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Abstract. Aresult of Belyi can be stated as follows. Every curve defined over a number
field can be expressed as a cover of the projective line with branch locus contained in a
rigid divisor. We define the notion of geometrically rigid divisors in surfaces and then
show that every surface defined over a number field can be expressed as a cover of the
projective plane with branch locus contained in a geometrically rigid divisor in the plane.
The main result is the characterization of arithmetically defined divisors in the plane as
geometrically rigid divisors in the plane.
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1. Introduction
This paper is an attempt to generalize a result of Belyi (see [1]).

Theorem (Belyi). LetC be a smooth projective curve over an algebraic number field and
T a finite set of closed points i@. There is a finite morphisnfi : ¢ — P! so that the
image f(T) and the branch locus of are contained in the set of three poir 1, co}.

We note that this gives a completely geometric characterization of algebraic curves over
number fields, since any deformation of a triple of point®1ris in fact trivialized by an
automorphism oP?,

Anaive generalization of this could require a surface over anumber field to be expressible
as a cover ofP? that isétale outside four general lines; however, as &opointed out,
this fails since the fundamental group of the complement of four general lings$ im
abelian, whereas many surfaces have non-abelian fundamental groups. Thus one needs to
look at more general divisors IP?. The problem is that these divisors have non-trivial flat
deformations. We need to find an algebraic notion that restricts the possible deformations.
Thus, in 81 we define the notion géometrically rigiddivisors on a surface.

Let C be any collection of 4 or less lines in general positioi*#nFrom the definitions
in 81 it follows easily thatC is geometrically rigid. Moreover, it is equally clear that
collections of five or more lines in general positionl#4 are not geometrically rigid.
Geometrically rigid divisors if?? (and hence their singular loci) are defined o@efsee
Lemma 7):

Theorem 1. LetC be any divisor irP? defined ovet which is geometrically rigid. There
is an automorphisng of P2 so thatg(C) is defined ove).

Now, if C is a curve of degree 1 or 27, thenC is geometrically rigid but a general curve
of degree 3 or more is not. In spite of this we will see that there are many geometrically
rigid divisors inP2. In fact (see the end of §3),
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Theoem2. Let C beany divisar in P2 definel overQ, and T be afinite set of pointsin
P2 definel overQ. Thaeisa geometricaly rigid divisar D inP?2 sothat C ¢ D and T is
containal in the singula locus of D.

Thesresulsgiveageometre characterizatioof reducel algebrat subschemgof P2 that
aredefined overQ. Asaneay corollaly wehaveageneralizatia of Belyi’scharacterization
to the ca% of surfaces.

COROLLARY 3

Let S be a smooh projective surface C adivisa in S and T afinite se of pointsin S.

Assunethat S, C and T are definal overQ, then there is a geometricaly rigid divisor
D inP?2 and afinitemorphisn f : § — P2 so that theimage of C and the branch locus of
f arecontainal in D; mareove, theimage of T is containal in the singula locus of D.

Conversely suppos there is atuple (S, C, T) as abowe ove C and a finite morphism
f 1§ — P? sothat the image of C and the branch locus of f are sub-divisos of a
geometricaly rigid divisar D and theimage of T is containel in the singula locus of D.
Then the tuple (S, C, T) isisomorpht to (the baseehange to C of) a tuple (So, Co, To)
which is definel overQ.

It is reasonalyl clea tha thes resuls shoull be extendabé mutats mutand to higher
dimension.

2. Geometricrigidity

Throughot the pape we work with schems of finite type over a field of characteristic
zero.

Let A be asmooh family of divisors in a smooh surfa@ S; in othe words let
C CcS§=A x S be adivisor with A smooth More generaly, we can conside the case
of non-constanhambiern spacs by only assumig that S — A is asmooh projectve
morphism We are interestd in topologically trivial families p : (S,C) — A. Over the
field of complex numbes this can be characterizé by sayirg tha any point a € A has
an analytc neighborhod U so that the pair (U x S, p~1U) is homeomorphi over U to
U x (S, p~L(a)). The geometré notion of equisingula families resuls in topologically
trivial families.

Remak 1. Thenotion of equisingulariy wasfirst defined and studiad by Zariski in aseries
of papes[2,3]. Theoran 7.4in[3] provestheequvalen@of hisdefinition with tha studied
here Alternaively, one can directly prove Lemmas 4, 6 ard 7 using his definitions We
require aspecialize application of Zariski's resuls which we develop in this section.

A specidcagistha of afamily of divisorswith normd crossingwhichischaracterized
by the foll owing properties:

1. Thedivisor C isadivisor with normd crossingin S.
2. Eat componenof C issmooh over A.
3. Thecritical locusof C — A isétak over A.

In particula, each componehof the critical locus of C — A mees ard is containel in
exactly two componerg of C.
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Now letS, — --- — Sp = S be a sequence of blow-ups with irreducible reduced
centresA; C S, such thatd; — A is finite étale. Moreover, le€; denote the reduced
union of the total transform af in S; and the exceptional locus 6}, — S. We further
assume that either,

1. Ay is contained in the critical locus ¢}, — A or,
2. Ay is contained irC; but misses the critical locus 6, — A entirely or,
3. Ay lies in the complement af in Sy.

While the latter two are irrelevant to the desingularization it is useful to allow these to
simplify the proofs. IfC, is family of divisors with normal crossings, then we call such
a sequence of blow-upssamultaneous desingularizatiaf the family of divisorsC —

S. If such a sequence of blow-ups exists then we say that the famdiynisltaneously
desingularizabler equisingular In order to understand how one arrives at this definition
we state

Lemmad. Fix a ground fieldk of characteristic zero. Le§ — A be a smooth family of
projective surfaces of a reduced schemd.etC C S be a reduced divisor. There is an
open dense subsEtof A over whichC is an equisingular family.

Proof. We can replaced by its smooth locus and further operate on each component
individually; thus we can assume thatis smooth and irreducible. Now, consider the
reduced critical locus af — A. This is a closed subschenseof C which is generically
finite overA. Thus the locus wherB — A is notétale is a proper closed subschemd of

We can replacd by the complement of this closed subscheme. Now we canAake B

and perform a blow-up aof alongA; to obtainS;. SinceA; is étale overA the resulting
family S1 — A is smooth. LetC; denote the (reduced) union of the strict transform of
C in 81 and the exceptional locus of the blow-up. We can now inductively construct the
sequence, as above. By the embedded desingularization of curves in characteristic zero,
there is am so that the generic fibre 6f, — A is a divisor with normal crossings; i.e. each
irreducible component (not geometrically irreducible component) of this generic fibre is
smooth over the function field of and at most two of them meet at any singular point
(which is closed over the function field @f) and this meeting is transversal. Now replace

A by the open subset where the critical locugpf— A is étale and each component of

C, — Ais smooth. It follows thaf,, — A is a family of divisors with normal crossings
inS, - A. O

One point that is important from our perspective is the fact thé defined ovek since
all schemes are of finite type ovierWe also note the following lemma.

Lemmab. Let By be the image of the critical locuB, of C, — A in S; for eachk. Then
B, — By and By — A are étale. Any component @& that meetsA; is actuallyAy. Let
Dy be a union of components 6f. If D, and a component a; meet then the latter is
contained in the former. Finally, the critical locus B — A is a union of components of
By.

Proof. We prove the statements by downward inductiort prwe start ak = n where this
is true by the definition of a family of divisors with normal crossings. Now suppose that the
result is proved foB, 1 and for all divisors of the fornD;., 1. Let E; be the exceptional
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locus ofSi11 — Sk. ThenEy is contained irC,;1 by the definition ofC;,1. The map
E, — A factors throughd; — A which isétale.

Let Y be the union of those connected componentB;ofvhich meetA; in particular,
this includes those components which contain points wBgre — By is not an isomor-
phism. LetX be the inverse image df in By.1; by the induction hypothesi& — A is
étale. Moreover, each component®imeetsEy. By choosingD,.+1 = Ej we see thak
is contained inE; by the induction hypothesis. Thus, the morphi&m- A is étale and
factors through;, — A. It follows thatY = Aj. ThusBy is the disjoint union ofA;, and
components disjoint from;. The remaining components descend isomorphically from
components 0B, 1 andB;.1 — A is étale by induction. HencB, — A is étale.

Let Dy be a union of irreducible components@fand suppose thd?;, meetsA;. Let
Di+1 be its strict transform i5;1.1. ThenD;;.1 must meetty; let Z be any component of
Di+1NE. ThisisadivisorinE, which is contained in the critical locus o 1UE; — A.
By the induction hypothesis applied 1.1 U E; we see tha¥ is a component 0By 1.
Hence,Z — A isétale by induction, and the image Bfis A; as above. ThuB, contains
Ar.

Finally, any critical pointp of D, — A which is not the image of a critical point of
Dr+1 — A, would have to lie inA;. Either (a) there are two points and ¢’ that lie
in Dyy1 N Ey over p, or (b) there is a poing in D1 N E; where this interesection is
not transvesal. In case (a), [Btand Z’ be the components @1 N E; that contairyg
andgq’ respectively £ = Z’ is a possibility). TherZz — A, andZ’ — A areétale as
explained above. In particulaP;, — A has critical points along. In case (b), leZ be
the component oDy, 1 N E} that containg;. The mapZ — Ay is étale as above, hence
Z is smooth. Thus the intersection Bf,.1 and E, is non-transversal everywhere along
Z. Thus, in this caséy is contained in the critical locus @, — A again. Any critical
point of D, — A is thus either contained ia; which is contained in this critical locus or
contained in the image of the critical locus®f,; — A which is a union of components
of B;. SinceAy is contained irBy, in both cases (a) and (b), it follows that the critical locus
of Dy — A is a union of components dy. O

In particular, note that this means thit is a connected component of the critical locus of
Cr — A if it meets this locus; this strengthens condition (1) in the definition above. The
fundamental lemma that we will use in our constructions is a corollary of the above lemma.

Lemmab. Let (S,C) — A be an equisingular family of divisors in a family of smooth
projective surfaces over a smooth varietylLetD C C be a union of components 6f
then(S, D) — A is an equisingular family of divisors.

Proof. LetS,, — --- — Sp = S be a simultaneous desingularizationlos above. Let

Dy be the reduced total transform Bfin S;. SinceD,, is a union of components af,,

it too is a relative divisor with normal crossings overBy the above lemma we see that
wheneverD, — A has a critical point o, thenA; is contained in this critical locus.
Moreover, if D, meetsA; then it contains it. Thus the given sequence of blow-ups is a
simultaneous desingularization DY;. O

Let C c S be a divisor. LetG be an algebraic group of automorphismsSofGiven a
morphismA — G, we can construct an equisingular family containih@s follows. Let
m: A x S — S denote the action oA on S and letC = m~1(C). More generally, we
say that a familyC C A x S is G iso-trivial, if it is associated with &-torsor onS. In
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other words, each poiat € A has arétale neighborhoo## — A sothatCy = C x4 B is
isomorphic overB to mgl(Ca) for some morphisnmp : B — G. Any iso-trivial family
is clearly equisingular.

We now define” to be ageometrically rigiddivisor in S if this is the only way to construct
equisingular deformations @f; i.e. for any equisingular familf¢ c A x S parametrized
by a smooth connected varietyso thatC is the fibrep—1(a) for some point: in A, there
is an algebraic groug of automorphisms of so that the familyfC — A is G iso-trivial.

The following lemma follows easily from the construction of universal deformations of
divisors and the flattening stratification.

Lemmayr. Let S be smooth surface over an algebraically closed fielthd C be a geo-
metrically rigid divisor inS defined over an algebraically closed extensiorof k. Then
there is an automorphismof S over K, so thatg(C) is the base change t& of a curve
Co in S which is defined over.

As aconsequence, geometric rigidity is a sufficient criterion to reduce the field of definition.

Proof. Let H be the Hilbert scheme of divisors §1overk. Let A be the closure of the
(non-closed) point of which corresponds t6'. ThenA is a scheme of finite type ovér
to which we can apply Lemma 4 above. Thus replacirily an open subscheniedefined
overk we have an equisingular famity — A in § x A with generic fibre isomorphic to
the givenC.

By the geometric rigidity ofS it follows that this family is isotrivial for some algebraic
group G of automorphisms of. Thus there is a finitétale coverA’” — A so that the
family is group-theoretically trivial over’. Sincek is algebraically closed there iska
valued point ofA’. The fibre ofC at this point is then a ‘model’ ofS, C) which is defined
overk. |

In particular, we note that Theorem 1 follows.

3. Constructions

We now give inductive constructions of geometrically rigid divisors to prove Theorem 2.

Lemma8. LetD be ageometrically rigid divisor if?? and letp, ¢ be singular points ob.
The divisorD U pq is geometrically rigid, whergyg is the line joining the pointg andg.

Proof. Let C — A be an equisingular deformation &f U pg. We wish to construct a
group-theoretic trivialization of this deformation over a firétmle cover ofd.

Let A1 — A (respectivelyA, — A) be a component of the critical locus 6f— A
which containg (respectively containg). These ar@tale covers ofi by Lemma 5. Let
B — A be a connecteétale cover ofA that dominates both covers; we have natural
morphismsP : B — P? andQ : B — P? passing throughy andg respectively. Let
L — B be the component @z = C x4 B, that containgq. Then, the fibre of. over
b € B consists of the line joining® (b) and Q(b). Let Dy be the union of the remaining
components of . By Lemma 6, the familiyDg — B is an equisingular deformation of
D.

Now, by the geometric rigidity oD, we see thaDg — B is iso-trivial. In particular,
we take a furtheétale cover (which we also denote Byby abuse of notation) so that
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the family Dp isgroup-theoreticNow, P(B) and Q(B) continte to be pat of the critical
locus of Dp — B, thus by the connectednesof B the trivialization of the family must
takethemto B x p}arnd B x ¢} respedwely. But then the sanetrivialization also takes
L to B x pq. Thuswe have agroup-theoret trivialization of Cp. ]

Startirg with the geometricaly rigid divisor Q of 4 lines in gener position on P2, we
look at all the divisors obtainal by iteratal application of the above lemma The usual
constructios of projectve geomety tha give thefield operatiors for pointson aline give
the foll owing result.

PROPOSITICN 9

Let T beany finite set of pointsin P? definel ove Q. Thaeis ageometricaly rigid divisor
D consistirg of linesso that T is containal in the singula locus of D.

Proof. FixingthereferenequadrilaterhQ consistimg of four generalinesin P? also fixes
acoordinaésysten sotha thelinesaregivenby X =0,Y =0,Z =0andX+Y+Z = 0.
The singula points of the quadrilaterbare (1:0:0), (0:1:0),(0:0:1),(1:-1:0),
(1:0:-1)ard(0:1:-1).

For any 1 € P2(Q) ard ageometricaly rigid divisor Co containirg Q wewill construct
alarger geometricay rigid divisor that contairs . We can then constru¢ D by starting
with O and succesively addirg ead point of thefinite set T'.

Thuswe can assunetha T consiss of just one point Sinae at leag one coordinae of ¢
isnon-zeo we can assune that it takesthe form (u : v : 1) inthex coordinats for some
rationd numbesu and v.

Now, suppos tha we can add to Co and produe ageometrical rigid divisor C so that
the singula locus of C contairs (1 : 0:1)and (0 : v : 1). Wecanthenaddto C theline L
joining (1 : 0 : 1) and (0 : 1:0), and theline M joining (0 : v : 1) and (1 : 0 : 0), again
producirg ageometricaly rigid divisor C U L U M by Lemma 8. Now the point ¢ is the
intersectio point of L ard M soitis asingula point of this divisor as required.

Similarly, if we can add to Cyp to produe a geometricaly rigid divisor C containing
(v:0:1)initssingula locusthen thedivisor C U L isalso geometricaly rigid, where L
isthelinejoining (v : 0:1)and (1 : —1:0). Thepoint (0 : v : 1) which isthe point of
intersectio of L and theline X = 0, is asingula point of this divisor. Thus to prove the
result it is enoudn to construe for ead rationd numbe « adivisor C,, containirg Co so
that the point (1 : 0 : 1) isin the singula locus of C,,.

Wewriteu = p/q, where g is aposiive integer and p is sone integer. Suppos we
can construt a divisor C containirg Co sotha (0 : p : 1) ard (0 : —q : 1) are singular
pointsof C. Let L bethelinejoining (1:0:—-1)amd (0: —¢ : 1); asbeforeC U L isa
geometrical rigid divisor. Moreover, (1 : —¢ : 0) isasingula point of this divisor as it
lieson L ard theline Z = 0. Let M bethelinejoining (0 : p: ) ard (1 : —¢q : 0); as
before the divisor C U L U M isgeometricaly rigid. The point (p/q : 0 : 1) is asingular
poirt of thisdivisor asit lieson M ard thelineY = 0.

Thus we have finally reducel to the problem of constructig for ead integer p ageo-
metrically rigid divisor C, containirg Cq for which (0 : p : 1) isasingula point We will
do this by induction on the absolué value of p. Let L1 bethelinejoining (0 : 1 : 0) and
(=1:0:1), Ly thelinejoining (=1 : 1 :0) ard (O : O : 1). By Lemna 8 the divisor
Q U L1 U Ly isgeometrical rigid. The point (—1 : 1 : 1) isthe intersectiom point of L1
and L», hen@ it is asingula poirt of this divisor. Let M be the line joining this point to
(1:0:0).Then QU L1 U Ly U M isgeometrical rigid. The point (0 : 1 : 1) isthe
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intersectio point of M ard theline X = 0. Thus we have produce C), for every p less
than 1in absolué value.

Now, suppos tha we have constructd adivisor C containirg Co whichhas (0 : p : 1)
and (0 : ¢ : 1) initssingula locus Let L1 bethelinejoining (0 : p : 1) with (1 :0:0)
ard L bethelinejoining (—1 : 0 : 1) with (0 : 1 :0). Thepoint (=1 : p : 1) is asingular
point of the geometricaly rigid divisor C U L1 U L. Let M; bethelinejoining (0: 0:1)
ard (=1 : p : 1); the point (=1 : p : 0) isasingula point of the geometricaly rigid
divisor C U L1 U Lo U M;. Let Mo bethelinejoining (=1 : p : 0) ard (0 : ¢ : 1); then
(=1: p+q : 1)isasingula point of thegeometrical rigid divisor CUL1ULyUM1UM>.
Finally, weaddtheline M3joining(1: 0 :0)ard (—1 : p+g¢ : 1) toobtan ageometrically
rigid divisor which has (0 : p + ¢ : 1) asasingula point.

For every p > 1 we apply the latter constructia to the divisor C,_; U C1 ead of
which we have alread constructd by the induction hypothess and has singula points
a@O:p—-1:DHard (@0 :1:1).For p < 1weappl the latter constructio to C ;1
whichhas (0: p+1:1)ad (0:—1:1) assingula points This provides the required
constructiom and hene the resut is proved. ]

To constru¢ pointswith coordinatsin algebra¢ numbe fields we need to have curves
of degree greate than onein geometrical rigid divisors.

Lemna 10. Let D be a geometricaly rigid divisar on arationd surfae S and let T be a
finite subseé of the singula points of D. Let L be adivisa classon S so that the linear
systen| L — T | hasaunique elemen E. Then the divisar D U E isgeometricaly rigid.

Actually, we only nead the regularity of S (i.e. H1(S, Os) = 0) in the prod given below.
Furthe generalizatioaeven for irregular surface are possible.

Prodf. LetC — A bean equisinguladeformatian of thedivisor C = DUE. Let B bethe
connectd componenof the critical locus of C — A tha contairs 7. This s finite étale
over A by Lemmab. By bagchang@wemay assunetha B — A isanisomorphismThus,
wecanwriteC = DU E where D isthe union of irreducible componergof C that med D
ard £ isthe union of theirreducible componerg of C tha med E. By Lemma6, D — A
is an equisingula deformatian of D. Thus by bas chang we have agroup-theoretic
trivialization of D. Sinee B is containel in the critical locusof D — A, itismappé into
T by thetrivialization Thus after applying this trivialization £ — A become afamily
of divisors containirg T.

Now, the divisor class L has no deformatian since S isrational Thus the divisor class
of every fibreof £ — A isintheclas L. By assumptionE is aunique class containing
T, thus & — A isthe trivial family. Hene the trivialization for D — A in fad gives a
trivialization of £ and C aswell. |

The above lemma allows us to apply the Lagrang interpolation formula to prove the
following proposition.

PROPOSITION 11

Let 7 be a finite se of algelraic points on P2, then there is a geometricaly rigid divisor
D sothat T iscontainal in the singula locus of D.

Proof. As in the prod of Propositia 9, given a geometricay rigid divisor Co which
contairsthe referene quadrilaterhQ and apoint r € P2(Q), we constru¢alarger divisor
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C D Cp so thatt is in the singular locus af SinceT is a finite set we can inductively add
all the points € T to obtain the required divisap. Thus we can assume tHatconsists
of one pointt.

Again, as in the proof of Proposition 9 we can further reduce to the case where the point
has the form(u : 0 : 1) whereu is an algebraic number. Lgt(T) be a monic polynomial
with rational coefficients for whichf' (u) = 0; letn be the degree of . Let F be the set
of points(k : f(k) : 1) fork =0, ... ,n2 The curveE defined byy 2"~1 = f(X/Z)Z"
passes through thes8 + 1 points. Thus it is the unique curve of degre¢hat passes
through these points. Lét be a divisor (containing the quadrilater@) constructed using
Proposition 9 which containginits singular locus. Lemma 10 then assertsthat CUE
is geometrically rigid. The pointz : 0 : 1) is a point of intersection of and the line
Y = 0 which lies inQ; hence it is a singular point db. |

Finally, any curve of degree defined overQ is uniquely determined in its divisor class
by n? + 1 distinctQ-valued points on it.

Proof (of Theoren®). LetC be any curve of degreein P? which is defined ovef). Let
T be a collection of:? + 1 distinct points on this curve ové). Let D be a geometrically
rigid divisor in P2 that containg in its singular locus. By Lemma 10 the divisbru €
is geometrically rigid. Applying this argument to each component of a given divisé# in
defined overQ, we have the result. O

4. Remarks and open problems

A similar collection of arguments can be used to obtain geometrically rigid configurations
in P* for n > 3. Projection arguments can be used to define the notion of equisingular
deformations in higher (co-)dimensions. Arguments similar to the ones in the previous
section can then be probably used to show:

Probleml. For eachk between 0 and — 1, let T} be a closed subscheme®f of pure
dimensionk that is defined ove®. Then there is a geometrically rigid divissg_1 in P"
so that ifSy is defined inductively as the singular locusSei. 1, thenS, has pure dimension
k andT; C S;.

Another possible generalization of Belyi's theorem is the following:

Problem2. If C is a projective algebraic curve over afield of transcendence degnees
is a morphismf : C — P for which the branch locus has cardinality less than or equal
to3+r.

Belyi's original arguments can be used to show that the branch locus can be assumed to
be defined over the field of rational functionsrimariables. However, there does not seem
to be any obvious way to reduce the number of points+4or3 The converse (that such a
cover is defined over a field of transcendence degree atmhfidtows from the fact that
s-tuples of points ifP! have a moduli space of dimension- 3.

Finally, it is clear from the above construction that the complexity of the configuration
required to obtain rigidity is related to the height of the defining equation of a curve. Can
this relation be explicitly used to define a notion of height?
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