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INTRODUCTION

THE subject of inverse probability has unfortunately been regarded with
general suspicion and so not many attempts have been made to apply the
theory even to cases where unambiguous answers can be given, on a proper
mathematical formulation of the problems. It is the object of this paper
to emphasise that in the case of evolutionary stochastic processes, the applica-
tion of Bayes’ theorem yields results as meaningful and rigorous as could
be obtained by the application of the concepts of ordinary (as contrasted
with inverse) probability theory.

We shall first formulate the basic problem of inverse probability in
relation to univariate stochastic processes and point out why it was
erroneously supposed to be a difficult problem. We shall then show how
the problem can be solved rigorously by reconsidering the Chapman-
Kolmogoroff equation-and consequently the stochastic differential equations
derived therefrom, in a new light.

2. FORMULATION OF THE PROBLEM

Let us consider a stochastic process representing the  evolution’ in a
Markovian manner with respect to the one-dimensional parameter ¢ of the
probability distribution of a continuous stochastic variate x (f). We are
thus interested in the probability frequency function (p.£.£) = (xy| xq; 3, to) dxy
representing the probability that x () lies between x; and x; 4 dx; given
that x (ty)= Xg, (fx > £o).

It shall be assumed that the process is homogeneous in ¢ and so = is a
function only of the interval t, — f, and not #,, ¢, severally. Though it is
customary to set f,=0 and write t; — £, as t;, we shall deliberately refrain
from doing so, for reasons which will be clear presently. On the contrary
we shall use the notation = (x; f) to represent the p.ff. of x (f) when we do
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not specify the “initial ” conditions, i.e., the p.f.f. at some ¢, (' < f)f.
Thus by definition we immediately write

m(xXy; t)=J 7 (x5 fo) m (g X5 fy, bo) dxgs (£ By)- (1)
When we deal with distributions at two different values of ¢, say #; and 1,
(t,> 1), we shall call the distribution at #, the emergent spectrum with respect
to the injected spectrum at ¢4, and = (x;| x,; #;, t,) the fundamental transition
probability for the finite interval ¢, — #,. Itis quite clear that 7 (x;| X3 #1, 2o)

is only a particular case of = (x,; f,) where the injection spectrum at f is -

given by 7 (x; t5)= 8 (x — x,) where & is the Dirac delta function. = satisfies
the Chapman-Kolmogoroff equation,

W(x; tl)=jﬁ(x’; to"l‘T)?T(xlx,; tl) t0+7)dx! (2)
for all values of = such that 7y < ¢, + 7 — t; and in particular

(x| Xo; by to) =7 (X] Xo5 b+ 7y 1)) m(y| X5 1y, g + D X' (3)
By making ¢, + = — t;, we obtain the well-known forward differential equa-
tion of Kolmogoroff for = provided we know the limit of = (x,| x; #;, 7)

as t; — t >+ 0, i.e, to speak in physical terms we know what ¢ happens ’
to the stochastic variable is an infinitesimal interval 4.

From equation (1) we find that the emergent p.ff. = (x;; #,) can be
computed if we know the injected p.f.f. = (x,; ;) and the fundamental
transition probability = (x;| x,; ty,t,). But the computation of = (x,; f,)
given = (x;; %) seems at first a formidable task since it involves the solu-
tion of equation (1) which is a Volterra integral equation of the first kind.
It is the principal object of the present paper to show that no complex proce-
dure is necessary to solve for the injected spectrum in view of the peculiar
properties of the fundamental transition probability. We shall prove by very
simple arguments that the inversion of (I) is given by

m(Xo; to)=J m(xy; 1) 7 (xo) X3 1y, £g) dxyy (8, > 1), (4)

where 7 (x, | X1 1, t) is a function obtained by replacing #, — ¢, by the
negative quantity ty — ty, in = (xo| xy5 f,, #,) which we remember is only a
function of t, — ¢, and not t,, 1, severally. ~ unlike = has no probability
significance and is only a functional operator.

T Throughout this paper » denotes a p.f.f. Distinction between different distributions will
be obvious from the variable used to define .
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In equation (1) since = (x; t) and = (x,] xy; £, fo) are both probability
densities, they are positive and so = (x; f,) exists for any #; > £, i.e., fy — Io
is positive and finite and can be chosen as large as we please. If
7 (x| xo; t, t,) tends to a stationary distribution as t; — fy = - o0, SO
also does = (x;; 1y).

On the contrary in (4) since # is not a p.f.f. = (x; 1,) does not remain
a p.f.f. for all values of 1, < f;. It shall be proved that there exists a fy
such that = (x,; #,) is a p.f.f. in the domain #, < #,<< £, and the proccss
cannot be traced back to a point # < fp.

3. SOLUTION OF THE PROBLEM °

It is necessary to recall the method of derivation of the forward differ-
ential equation for = (x; f) from the Chapman-Kolmogoroff equation.
In particular, we first consider the simple case when

7 (X1] Xo3 Ly to) = R(xq] xg) 4 + 8 (xy — xg) (I — 4 f, R(x’
as ty —ty >4 -+ 0.

Xy) dx’) (5)

In such a case, (1) assumes the form

7 (x; ty+ d)= AI 7 (xg; to) R (x| xy) dx,

+m(x; i)l — 4 [R(x'| x) dx't 4+ 0(42). (6)

(6) can be reduced to a differential equation in # by making 4 — -+ 0. From
(6) 7 (x; to + 4) can be computed if = (x; #,) is known, and thus the emer-
gent p.f.f. = (x;; t,) is obtained from = (x4; ?,) by a process of integration,
i.e., by solving the differential equation in r.

We notice we can write (6) in the following form:

m(x; to+ )= A [ w(x,; to+ 4) R(x|x,) dx,

+ 7 (%3 to) — 7 (x; to+ 4) - Af R (x| x) dx” + 0 (42)
(7)

which can be re-written in the equivalent form (8) by using the device of
writing ¢, — 4 and ¢, for ¢, and #, + 4 respectively.

7 (x; ty— D=7(x; to) + A= (x; to) | R (x| x) dx’

- Amjow(xo; to) R(x

Xo) dxg. - (8)
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In this form we immediately realise w(x; ty— 4) can be obtained from
m(x; to) by merely replacing A by — A inw(xy; t+ 4).  Thus = (x,; tp)
can be obtained by a process of integration from = (x;; 1,), (£, > fo)-

Considering processes more general than that defined by (1), Bartlett
(see Ramakrishnan, 1952) has observed that the forward differential equation
for = can be written in the generalised symbolic form,

ZU LD oty + ), ©)

(= positive) omitting for the moment the argument x to indicate that the
right-hand side may involve several values of the argument. If 7 () is a
pff w(t,+ 7 isap.ff forall - from0to 4+ co. Noting that the above
equation is derived from the following

7(ty+ 7+ D=a(tg+ 7+ F{r(te+ - 4404, (10)
we re-write it in the form
m(ty+r+D)=a(ty+ 1)+ Flr(to+ 7+ 4 - 4+0(42). (1)

Therefore using the same device as before of writing ¢y — 7 + 4 and
ty— 7 in the place of ¢+ 7 and o + 7+ 4,

“(to“m)""”'(to""): "AF{”(%""T)}
or

om (t%.: ) =—F {7 (t, — )} (12)

In other words = (t, — 7) is obtained from = (¢,) by merely replacing = by
— T inw(ty+ 7).

It now remains to show that this process of inversion, i.e., determining
the p.ff. at t, — = from the p.f.f. at #, cannot be carried on for all values
of = except in the trivial case when the emergent distribution at ¢, is a sta-
tionary distribution.

To do this we first consider the simpler case defined by (5) and examine
the essential difference between (6) and (7). Noting that R (x| x,) and
m (x; t,) are non-negative in (6), we find that = (x; ¢, + 4) is also non-nega-
tive. On the contrary = (x; #, — 4) will be negative for such values of x
for which = (x; f)=0 if R (x| x') is positive for some value of x'. In
such a case = (x; t,) cannot be an ‘ emergent ’ distribution, i.e., it cannot be
traced back. Thus there exists a smallest value =, for = such that m (x; ty—p)
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is zero for some value of x. Thus ty=1f, — 75 is the earliest point to which
we can trace back the process. Identical arguments apply to a « function
satisfying Bartlett’s generalised symbolic equation. We call 1, the ¢ primitive
origin’ of the process and =, the ‘age ’ of the process at t,. The distribu-
tion at any point 7, — 7, 0 < 7 < 7p is given by equation (12), i.e., if we
inject = (x; ¢, — 7) satisfying (12), then it will emerge as = (x; fy) at £,.
It also follows that = (x; ¢, — 7,), the injection spectrum at t, — 7, is the
emergent spectrum with respect to = (x; ¢, — 7,) the corresponding injection
spectrum at £, — 7y, (73> 7). 7 (x; t — 7) satisfies the modified Chapman-
Kolmogoroff equation

7(x; ty—7m)=[7(X; 14— 7) m(x| X'y to— 7, [y —7)dx', (13)

where
= Tp<tg—T<tly— T
ie.,
™ > T > T

The distribution at #y — 7, can only be an injected distribution and
cannot be the emergent distribution of a process started ‘ earlier’. Therefore
we call it the primitive a priori spectrum.

Lllustration in the case when x(t) is discrete—We shall now consider
the case when x (f) is discrete and can assume mutually exclusive values
Xg5 Xoy----5 Xjy .... and define = (j; #) as the probability (not probability
density) that x (r) = x;. If = (jli; 1, to) = R(jli)- dasty —t,—~ 4 - +0
it is well known that = satisfies the matrix differential equation [¢f. integro-
differential equation when x (¢) is continuous]

w(j;t > .

"= R1Z 5 ), (14)

where = (j; ) is a column vector with components corresponding to different

values of j and [R] is the matrix with non-diagonal elements R (j| i) and the

diagonal elements defined by R (i|i)= — X R(j|i). The solution of the
i

above equation is given by

> . . .
7 (j; ) = ekt ;’}(.'U ly)- (15)

By considering the infinitesimal transformation = (j; 7) to = (j; t -+ 4) we
note that if, 7 (j; t) = 0forall j sois«(j; t 4+ 4). Thus »(j; #,) = 0 for
all j for all #, > ¢, provided = (j; #o) = 0 for all j.

A
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By arguments now familiar from the previous section = (j; ¢ — 4) can be
obtained from = (j; t) and so

F(j; t)=e MG T (G 1), (> to) (16)

i.e., given the emergent distribution 7 (j; 1) we compute the injected distri-
bution at #,. This computation can be done for z, in the domain #,—7p <
to< b At ty=1t, — 1p, 7(j; t, — 7p)= 0 at least for one value of j.

To illustrate this we shall take a system capable of assuming one of four
states, i.e., j=1, 2, 3, 4. We shall take the following values for R:

R(1) R(1j2 RQ3) RE4, ,~12 0 00
/R(2] 1) R(2|2) RQ|3) R(214)\ 1 -8 00
{ RG|) RG[2) RG|3) REG4 I~ 7 6 —4 0
\R(4‘1 1) R(4]2) R®|3) R(4\4)/ 4 2 40

We assume that at some 7, the values of = (j; #;) are as given below:
then the primitive origin ¢, — 7p iS determined.

7(l; =1, n(1; & — mp)= -3729
7 (25 t)= -1, 7(2; t; — p)= -2074 Z

‘for 7 = +1097
7(3; )= 2, 7(3; t, — 1p)=0 g

7 (4; tp= -6, m(4; t; — mp)= 4197

Conditional Inverse Probabilities—We have observed that the p.f.f.
7 (Xy] Xo3 f1> o)y (f3 > fo) 1S a particular case of = (x;; #) with = (x; £
= 8(x — xo). In this case the process cannot be traced back further than
to, i-€., 10 @ point ¢ < tg, since 7 (x; )= 0 for x# x,. Hence 7 (x; 1, — 4)
is negative (4 positive) for xs= x,. Therefore a delta function can only
be an injected spectrum and cannot be the emergent spectrum of a stochastic
process. Thus = (x| xe; ¢, #5), (¢ >>1,) has no probability interpretation.

On the other hand, in a previous paper, the author (1954) defined P
(xo| X35 tos t1) as the conditional inverse probability that x (z,) lies between X,
and xy--dx, given that x (t)=2x;, (f, < #;). This has to be distinguished from
7. When in defining P we state that x (t;) = x,, we mean that the observed
value of the emergent spectrum at t, is x, and not that the emergent spectrum is
a delta function. In % we require the emergent spectrum to be a delta function
and this is not possible. Hence # is not a probability magnitude.




Inverse Probability and Evolutionary Markoff" Stochastic Processes 151

In his previous contribution, the author showed that P (x| x;; to, t)
cannot be obtained unless thf* injected spectrum at a certain ¢ <t4 is known.
If that is known to be = (:\, 1) then by considering the joint probability of
obtaining x (f)= x, x(¢ty) = x, and x (t;)= x; and applying Bayes’ theorem,
it was shown that

.. _f (\' t) ()‘0)" fﬁ»z) (xllx09 ZD )dx
P(xo‘lla Lo, 71) - ()L f) (*‘Vll x; 1, f) d.X

7 (xo; "‘_ol), ™ (Xy| Xo; T, Ty) P
= G 1) (P <ty<ty  (17)

If w (x; t)is known 7 (x,; f,) and 7 (x;; #,) can be computed from the funda-
menta] transition probabilities corresponding to the intervals #, — ¢ and
t; — t,. Hence the method of computation of P described in. that paper
is equivalent to the present one.

In this paper we have shiown that if = (x; r) is known at some point,
it can be extended to the entire permissible domain of ¢ and so P can be
computed if the distribution at some ¢, and of course the fundamental transi-
tion probability for a finite interval are known.

PROBLEMS INVOLVING A PROBABILITY FREQUENCY FUNCTION FOR
THE PrRIMITIVE ORIGIN

Till now we have assumed that the distribution at ¢ is emergent with
respect to that at r — 4 (except when ¢ is the primitive origin) and injected
with respect to that at 7 -- 4. Or, in other words, given the distribution at
t,, the injected distribution at ¢ < ¢, is a function of 7, — z. The primitive
origin therefore is a definite point and is uniquely determined if we know
the probability frequency function at 7.

We shall now consider the following class of problems. We are
given the probability frequency function at ¢,. The primitive origin
of the process lies between i, — v and ty— (7 4 dr) with probability
n(7)dr. At this origin a p.f.f. ¢ (x) independent of = is injected. Given
n () our problem is to determine the injection spcctrum ¢ (x).

Using simple probability arguments we write
w (x5 =] dr [ $ ()7 (%] X5 1o, 7) 7 (7) d (18)
0 &

Since n(x t,) and 7 (x| X', ¢y, 7) are known, 7 (7) or ¢ (x') can be deter-
mined if the other is known, by the classical theory of mtegldl equations;
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but the explicit solution of ¢ (x") or 7 (f) amenable to numerical computa-
tion is a very difficult problem. On the contrary, the computation of =
given ¢ is a much easier problem. Considering the very simple special case
when x is a discrete variable representing a Poisson distribution
~AT xr-x’
vep ey = AT
”(xl}” ;L t— 1) = (x_x7)"!'
and is independent of ¢,
T —AT ()\T)J: 3
m(x; t)=[e 1 (7) dri (19)
o !

As expected 7 (¥} f) is independent of #, since = (x| x"; ¢, £ — 7) is only a
function of =. The computation of 7 given = is still a difficult problem.

Consael has discussed a class of distributions defined by
co x
w(s 0=Te OF 1 () @ (20)

The physical meaning of this class of distributions is obvious. The
parameter A of the Poisson distribution corresponding to an interval ¢ is
itself a stochastic variable with a p.f.f. n(}). Comparing (20) with (19),
we find that all the results of Consael apply to processes defined by (19)
provided we replace A by ¢, since the Poisson distribution is symmetrical
with respect to ¢ and A

Problems involving a “switch-off ”* of the process.—Let t, be the primitive
origin of a process where we inject the primitive p.f.f. ¢ (x). Let us assume
that we “ switch-off ” the process between ¢, + = and ?y + 7 + dr with
probability 1 () dr. After “switch-off ” the stochastic variable retains the
value it had at = till infinity. Thus the p.ff. at ¢, + = as 7 — oo is given by

m (5 0)= | dx;}°¢ )7 (¥] X3 1o+ 7, 1g) 7 (7) dr Q1)

Comparing this equation with (18) we find 7 (x"; o) is identical with = (x;
t,) of the previous problem. Itisinteresting to note that in the previous case
the point of origin has a p.f.f. while here the point of switch-off has a p.ff.
and therefore the duration of the process has the same p.f.f. in both cases !

Incidentally the author wishes to mention that the process of acceleration
of cosmic ray particles in the galactic magnetic field proposed by Fermi is
a process which can be interpreted to belong to either of the two equivalent
types discussed above.

i We assume, without loss of generality, that x’ = 0.
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Process involving “ absorption " .—Finally, we advert to an interesting
problem in inverse probability occurring in physics (relating to the range
of a fast particle passing through matter) which for some unknown reason
has not been investigated in a rigorous manner.

A fast particle of initial energy E, passes through matter and loses
energy through ionisation or radiation. When it reaches an energy zero or
some critical value E, we say the particle is ‘ absorbed " or stopped, and the
distance ¢ of penetration (considering the passage to be one-dimensional)
till it is absorbed is called its range. The author has, in a separate contribu-
tion to this journal, derived an expression for P (E,; ) dt, the probability
that a particle of initial energy E, is absorbed between ¢ and -+ df if we
know the fundamental transition probability = (E|Eg; #, 0)

If we now assume that the initial energy of the particle is a stochastic
variable defined by the p.f.f. ¢ (E), i.e., if ¢ (E) is the primitive injected
spectrum, the p.ff. of the range is given by

P (1) dr= $ (Ey) P (Ey; 1) dE, @)

Given P (f) and P (E,; #) it is theoretically possible to compute the primi-
tive injected spectrum ¢ (E,) but this is not as easy as the computation of
¢ (B,) if we are given the emergent spectrum at 7.

There still remains the further question of conditional inverse probability.
Given that the observed range was f, to compute the probability ¢, (E,) dE,
that the initial energy of the particle lies between E, and E, 4 dE,. By the
simple application of Bayes’ theorem we find &, (Ey) is given by

b (B = L EOP Bo; 1) _ . ¢ (Ey) P (Ey; 1) )

P () — J¢(Eo) P(Ey; 1) dE,

It is clear that the conditional inverse probability cannot be obtained
unless we know P (¢) and P (E,; #) or ¢ (E,) and P (E,; f). In the opinion
of the author, the function ¢;, (E,) is physically more important than P (E,; 1)
since in many experiments the energy of the particle is estimated from the
range and somewhow this aspect seems to have attracted little attention till
Nnow.
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