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Geometry VI

6. Space - the Final Frontier

Kapil H Paranjape

In this concluding article of the series the author gives a
brief overview of some modern aspects of geo-
metry—Topology and Algebraic Geometry. The subject is
now so vast that it is best to learn about it from the excellent
books available—some of which are suggested at the end.

The studies of Gauss and Riemann described in earlier
articles can be classified as local geometry. Some geometrical
attributes such as ‘holes’ or equivalently the notion of an
object ‘closing upon itself” are global. The first mathematical
measure of this kind was described by Euler.

A (convex) polyhedron is a finite body bounded by planes so
that any point lying between two points of the polyhedron
also lies in the polyhedron. The boundary of a polyhedron
then consists of a number F of (plane) polygonal faces which
meet in edges (linear segments) that are E in number. The
edges terminate in vertices (points) that are ¥ in number. The
numbers V, E, F differ according to the polyhedron we
choose, but as Euler proved we always have the identity

V-E+F =2

In order to understand the nature of this statement let us look at
the similar statement for polygons (which are the two dimensional
analogues of polyhedra). The boundary of a polygon has say E
edges and I vertices where we have IV — E = 0 (Exercise).
Euler’s proof is entirely analogous and quite elementary.
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Face being removed.

Two types of bounding edges (in bold)

We remove one face of the boundary of the polyhedron after
which it can be ‘flattened’ onto the plane. We then cut each
polygon into triangles as shown in Figure 1. This doesn’t change
the quantity ¥V — E +F (Exercise). Each bounding edge now
occurs in one of the two configurations shown in Figure 1.
Removing one edge in the first case and the two bounding edges
and the included vertex in the other case makes exactly one face
disappear. Thus this operation does not change IV~ E + F. By
successively whittling down the figure in this manner we obtain
a triangle. We then have 3 -3 +1 + (the one face removed
originally)=2. Now we may take various common objects and
flatten the round edges (in one’s mind) and obtain a (finite) solid
object bounded by polygonal faces. The only property of a
polyhedron that is missing would be that of convexity. We could
then calculate the Euler characteristic V — E +F for the boundary
of such an object and ask what we would obtain. The answer
turns out to be an even number of the form 2(1- g) where g
(called the genus) is the number of ‘holes’ that the body! has
(Exercise: Convince yourself of this regarding various objects

around you).

Figure 1 Euler’s proof

For example, the doughnut
has one hole and the sphere
none. One can also consider
more complicated handle-
bodies ite. a sphere with
handles attached. A doughnut
can be thought of as a sphere
with one handle attached -
why?
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It is important to note that this number does not depend on
exactly how the flattening is done. Indeed one could perform
the reverse operation and ‘pop’ out the polyhedron to obtain
‘curved’ edges and faces — this would not change the formulae.
Recall the formula of Gauss that the integral of the curvature
on a triangle whose sides are geodesics is the sum of the
angles of the triangle reduced by 7. Assuming that the edges
of the ‘curved’ polyhedron are geodesics (this can be achieved
by a suitable deformation) we can then deduce the ‘global’
formula of Gauss and Bonnet. The sum of the angles around
any vertex is 2m. Thus, if S is a (compact oriented) surface,
like the boundary of a ‘handle-body’ mentioned earlier, then

the integral of the curvature over the surface is
27 x (the number of vertices) — 7 x (the number of triangles).

Now each triangle has three edges and one face and each edge
lies on two triangles; thus we have 2E=3F so that V-E+F=V -F/[2
in this situation. Putting it all together we obtain

_[ (curvature) = 27 x (Euler characteristic)
s

The Euler characteristic is only the first in a series of
pumbers and invariants that are defined for higher
dimensional objects. The subject that studies such invariants
is called algebraic topology and grew out of the works of
Poincaré, Betti, Emmy Noether, Alexandroff and Lefschetz.

The Simplicity of Complex Objects

In addition to the paper of Riemann discussed in the earlier
article, one other paper by him contributed tremendously to
geometry. This was his paper on the geometric theory of
functions of one complex variable. This paper gave rise to
many beautiful geometrical ideas, some of which are briefly

sketched below. This concluding section is mnot as
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self-contained as earlier parts of this series, but one hopes it
will whet the appetite of some of our readers so that they
consult the books listed at the end.

To understand what function theory has to do with geometry,
let us wind the clock back a bit. Gauss (and Argand) had
shown that the collection of all numbers of the form
a+—1.b can be thought of as a plane (nowadays called the
complex plane or sometimes even the complex line!). It was
known (to Cauchy and others) that the notion of
differentiability with respect to complex numbers is a very
severe restriction? on functions. In particular, the Taylor
expansion of such a function f

£ (29)

f(z) = f(z)+f (2) (2-8g)+ =57 (5-3)" +-

converges absolutely for all z in the complex plane that lies
within a certain radius of z¢. (Exercise: To see why this is a
restriction, the reader is encouraged to compute the
derivatives of all orders of the function exp +(-1/x*) at
x=0). These properties imply (as Riemann poinyted out), that
any differentiable function of one complex variable is
naturally defined on a ‘generalised’ planar region that consists
of a number of ‘sheets’ lying over the complex plane glued
together in a manner depending on the function being
considered; this is today called the Riemann surface of the
function. One example is the function w = z; the Riemann
surface consists of a complex plane with w as the coordinate
variable. This lies over the z-plane in two sheets by sending
the point with coordinate w to the point with coordinate z =
w? A more interesting example is the functionw = V 2> - z.
It is clear that but for the points 2=0, £ 1 there are exactly two
values of w, so that we again have a Riemann surface with two
sheets. However, in this case there is no global coordinate on the
Riemann surface3.

2 Contrary to a common

misconception among begin-
ning calculus students, the
Taylor series does not
converge for ‘most’ functions.

3 The uniformisation theorem
formulated by Riemann can be
thought of as a way of
salvaging this situation.
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4 Emmy Noether was the
daughter of Max Noether and
developed much of the
algebraic framework needed to
give concrete and rigorous
support to his results.

Thus a geometric object can be associated with every
differentiable function of one complex variable. Obviously,
the study of this geometric object will provide information
about the function. One important case is when the number of
sheets is finite. Riemann showed that this is precisely the case
of an algebraic function w = f{z); i.e. one which satisfies an

equation of the type
a g Yw +a o z“n-l +. -« 4a > )=

where ap, (2) are polynomial functions of 2. Riemann showed
that the surface can be identified with the boundary of a
handle-body in this case; for example, the second Riemann
surface considered above has genus 1 (Figure 2).

The equation above can be thought of as defining a curve in
the plane (z , w) except that these variables are allowed to take
complex values; for this reason we also refer to it as a complex
algebraic curve. The relation between the geometry of a
complex algebraic curve and its function theory was
extensively studied by Brill and Max Noether?. The latter also
extended this to the theory of complex algebraic surfaces; the
famous Italian school of geometry grew out of his work.
Following this, the purely algebraic approach led Chevalley,
Weil and Zariski to formulate the theory of algebraic varieties.

Algebraic geometry grew out of these seminal works.
Summary

Differential geometry (which was introduced in the earlier
article), topology and algebraic geometry form three major
streams in the study of geometry today. Euclidean geometry
survives as the study of linear spaces which is encompassed by
linear algebra and lies at the basis of all geometrical research.
The reader is advised to study some linear algebra from a
good book on algebra such as the one by M Artin.

]
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There are more things left unsaid in this short series than

those that have been said. Each geometer without doubt
would have her/his own list of beautiful items that have been
ignored by the author. It can only be hoped that the reader
has acquired an eagerness to explore these unexplored ideas.
The author hopes he has demonstrated that this is a far more
fruitful exercise than spending time squaring the circle or
trisecting the angle.

I would like to thank V Pati for patiently hearing out my

ideas and especially for pointing out flaws. Most importantly -

I am very grateful to A Sitaram for encouraging me to write
this series and bearing with my occasionally boring
re-working of old themes. I learnt most of the geometry I
know from my teacher S Ramanan who turns sixty this year;
I dedicate this series to him on this occasion and hope it
meets his exacting standards.

Figure 2 The Riemann
surface of W =2° — z
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