V4 : W, — W, ® T*X induced
by the connection as above. On the one hand the Riemannian structure gives us a natural
(flat) identification between T*X and TX and on the other we have seen that 7X can be
thought of as a subspace of Homg¢ (W,., W_); moreover, this identification is also invariant

under the connection (flat). Thus by contraction we obtain the composite differential
operator of order 1 ’

Dy=Dy Wi W, QT'X > W, QTX — W_.
This is called the Dirac operator. As seen earlier we have a natural identification
Homg(W,, W_)= Homg(W_, W.).
Thus we also obtain an operator D} = —D, _ : W_ — W,.. We have the identity (see § 5)
/ h(~Dj ,,T) = f h (8, Dy T)
X b's
so that we see that D} is the adjoint of D,. This justifies the notation.

The first monopole equation is the Dirac equation D4 (®)= 0.

4.3 Second monopole equation

Consider the curvature F4 of the connection A on L. This gives a two form with values in
the Lie algebra of U(1) which is just R. Let F; denote the projection into A*. We have
also defined the map o : W, @ W, — End(W+)“h. Moreover, we have obtained an identi-

fication of A* with the space of skew-Hermitian endomorphisms of W,. The second
monopole equation is

Ff =0(®,9).
4.4 Gauge group

Let G= Map(X, U(1)) and consider the action of this group on the space A of pairs (A, @)
where A is a conncction on the line bundle L and ® a section of W, given by

g-(A,2)=(g-A,g-®)= (A~ (1/2mi)g " dg, g®).

We see easily that if (A, @) satisfies the monopole equation then so does g - (A, <I>) In fact
we have

Dgs(g-®)=g-Dsy® and Fyy = F4 and o(g®, g¥) = o(®, T).
(

-
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Thus we may consider the ‘moduli space’ of monopoles
M=M,={(A,®) | D4® =0 and Ff=0(®,®)}/G.

We will show that for ‘good’ metrics this is a compact orientable manifold. We shall also
find out how it depends on this choice of metric.
Now let W, be the spaces of sections of W... We have a map

v: N — W_ given by (4, ®) — (Ds®).

Let M denote the inverse image v~ (0) and let M denote the open subset consisting of
pairs (A, ®) where @ # 0. The differential of the map (A, @) — Da® is given by

(a, ) — D¢ + 2mia o ®.
Suppose ¥ is orthogonal to the image. Then we obtain the equations
D¢ =0and 27T =0

by orthogonality with the image of vectors of the form (a,0) and (0, ¢) respectively. Now a
solution of an elliptic operator vanishes on an open set only if it is identically 0. Thus we
see that ® = 0; in other words v is a submersion when restricted to the space N consisting
of pairs (A, ®) where & 5 0. Thus M* is a manifold (albeit of infinite dimension).

The group G acts freely on M* since a solution of an elliptic operator cannot vanish on
an open set unless it is 0. Consider the space Q** consisting of 2-forms invariant under *
with the trivial action of G. The map M — Q' given by Ff — o(®, ®) factors through
the quotient M /G. We thus obtain a ‘complex’ G— M*— Q?*. The moduli space can
be thought of as being its ‘cohomology’.

4.5 Virtual dimension of the moduli space

To compute the dimension of the moduli space we need to compute the cohomology of
the complex of differentials of the complex G— M*— Q**. The tangent space to g at
identity can be identified with QO the space of functions and the tangent space to 0+ can
be identified with itself since it is a vector space. We have an exact sequence ‘

0— TM — Q' @W,— O — 0,

where we have identified the tangent space of A with Q! the space of 1-forms. Thus the
complex of differentials

TG— TM*— Q*F
is quasi-isomorphic to the complex

Q’O__) Ql @W_*_'—* QZ-{- oW_,

where the maps are

h— (—dh, 2nih®) and (a, ) — (d*a — So(®, $),Dag + 2miao o)

forhe O, ac Q! and ¢ € W.. Here d* denotes the exterior derivative combined with
the projection to Q2" and So(®,¢) denotes the skew-Hermitian part of o(®, ). This
complex is homotopic to the complex where the first map is h > (—dh,0) and the second
is (a,¢) (d*a,Da¢) since the difference between these two complexes is given by
compact operators. Thus the index of our complex of differentials is the index of the
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complex
P eow,— 0 ew.,
where the maps are
h— (—dh,0) and (a,v) — (dTa, D).

This is a topological invariant for the pair (X, c) by the Atiyah-Singer Index theorem; we
call this the virtual dimension of the moduli space. In case we can find a point § € Q**

which is a regular value for the map M* — Q?* we see that this index will be the
dimension of

M.s={(A,®) | D4,@ =0 and F} = o(®, ®) + 6}/cG.
. We call this the perturbed moduli space. We will show that such a value of § exists and

that M, s is a compact orientable manifold whose dimension is the virtual dimension.

5. Differential calculus
We derive various identities among differential operators in the context of Spin, connections.
5.1 The adjoint of the Dirac operator
We have defined the Dirac operator as the composite
Dor=Ds: Wy ATXQWs— W_,

where the latter map is the contraction under the identification of T*X with
TX C Homg (W,., W_). We have similarly the Dirac operator D4 _ : W_ — W, since we
have an identification of Home (W, , W_) with its dual space Home (W_, W,.). In terms of
an orthonormal frame of tangent vectors {¢;} we obtain a sequence of identities:

(D42, %)= (e;0 V.8, T)

and since (f o ®,¥)=(fT0®,¥)=(®,f o ) for all f in TX,
(D2, 0)=) (V.®,e0).

Now the fact that V is a metric connection means that
(Vei@,e,- 0 ‘IJ) = e,-(i’, €; o \I’)-— (@, Ve,. (e,- o \IJ))
Let dr denote the volume form. Then for any function f and any vector field v we have,

v(f)dT = d(f(vadr)) — fd(vadr).
Thus we obtain

(Da®,0)dr = Z d((®,e; 0 V)e;1dT) -Z(@, e; o U)d(e; dT)

- Z(@,Vei(e,- o I)).

A
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For any vector field v we have the identity

d(vadr) = (¢, Vo )dr.

J

Moreover, since (e;, ;) = 6;; is a constant we have

Z(@, e; o U)d(ejudr) = Z(CD, e; o U)(ej, Voei)dr

i i,j
= - Z(@, é; o \I’)(Veje]-, ei)dT.
The other term can be written as follows
V. (ei0¥) = (Vge) o U +eioVe Y.

and

(Ve’.ei) oV = Z(Vgiei, e]-)ej oW,
J

Combining the above identities we obtain

(D4®, ) Zd( (®,¢; 0 U)ejudr) — Z(@ ¢; 0 (V,0))dr

Hence

/ (~Das®, ) = / (,D4-)
X b'e
and —Dj — is the adjoint operator of Dy +-

By an entirely similar chain of reasoning we show that the adjoint V:TXQW_—
W, of V on W, is given by

Viv® ®)=— (Z(ei, V,v)® + wp) :

? In invariant terms, we can describe this as the composite

TXQW, % T*X@TX® W, “225 W,

5.2 The Weitzenbock formula

We now compute the composite Dy D, ®. As before we choose a local orthonormal frame
{e;} for X. We then have

D;Ds® =  —Daleio Ve®)=~ S g0 Ve (60 Ve D))
i iJ

We expand the summand to obtain

F@ gj0 Veei0 Vo ® + 606V Ve,
f As above the first term can be expanded again as

> (ex, Veei)ejoex o V@ = — > (Veex, er)ejoex 0 Ve 2. '
k k
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‘We obtain the formula

DD = Z(Vejek, e)ejoe oV, b — Z ejoe;oV,V,.
i, ],k i,j !
Now defining V3 i, = VyVy — Vy,w,
DiDs® = — Zej oe;o ij’eifb.
i,j

Similar calculations yield the formula

ViVa®=->"V2 %

e,¢e " "

Now the difference gives us
DiDs® ~ViVs® == goeoV? 8.
i#j
From the definition of Vz we have
v%/,w“v%/,w*":VVVW—Vvvw—VWVV—~VVWV=VVVW—VWVV-V[V,W]

using the fact that the connection is torsion free. Since we have an orthonormal basis we
have ¢; 0 ¢; = —e;j 0 ¢; so that we obtain

DZDAq)—' V:VA@ _= - Z €joeg;o R(ej, ei)@,
i<j '
where R(V, W)=VVVW—-VWVV—V[V,W] is the curvature tensor.

5.3 The curvature tensors

The Spin, connection has been expressed as a sum of the Riemannian connection and the
U(1) connection A on L. Thus the curvature tensor R is also the sum of the Riemann
curvature tensor S and the curvature of A. The former can be expressed as

S(V, W) =Y (S(V, W)er, ex)ex o ey,
k,1

Thus we obtain
Z ejoe;oS(e,e) = Z (S(ej, ei)er,ex)ejoe; 0 ey 0 ey
ij i, j, k1

By the orthonormality of e;’s we easily resolve the latter to obtain >.i./(S(ej, ei)ei, €)
which is the negative of the scalar curvature s. The curvature of A considered as an
operator on W, acts as 27iF;. Thus the final (Weitzenbock) formula reads

DDy — ViVa=s— ZwiFj.
"4 Extrema

et x be a point of our manifold where (&, ®) attains a maximum. Then for any vector v
:x we have v((®, ®))(x) = 0. Thus consider the following identity (where R denotes the
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real part)
* ’ 1
R(ViVAS, B)=—) 5 (ees(®, 3)—(V,,&,V.®))

+ Z(eja veiei)m(v‘fi@’ @)'
i, J

Since e;(®, ®)(x) = 0 the last term vanishes at x. Moreover, since x is a local maximum
for (®, ®) the term e;e;(®, ®)(x) is negative. Thus we see that R(V3 V4@, @) is positive
at x.

6. The Seiberg-Witten invariants

In this section we construct the Seiberg-Witten invariants. First of all we fix a four
manifold X, a Riemannian metric g and a Spin, structure c. At the end of the section we
will discuss the independence of the invariants on the metric considered.

6.1 Statement of the basic construction

Let M; denote the fibre of M/G— 2?7 over the point 4. We wish to show that there is a
such that this is a compact manifold. To show this we need to show

1. There are regular values for M*/G — Q**.

2. There are regular values as above such that the fibre of M /G — 02+ is contained in
M*/G.

3. The map M /G — Q** is proper.

6.2 Properness

Let §; be a convergent sequence of elements in Q2+, This means that the sequence
converges in the L? Sobolev norm for every k. Let (A;, @;) be such that Dy, ®;=0 and
F;{_—- o(®;, ®;)= 6;. To show properness we need to find a convergent subsequence of
(A;, ®;); for which it is enough to show that this sequence is bounded in the L? Sobolev
norm for every k.

Let B be a fixed smooth connection on L; we express A; = B -+ a; where a; are 1-forms.
Consider the function h; = G * d * a; and let g? = exp(2nih;). Then g? “A;=B+a; — dh;
and we obtain * d * (a; — dh;)= 0. Now we can choose g; SO that the harmonic part of a;
lies in the fundamental domain for H' (X, Z) in H' (X, R). Thus upto gauge invariance we
can replace A; by another so that * d * g; = 0 and the harmonic part o; of a; is bounded.
Let b; = a; — ;. The second monopole equation becomes

d+bi = O'(@i,(ﬁi) - F—; + 5,‘

so that an I bound on &; will give an 12 bound on d*b;. But now b; = G xd * d*b; by
the above construction of b;; here G is the Green’s operator. Thus we obtain a bound on
the L2, norm of b; since G is 2-smoothing. _

Let us write &;= U; + ¢; where Dp¥;= 0 and ¢; is orthogonal to the space of solutions
of Dp. Hence ¢ = GD}Dp® and the first monopole equation becomes

Dg®; = —(bi -+ a,-) o ®;

so that an L bound on ®; and b; gives us an L’ﬁ“ bound on ¢;. We also need to find a way
to uniformly bound ¥;. We do this by finding a uniform bound for &;.
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Let x; be a point where (®;, ;) attains a supremum. Applying the Weitzenbock formula
we see that at x; we have

0 > R(Vy Vi, By, &) (1) =—R(sD;, ;) (x;) + 27 (F 1 i, Bi) (1)
Note that Fj{i is a skew-Hermitian endomorphism of W, and thus
S(FZ, @i, B:) = (Ff ;, D).
The second monopole equation gives us
FZ@; = o(®;, D;)P; + §;P;
and the expression for o gives us
0(8:, 8)8; = 5 (3, B)2.
Combining the above we obtain
(s, ®:)(x:) < max{0, —s+ | &}

Thus we uniformly bound ®; in the C%-norm. This gives us uniform bounds for ¥; and ¢;
in the C%norm. Now ¥; are solutions of the Dirac equation Dp¥; = 0. Thus the set of
C°-bounded solutions is a compact set; in particular, we obtain L? bounds on ¥; for all i.

The above arguments applied inductively gives the required result. We note that the
above arguments also prove that the solutions of the monopole equations are smooth

since any solution which is bounded in L? norm for some k is actually bounded in all L}
norms as above.

6.3 Regular values

Now consider the compact space My of solutions of the unperturbed monopole equations.

For each point (4, ®) of My we have a neighbourhood U in A of (A, ®) and a finite
dimensional linear space H C Q2+ such that the composite

U= N->W_x QP gL

is a submersion. By compactness we can find a common H and a saturated (for G) open
set U in A containing the inverse image of M, such that the above composite is a sub-
mersjon. Since the derivative is a Fredholm map, the fibre over 0 is a finite dimensional
manifold N. We now consider the map of finite dimensional manifolds N — H. By Sard’s
theorem we have a dense subset of H which consists of regular values.

Now assume that b3 which is the codimension in Q?* of the &s of the form Fj + d*b
is greater than zero. Then the collection of those § for which the fibre is contained in M*
is a non-empty open set. If b7 > 1 then this open set is even path-wise connected. Thus in
this situation the cobordism class of the fibre is independent of the regular value chosen.

9.4 Dependence on the metric

et C denote the space of all metrics g on X under which the fixed volume form dr has

orm one. We have a natural map C — G where G denotes the Grassmannian of rank b
uotients of H*(X, R). The corresponding tangent level map is

Hom(A~, A™)= TC — TG = Hom(H2~, H>*),

vhere a map f : A~ — AT goes to its harmonic projection.

—
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For any class ¢ = ¢1(L) in H 2(X, R) let S, denote the subvariety of G where the class ¢
goes to zero in H 2+ At a point of S, the tangent space t0 Sc- is given by the kernel of the
evaluation map g— g(c). Consider the composite map

Hom(A~, A*) — Hom(H>™, H;*) — H*.

If we show that this map is surjective, then the space of all metrics under which the class
¢ becomes *-anti-invariant will be of codimension b . The argument of the previous
section will apply to show that the Seiberg-Witten invariant is independent of the metric
when b3 > 1. *

To show that the above map is surjective suppose that d is perpendicular to the image.
We will then obtain that ¢ ® d is identically zero. But now if ¢ # 0 then it is represented
by a harmonic form which cannot vanish on an open set. Thus d must vanish on an open
set. But we represent d by a harmonic form too. Thus d = 0 as required.

7. The case of Kiihler manifolds
We now specialize to the case of Kihler surfaces.

7.1 Spin structures

For any four manifold with almost complexZStructure and (hermitian) metric we have a
natural Spin, structure given by taking WO =AcTX @ 1and WO =TX. The inclusion of 7X
in Home (W2, W?) is the natural one as discussed at the end of §2. Thus any Spin,
structure on X is given by W, =M Q®c¢ /\ZCTX @® M and W_ = TX ®c M. For ease of nota-
tion we adopt the standard convention A T*X = Kx.

7.2 Spin. connections

Any U(2) connection on TX gives a connection on all associated bundles. In particular we
obtain connections on W2. However, in order that these be Spin, connections it is necessary
that the induced connection on TX be the Riemannian (torsion-free) connection. This can
only happen if the (almost) complex structure is parallel with respect to the Riemannian
connection: thus in this case the manifold must be Kihler.

To give a connection in the general Spin, structure we need in addition to give a U(1)
connection on M.

7.3 The first monopole equation

Consider a Spin, connection as above. We then obtain a Dirac operatoron M & M @ Ky L
By the above discussion we note that the restriction of this to M is the composite

M—o>MQrT'X=M@cT'X®MQc T*X— M ®c TX.

Here we have used the identification of T*X with TX given by the hermitian structure. The

first map in the above composite is the U(1) connection on M. Thus we see that the restric-
tion of the Dirac operator to M is V(%1). We similarly show that the restriction of the Dirac
operator to M ® Kx! is also V(! for the induced U(1) connection on this line bundle.

7.4 The second monopole equation

Following §2 we compute that the (2,0) part of o(®, ®) for = (o, p) is & and the
(1,1) part of it is 1 (| 8]* — | @|*). Thus the second monopole equation becomes
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FHPO =@ and (F1) =2 (|8 - |a[P)w.

09|

7.5 The Weitzenbock formula
We next apply the Weitzenbock formula for any pair (A, ®)
DiDy® = V,Va¢ +5® — 2miF;
to obtain an equality of global inner products
(Da®,Ds®)x = (Va®,VA®)y+ (s, B)y+ 27S(FF B, D)y
On the other hand we compute the global norm of F; — o(®, ®) as follows
|Ff = 0(2,8) k=| F} i+ |0(2,9) |3 —2R(F}, o(®, 3)).
The last term is computed by the integral of the function
R Tracew, (F} o o(®,®))= —S(Ff ®, )+ L Trace(F})||®|".
Now Trace(F7) is 0. Thus adding the above two identities we obtain
IDARIG+1Fi—0(@,8) %= VaBlE+ (53, &)+ 2r(|Ff |2+ [lo(@, B)I3).
We note that the right hand side is equal to
IV aclk + Va8l + (st @)y + (58, By + 2nl|FF 12 + 2l + 181%)?

which is invariant under a change of sign for a or §.

Now suppose that (4, @) solve the monopole equations and consider the pair (4, ®;)
where ®; = (o, — ). By the above discussion we see that (A, ®;) is also a solution for the
monopole equations. But then we must have

(F)®? =ag = —ag=0.

Thus we obtain the fact that F is a holomorphic connection on M®? ® Ky. Moreover, by
ellipticity of the Dirac operator (and its components) we must have that either o or 3 is
zero according as (Fj)(l’l) is a positive or negative multiple of w. By the first monopole

equation it then follows that o and 3 are holomorphic sections of the corresponding line
bundles.
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