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Abstract. A result of Belyi can be stated as follows. Every curve defined over a number
field can be expressed as a cover of the projective line with branch locus contained in a
rigid divisor. We define the notion of geometrically rigid divisors in surfaces and then
show that every surface defined over a number field can be expressed as a cover of the
projective plane with branch locus contained in a geometrically rigid divisor in the plane.
The main result is the characterization of arithmetically defined divisors in the plane as
geometrically rigid divisors in the plane.
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1. Introduction

This paper is an attempt to generalize a result of Belyi (see [1]).

Theorem (Belyi). LetC be a smooth projective curve over an algebraic number field and
T a finite set of closed points inC. There is a finite morphismf : C → P1 so that the
imagef (T ) and the branch locus off are contained in the set of three points{0, 1, ∞}.

We note that this gives a completely geometric characterization of algebraic curves over
number fields, since any deformation of a triple of points inP1 is in fact trivialized by an
automorphism ofP1.

A naive generalization of this could require a surface over a number field to be expressible
as a cover ofP2 that isétale outside four general lines; however, as Kollár pointed out,
this fails since the fundamental group of the complement of four general lines inP2 is
abelian, whereas many surfaces have non-abelian fundamental groups. Thus one needs to
look at more general divisors inP2. The problem is that these divisors have non-trivial flat
deformations. We need to find an algebraic notion that restricts the possible deformations.
Thus, in §1 we define the notion ofgeometrically rigiddivisors on a surface.

Let C be any collection of 4 or less lines in general position inP2. From the definitions
in §1 it follows easily that,C is geometrically rigid. Moreover, it is equally clear that
collections of five or more lines in general position inP2 are not geometrically rigid.
Geometrically rigid divisors inP2 (and hence their singular loci) are defined overQ (see
Lemma 7):

Theorem 1. LetC be any divisor inP2 defined overC which is geometrically rigid. There
is an automorphismg of P2 so thatg(C) is defined overQ.

Now, if C is a curve of degree 1 or 2 inP2, thenC is geometrically rigid but a general curve
of degree 3 or more is not. In spite of this we will see that there are many geometrically
rigid divisors inP2. In fact (see the end of §3),
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Theorem 2. Let C be any divisor in P2 defined overQ, and T be a finite set of points in
P2 defined overQ. There isa geometrically rigid divisor D in P2 so that C ⊂ D and T is
contained in thesingular locus of D.

Theseresultsgiveageometriccharacterizationof reducedalgebraicsubschemesof P2 that
aredefinedoverQ.Asaneasy corollary wehaveageneralizationof Belyi’scharacterization
to thecaseof surfaces.

COROLLARY 3

Let S bea smooth projectivesurface, C a divisor in S and T a finiteset of points in S.
Assume that S, C and T are defined overQ, then there is a geometrically rigid divisor

D in P2 and afinitemorphismf : S → P2 so that the imageof C and thebranch locusof
f arecontained in D; moreover, the imageof T is contained in thesingular locus of D.

Conversely, suppose there is atuple (S, C, T ) as above over C and a finite morphism
f : S → P2 so that the image of C and the branch locus of f are sub-divisors of a
geometrically rigid divisor D and the imageof T is contained in thesingular locusof D.
Then the tuple (S, C, T ) is isomorphic to (the base-change to C of) a tuple (S0, C0, T0)

which is defined overQ.

It is reasonably clear that these results should be extendable mutatis mutandi to higher
dimension.

2. Geometricrigidity

Throughout the paper we work with schemes of finite type over a field of characteristic
zero.

Let A be a smooth family of divisors in a smooth surface S; in other words let
C ⊂ S = A × S be adivisor with A smooth. More generally, we can consider the case
of non-constant ambient spaces by only assuming that S → A is asmooth projective
morphism. We are interested in topologically trivial families p : (S, C) → A. Over the
field of complex numbers this can be characterized by saying that any point a ∈ A has
an analytic neighborhood U so that the pair (U × S, p−1U) is homeomorphic over U to
U × (S, p−1(a)). The geometric notion of equisingular families results in topologically
trivial families.

Remark 1. Thenotionof equisingularity wasfirst definedandstudiedby Zariski in aseries
of papers[2,3]. Theorem7.4 in [3] provestheequivalenceof hisdefinitionwith that studied
here. Alternatively, one can directly prove Lemmas 4, 6 and 7 using his definitions. We
requireaspecialized application of Zariski’s results which wedevelop in this section.

A special caseisthat of afamilyof divisorswithnormal crossingswhich ischaracterized
by the following properties:

1. Thedivisor C is adivisor with normal crossings in S.
2. Each component of C is smooth over A.
3. Thecritical locus of C → A is étaleover A.

In particular, each component of the critical locus of C → A meets and is contained in
exactly two components of C.
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Now let Sn → · · · → S0 = S be a sequence of blow-ups with irreducible reduced
centresAk ⊂ Sk such thatAk → A is finite étale. Moreover, letCk denote the reduced
union of the total transform ofC in Sk and the exceptional locus ofSk → S. We further
assume that either,

1. Ak is contained in the critical locus ofCk → A or,
2. Ak is contained inCk but misses the critical locus ofCk → A entirely or,
3. Ak lies in the complement ofCk in Sk.

While the latter two are irrelevant to the desingularization it is useful to allow these to
simplify the proofs. IfCn is family of divisors with normal crossings, then we call such
a sequence of blow-ups asimultaneous desingularizationof the family of divisorsC →
S. If such a sequence of blow-ups exists then we say that the family issimultaneously
desingularizableor equisingular. In order to understand how one arrives at this definition
we state

Lemma4. Fix a ground fieldk of characteristic zero. LetS → A be a smooth family of
projective surfaces of a reduced schemeA. LetC ⊂ S be a reduced divisor. There is an
open dense subsetU of A over whichC is an equisingular family.

Proof. We can replaceA by its smooth locus and further operate on each component
individually; thus we can assume thatA is smooth and irreducible. Now, consider the
reduced critical locus ofC → A. This is a closed subschemeB of C which is generically
finite overA. Thus the locus whereB → A is notétale is a proper closed subscheme ofA.
We can replaceA by the complement of this closed subscheme. Now we can takeA1 = B

and perform a blow-up ofS alongA1 to obtainS1. SinceA1 is étale overA the resulting
family S1 → A is smooth. LetC1 denote the (reduced) union of the strict transform of
C in S1 and the exceptional locus of the blow-up. We can now inductively construct the
sequenceSn as above. By the embedded desingularization of curves in characteristic zero,
there is ann so that the generic fibre ofCn → A is a divisor with normal crossings; i.e. each
irreducible component (not geometrically irreducible component) of this generic fibre is
smooth over the function field ofA and at most two of them meet at any singular point
(which is closed over the function field ofA) and this meeting is transversal. Now replace
A by the open subset where the critical locus ofCn → A is étale and each component of
Cn → A is smooth. It follows thatCn → A is a family of divisors with normal crossings
in Sn → A. 2

One point that is important from our perspective is the fact thatU is defined overk since
all schemes are of finite type overk. We also note the following lemma.

Lemma5. LetBk be the image of the critical locusBn of Cn → A in Sk for eachk. Then
Bn → Bk andBk → A are étale. Any component ofBk that meetsAk is actuallyAk. Let
Dk be a union of components ofCk. If Dk and a component ofBk meet then the latter is
contained in the former. Finally, the critical locus ofDk → A is a union of components of
Bk.

Proof. We prove the statements by downward induction onk; we start atk = n where this
is true by the definition of a family of divisors with normal crossings. Now suppose that the
result is proved forBk+1 and for all divisors of the formDk+1. Let Ek be the exceptional
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locus ofSk+1 → Sk. ThenEk is contained inCk+1 by the definition ofCk+1. The map
Ek → A factors throughAk → A which isétale.

Let Y be the union of those connected components ofBk which meetAk; in particular,
this includes those components which contain points whereBk+1 → Bk is not an isomor-
phism. LetX be the inverse image ofY in Bk+1; by the induction hypothesisX → A is
étale. Moreover, each component ofX meetsEk. By choosingDk+1 = Ek we see thatX
is contained inEk by the induction hypothesis. Thus, the morphismX → A is étale and
factors throughAk → A. It follows thatY = Ak. ThusBk is the disjoint union ofAk and
components disjoint fromAk. The remaining components descend isomorphically from
components ofBk+1 andBk+1 → A is étale by induction. HenceBk → A is étale.

Let Dk be a union of irreducible components ofCk and suppose thatDk meetsAk. Let
Dk+1 be its strict transform inSk+1. ThenDk+1 must meetEk; let Z be any component of
Dk+1∩Ek. This is a divisor inEk which is contained in the critical locus ofDk+1∪Ek → A.
By the induction hypothesis applied toDk+1 ∪ Ek we see thatZ is a component ofBk+1.
Hence,Z → A is étale by induction, and the image ofZ is Ak as above. ThusDk contains
Ak.

Finally, any critical pointp of Dk → A which is not the image of a critical point of
Dk+1 → A, would have to lie inAk. Either (a) there are two pointsq andq ′ that lie
in Dk+1 ∩ Ek overp, or (b) there is a pointq in Dk+1 ∩ Ek where this interesection is
not transvesal. In case (a), letZ andZ′ be the components ofDk+1 ∩ Ek that containq
andq ′ respectively (Z = Z′ is a possibility). ThenZ → Ak andZ′ → Ak areétale as
explained above. In particular,Dk → A has critical points alongAk. In case (b), letZ be
the component ofDk+1 ∩ Ek that containsq. The mapZ → Ak is étale as above, hence
Z is smooth. Thus the intersection ofDk+1 andEk is non-transversal everywhere along
Z. Thus, in this caseAk is contained in the critical locus ofDk → A again. Any critical
point ofDk → A is thus either contained inAk which is contained in this critical locus or
contained in the image of the critical locus ofDk+1 → A which is a union of components
of Bk. SinceAk is contained inBk in both cases (a) and (b), it follows that the critical locus
of Dk → A is a union of components ofBk. 2

In particular, note that this means thatAk is a connected component of the critical locus of
Ck → A if it meets this locus; this strengthens condition (1) in the definition above. The
fundamental lemma that we will use in our constructions is a corollary of the above lemma.

Lemma6. Let (S, C) → A be an equisingular family of divisors in a family of smooth
projective surfaces over a smooth varietyA. LetD ⊂ C be a union of components ofC,
then(S, D) → A is an equisingular family of divisors.

Proof. Let Sn → · · · → S0 = S be a simultaneous desingularization ofC as above. Let
Dk be the reduced total transform ofD in Sk. SinceDn is a union of components ofCn,
it too is a relative divisor with normal crossings overA. By the above lemma we see that
wheneverDk → A has a critical point onAk, thenAk is contained in this critical locus.
Moreover, ifDk meetsAk then it contains it. Thus the given sequence of blow-ups is a
simultaneous desingularization ofDk. 2

Let C ⊂ S be a divisor. LetG be an algebraic group of automorphisms ofS. Given a
morphismA → G, we can construct an equisingular family containingC as follows. Let
m : A × S → S denote the action ofA on S and letC = m−1(C). More generally, we
say that a familyC ⊂ A × S is G iso-trivial, if it is associated with aG-torsor onS. In
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other words, each pointa ∈ A has ańetale neighborhoodB → A so thatCB = C ×A B is
isomorphic overB to m−1

B (Ca) for some morphismmB : B → G. Any iso-trivial family
is clearly equisingular.

We now defineC to be ageometrically rigiddivisor inS if this is the only way to construct
equisingular deformations ofC; i.e. for any equisingular familyC ⊂ A × S parametrized
by a smooth connected varietyA so thatC is the fibrep−1(a) for some pointa in A, there
is an algebraic groupG of automorphisms ofS so that the familyC → A is G iso-trivial.

The following lemma follows easily from the construction of universal deformations of
divisors and the flattening stratification.

Lemma7. Let S be smooth surface over an algebraically closed fieldk andC be a geo-
metrically rigid divisor inS defined over an algebraically closed extensionK of k. Then
there is an automorphismg of S overK, so thatg(C) is the base change toK of a curve
C0 in S which is defined overk.

As a consequence, geometric rigidity is a sufficient criterion to reduce the field of definition.

Proof. Let H be the Hilbert scheme of divisors inS overk. Let A be the closure of the
(non-closed) point ofH which corresponds toC. ThenA is a scheme of finite type overk

to which we can apply Lemma 4 above. Thus replacingA by an open subschemeU defined
overk we have an equisingular familyC → A in S × A with generic fibre isomorphic to
the givenC.

By the geometric rigidity ofS it follows that this family is isotrivial for some algebraic
groupG of automorphisms ofS. Thus there is a finitéetale coverA′ → A so that the
family is group-theoretically trivial overA′. Sincek is algebraically closed there is ak-
valued point ofA′. The fibre ofC at this point is then a ‘model’ of(S, C) which is defined
overk. 2

In particular, we note that Theorem 1 follows.

3. Constructions

We now give inductive constructions of geometrically rigid divisors to prove Theorem 2.

Lemma8. LetD be a geometrically rigid divisor inP2 and letp,q be singular points ofD.
The divisorD ∪pq is geometrically rigid, wherepq is the line joining the pointsp andq.

Proof. Let C → A be an equisingular deformation ofD ∪ pq. We wish to construct a
group-theoretic trivialization of this deformation over a finiteétale cover ofA.

Let A1 → A (respectivelyA2 → A) be a component of the critical locus ofC → A

which containsp (respectively containsq). These aréetale covers ofA by Lemma 5. Let
B → A be a connected́etale cover ofA that dominates both covers; we have natural
morphismsP : B → P2 andQ : B → P2 passing throughp andq respectively. Let
L → B be the component ofCB = C ×A B, that containspq. Then, the fibre ofL over
b ∈ B consists of the line joiningP(b) andQ(b). Let DB be the union of the remaining
components ofCB . By Lemma 6, the familiyDB → B is an equisingular deformation of
D.

Now, by the geometric rigidity ofD, we see thatDB → B is iso-trivial. In particular,
we take a furtheŕetale cover (which we also denote byB by abuse of notation) so that
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the family DB isgroup-theoretic. Now, P(B) and Q(B) continue to bepart of thecritical
locus of DB → B, thus by the connectedness of B the trivialization of the family must
take them to B ×{ p} and B ×{ q} respectively. But then thesametrivialization also takes
L to B × pq. Thus wehaveagroup-theoretic trivialization of CB . 2

Starting with the geometrically rigid divisor Q of 4 lines in general position on P2, we
look at all the divisors obtained by iterated application of the above lemma. The usual
constructionsof projectivegeometry that givethefield operationsfor pointson alinegive
the following result.

PROPOSITION 9

Let T beany finiteset of pointsin P2 defined over Q. Thereis ageometrically rigid divisor
D consisting of lines so that T is contained in thesingular locus of D.

Proof. Fixing thereferencequadrilateral Q consistingof four general linesinP2 alsofixes
acoordinatesystemsothat thelinesaregivenby X = 0,Y = 0,Z = 0andX+Y +Z = 0.
The singular points of the quadrilateral are (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1), (1 : −1 : 0),
(1 : 0 : −1) and (0 : 1 : −1).

For any t ∈ P2(Q) and ageometrically rigid divisor C0 containing Q wewil l construct
a larger geometrically rigid divisor that contains t . We can then construct D by starting
with Q and successively adding each point of thefiniteset T .

Thuswecan assumethat T consistsof just onepoint. Sinceat least onecoordinateof t

is non-zero we can assume that it takes the form (u : v : 1) in these coordinates for some
rational numbersu and v.

Now, supposethat wecan add to C0 and produce ageometrically rigid divisor C so that
thesingular locusof C contains(u : 0 : 1) and (0 : v : 1). Wecan then add to C thelineL

joining (u : 0 : 1) and (0 : 1 : 0), and the lineM joining (0 : v : 1) and (1 : 0 : 0), again
producing ageometrically rigid divisor C ∪ L ∪ M by Lemma 8. Now the point t is the
intersection point of L and M so it is asingular point of this divisor as required.

Similarly, if we can add to C0 to produce a geometrically rigid divisor C containing
(v : 0 : 1) in itssingular locus then thedivisor C ∪ L isalso geometrically rigid, whereL

is the line joining (v : 0 : 1) and (1 : −1 : 0). The point (0 : v : 1) which is the point of
intersection of L and the lineX = 0, is asingular point of this divisor. Thus to prove the
result, it is enough to construct for each rational number u a divisor Cu containing C0 so
that thepoint (u : 0 : 1) is in thesingular locus of Cu.

We write u = p/q, where q is apositive integer and p is some integer. Suppose we
can construct a divisor C containing C0 so that (0 : p : 1) and (0 : −q : 1) are singular
points of C. Let L be the line joining (1 : 0 : −1) and (0 : −q : 1); as before C ∪ L is a
geometrically rigid divisor. Moreover, (1 : −q : 0) is a singular point of this divisor as it
lies on L and the line Z = 0. Let M be the line joining (0 : p : 1) and (1 : −q : 0); as
before the divisor C ∪ L ∪ M is geometrically rigid. The point (p/q : 0 : 1) is asingular
point of this divisor as it lies on M and the lineY = 0.

Thus we have finally reduced to the problem of constructing for each integer p a geo-
metrically rigid divisor Cp containing C0 for which (0 : p : 1) isasingular point. Wewill
do this by induction on the absolute value of p. Let L1 be the line joining (0 : 1 : 0) and
(−1 : 0 : 1), L2 the line joining (−1 : 1 : 0) and (0 : 0 : 1). By Lemma 8 the divisor
Q ∪ L1 ∪ L2 is geometrically rigid. The point (−1 : 1 : 1) is the intersection point of L1
and L2, hence it is asingular point of this divisor. Let M be the line joining this point to
(1 : 0 : 0). Then Q ∪ L1 ∪ L2 ∪ M is geometrically rigid. The point (0 : 1 : 1) is the
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intersection point of M and the line X = 0. Thus we have produced Cp for every p less
than 1 in absolutevalue.

Now, supposethat wehaveconstructed adivisor C containing C0 which has (0 : p : 1)

and (0 : q : 1) in its singular locus. Let L1 be the line joining (0 : p : 1) with (1 : 0 : 0)

and L2 betheline joining (−1 : 0 : 1) with (0 : 1 : 0). Thepoint (−1 : p : 1) is asingular
point of thegeometrically rigid divisor C ∪ L1 ∪ L2. Let M1 bethe line joining (0 : 0 : 1)

and (−1 : p : 1); the point (−1 : p : 0) is a singular point of the geometrically rigid
divisor C ∪ L1 ∪ L2 ∪ M1. Let M2 be the line joining (−1 : p : 0) and (0 : q : 1); then
(−1 : p+q : 1) is asingular point of thegeometrically rigiddivisor C∪L1∪L2∪M1∪M2.
Finally,weaddthelineM3 joining(1 : 0 : 0) and(−1 : p+q : 1) toobtain ageometrically
rigid divisor which has (0 : p + q : 1) as asingular point.

For every p > 1 we apply the latter construction to the divisor Cp−1 ∪ C1 each of
which we have already constructed by the induction hypothesis and has singular points
at (0 : p − 1 : 1) and (0 : 1 : 1). For p < 1 we apply the latter construction to Cp+1
which has (0 : p + 1 : 1) and (0 : −1 : 1) as singular points. This provides the required
construction and hence the result is proved. 2

To construct pointswith coordinates in algebraic number fieldsweneed to havecurves
of degreegreater than one in geometrically rigid divisors.

Lemma 10. Let D bea geometrically rigid divisor on a rational surfaceS and let T bea
finite subset of the singular points of D. Let L be adivisor class on S so that the linear
system |L − T | has a uniqueelement E. Then thedivisor D ∪ E is geometrically rigid.

Actually, weonly need the regularity of S (i.e. H 1(S, OS) = 0) in theproof given below.
Further generalizations even for irregular surfaces arepossible.

Proof. Let C → A bean equisingular deformation of thedivisor C = D ∪E. Let B bethe
connected component of the critical locus of C → A that contains T . This is finite étale
over A by Lemma5. By basechangewemay assumethat B → A isan isomorphism. Thus,
wecan writeC = D ∪ E whereD is theunion of irreduciblecomponentsof C that meet D

and E is theunion of the irreduciblecomponentsof C that meet E. By Lemma6, D → A

is an equisingular deformation of D. Thus by base change we have a group-theoretic
trivialization of D. SinceB is contained in thecritical locusof D → A, it ismapped into
T by the trivialization. Thus, after applying this trivialization, E → A becomes a family
of divisors containing T .

Now, the divisor classL has no deformation sinceS is rational. Thus, the divisor class
of every fibre of E → A is in the class L. By assumption, E is aunique class containing
T , thus E → A is the trivial family. Hence the trivialization for D → A in fact gives a
trivialization of E and C as well. 2

The above lemma allows us to apply the Lagrange interpolation formula to prove the
following proposition.

PROPOSITION 11

Let T be a finite set of algebraic points on P2, then there is a geometrically rigid divisor
D so that T is contained in thesingular locus of D.

Proof. As in the proof of Proposition 9, given a geometrically rigid divisor C0 which
containsthereferencequadrilateral Q and apoint t ∈ P2(Q), weconstruct alarger divisor
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C ⊃ C0 so thatt is in the singular locus oft . SinceT is a finite set we can inductively add
all the pointst ∈ T to obtain the required divisorD. Thus we can assume thatT consists
of one pointt .

Again, as in the proof of Proposition 9 we can further reduce to the case where the point
has the form(u : 0 : 1) whereu is an algebraic number. Letf (T ) be a monic polynomial
with rational coefficients for whichf (u) = 0; let n be the degree off . Let F be the set
of points(k : f (k) : 1) for k = 0, . . . , n2. The curveE defined byYZn−1 = f (X/Z)Zn

passes through thesen2 + 1 points. Thus it is the unique curve of degreen that passes
through these points. LetC be a divisor (containing the quadrilateralQ) constructed using
Proposition 9 which containsF in its singular locus. Lemma 10 then asserts thatD = C∪E

is geometrically rigid. The point(u : 0 : 1) is a point of intersection ofE and the line
Y = 0 which lies inQ; hence it is a singular point ofD. 2

Finally, any curve of degreen defined overQ is uniquely determined in its divisor class
by n2 + 1 distinctQ-valued points on it.

Proof (of Theorem2). LetC be any curve of degreen in P2 which is defined overQ. Let
T be a collection ofn2 + 1 distinct points on this curve overQ. Let D be a geometrically
rigid divisor in P2 that containsT in its singular locus. By Lemma 10 the divisorD ∪ C

is geometrically rigid. Applying this argument to each component of a given divisor inP2

defined overQ, we have the result. 2

4. Remarks and open problems

A similar collection of arguments can be used to obtain geometrically rigid configurations
in Pn for n ≥ 3. Projection arguments can be used to define the notion of equisingular
deformations in higher (co-)dimensions. Arguments similar to the ones in the previous
section can then be probably used to show:

Problem1. For eachk between 0 andn − 1, letTk be a closed subscheme ofPn of pure
dimensionk that is defined overQ. Then there is a geometrically rigid divisorSn−1 in Pn

so that ifSk is defined inductively as the singular locus ofSk+1, thenSk has pure dimension
k andTk ⊂ Sk.

Another possible generalization of Belyi’s theorem is the following:

Problem2. If C is a projective algebraic curve over a field of transcendence degreer there
is a morphismf : C → P1 for which the branch locus has cardinality less than or equal
to 3+ r.

Belyi’s original arguments can be used to show that the branch locus can be assumed to
be defined over the field of rational functions inr variables. However, there does not seem
to be any obvious way to reduce the number of points to 3+ r. The converse (that such a
cover is defined over a field of transcendence degree at mostr) follows from the fact that
s-tuples of points inP1 have a moduli space of dimensions − 3.

Finally, it is clear from the above construction that the complexity of the configuration
required to obtain rigidity is related to the height of the defining equation of a curve. Can
this relation be explicitly used to define a notion of height?



A geometric characterization of arithmetic varieties 391

Acknowledgements

These results emerged during a seminar discussion with Gautham Dayal, Madhav Nori
and G V Ravindra. I thank them for their valuable comments and criticisms. N Mohan
Kumar made some valuable criticisms regarding §2 which led me to look at the papers of
Zariski more closely. N Fakruddin suggested Lemma 4 and the consequent simplification
of Lemma 7.

References

[1] Belyı̆ G V, Galois extensions of a maximal cyclotomic field,Izv. Akad. Nauk SSSR Ser.
Mat. 43 (2)(1979) 267–276, 479

[2] Zariski O, Studies in equisingularity. I. Equivalent singularities of plane algebroid curves,
Am. J. Math.87 (1965) 507–536

[3] Zariski O, Studies in equisingularity. II. Equisingularity in codimension 1 (and character-
istic zero),Am. J. Math.87 (1965) 972–1006


