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Abstract. C H Clemens has shown that homologically trivial codimension two cycles on a
general hypersurface of degree five and dimension three form a subgroup of infinite rank
inside the intermediate jacobian. We generalize this to other complete intersection threefolds
with trivial canonical bundle.
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1. Introduction

This paper is devoted to the study of rational curves on complex threefolds
with trivial canonical bundle. Clemens ([5] and [4]) has asked if a simply connected
threefold which has trivial canonical bundle always contains smooth rational curves.
As pointed out by V Srinivas, the étale quotient of a product of three elliptic curves
constructed by Igusa [7] is an example of a threefold with trivial canonical bundle
and vanishing first Betti number which contains no rational curves; thus the hypothesis
of simple connectivity is necessary.

In an earlier paper [2] Clemens has shown the existence of rigid rational
curves on the generic quintic hypersurface. Further, it is shown (loc. cit.) that these
curves generate a subgroup of infinite rank inside the Griffiths group of the generic
quintic.

These results naturally raise the question as to whether the phenomenon of rigidity
of all rational curves and infinite generation of the Griffiths group occurs for all generic
simply connected K-trivial threefolds. However, it was pointed out by C Schoen that
if the Picard number is greater than one, rational curves are not in general rigid.

 Hence the class of varieties for which one can expect the results on quintics to
- generalize is that of simply-connected K-trivial threefolds with Picard number 1.

In this paper we study some special examples of such varieties—the complete

‘intersections in P3. We prove results analogous to those of Clemens for these complete

intersection threefolds.

The orgamzat]on of the paper is as follows:

In §2 we give a summary of the results of Clemens [2] which allow one
to prove infinite rank. The methods are completely general and ought to find
applications in other dimensions as well.
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In §3 we give a general construction to which the results of §2 can be applied.
Here again the basic construction is for curves on a general hyperplane section of a
del Pezzo fourfold and ought to be generalizable. :

In §4 we show that the methads of the previous two sections apply to the complete
intersections in P5. We also summarize the arguments in the form of a theorem. It
should be possible to refine these methods to prove the results for complete intersection
subvarieties of Grassmanians and other homogeneous spaces. However, for other
simply connected K-trivial threefolds, there does not appear to be a method available.

In an Appendix we prove a Bertini type result which is needed in §2.

2. Summary of Clemens results

Let S be a smooth curve, m:% —S be a projective family of threefolds with
y smooth, and m smooth except at oeZ which is an ordinary double point
in the fibre X, over o€S. Let X,— X, be the blow up of the singular point and E
be the exceptional divisor for p; then we have E = P! x P!. Let teS be given by an
inclusion of the function field of S in the complex numbers, henceforth we refer to
such a t as a geometric generic point of S. Let X, be the geometric generic fibre of 7.

Lemma 1. With notation as above, the following are equivalent:

(i) The action of monodromy on H 3(X,,Z) is non-trivial.

(ii) The vanishing cycle ker (H;3(X,,Z) - H3(Xo,Z)) is non-zero.
(iii) The Hodge structure H*(X,) is not pure.

(iv) The morphism Pic (X,)® Q- Pic(E)®Q is not surjective.

Proof. Let 56 H3(X,,Z) denote the “co-vanishing” cohomology class. The action of
monodromy on H3(X,,Z) is given by xt—>x + (x,6)d. Thus ¢ is trivial if and only if
the monodromy action is trivial. This gives the equivalence of (i) and (ii).

In the following exact sequence of mixed Hodge structures

O—>H3(X0)—->H3(X,)“m—>Z(— 2),

the latter map is given by x—(x, 8)d. Note that H*(X,);r, is self-dual up to a twist
and so H3(X,) contains a Z(— 1) if and only if ¢ is non-zero. In other words, the
purity of H3(X ) is equivalent to the triviality of 6. Thus we have the equivalence of
(ii) and (iii). . :

Finally, we have the exact sequence of mixed Hodge structures

- H(Xo)— H*(E)~ H*(X,) > H*(Xo),
which shows the H3(X,) is not puré if and only if (iv) holds. o 0

Assume that one of the above equivalent conditions holds. Let d: T -5 be a double
cover ramified at oe T lying over oeS. The normalization of & x g T has an ordinary
double point; let % be the result of blowing up this ordinary double point. The special

fibre of & — T is the union of X, and a smooth quadric threefold Q which meet
transversally along E. ' |
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In this situation Clemens [3] has constructed a Néron family 7~ — T of intermediate
Jacobians over T such that the special fibre J, has two components JZ. Here

J§ = H*(Xo, CONF*H>(X,,C) + H> (X, Z)),
is an extension of a compact torus by G,,. Further, in the diagram with exact rows

0— Z(-1) - H3X,) - HX, -0
! ! | [
0- H3Q,E) - H3X,uQ) - H3&X, -0

the vertical maps are isomorphisms. Thus, this G,, can be identified with Extlys
(Z(~2), H*(Q, E)).

Choose peE and let C be the quadric cone in Q with vertex p. The mtersectlon
CnE is a pair of lines meeting in p. We have an isomorphism

Any pair of distinct lines L,,L, which are distinct from the lines in CNE give a
non-trivial extension

0-H(C~p,CNE—p)»H(C—L,—L,,CNE~D)
>Z(—1D[L,— L,]-0

and hence a non-trivial point of G,,.

Let # T— T be the involution correspondlng to the double cover d T—S. This
gives us 1% —% as well. The action on the special fibre of % — T is described as
follows: 1 acts trivially on X, and on Q it acts as the unique involution which fixes
E. Further, we can lift 1 to an action 7 on . The action of i on the special fibre is
trivial on the identity component J§ and is non-trivial on the remaining component
Jo -

Lemma 2. In the situation of Lemma 1 assume that the actlon of monodromy is
non-trivial. Suppose in addition that we have a commutative dlagram

¥ o x
pl Ip
T 5 s

where d is the double cover as above and € — T is a smooth family of connected curves
which embeds into & in such a way that oe X, lies on the special fibre C,.

For each te T different from o, the difference o(t)=C,— C,, gives a point in the
intermediate Jacobian of X,,,. This extends to a section 0:T— such that ¢(0) is a
non-trivial two-torsion class in the identity component Jg of the special fibre.

Proof. The surface € < y is smooth and meets X, in C, with multiplicity two. Hence,
we get two maps m¥ —-Z x T and 1(m): ¥ — % x T where the images meet along
C, with multiplicity one. Let € be the blow up of ¢ at 0oe¥ <% and let D
denote the exceptional divisor of € —%; then m and i(m) give us two maps
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n.% —y and 1(n):% — y, such that n(D) and 1(n)(D) are distinct lines L, L, in Q that
meet E in the same point p. Their difference then gives us a non-trivial class o in the
G,, part of Jg .

For each te T different from o, we see by continuity that the curves C, and C,,
are homologically equivalent in the fibre X4 Thus we have a class a(t)=C,— C,,
which is homologically trivial in the Chow group of X - The limiting class is

o(0)=n(D)— 1(m)(D)eCH* (X, L Q),

for a suitable definition of the latter Chow group. Furthermore, o(t) gives a point in
the intermediate J acobian of the fibre X 4, which extends toa section o: T — 7 . Clearly
o(0) = & which is non-trivial. Now c(0)eJg is fixed by 1; on the other hand from the
expression above 1(g(0))= — o(0), hence it is a non-trivial two torsion class in the
identity component Jg . : O

Let X be a smooth projective threefold with H 4(X,Z)=1Z, and {C;c X} be an
infinite collection of curves. For any codimension 2 linear section C, < X we get classes

o = _deng
d= 4 degC,

CoelJ(X)

where J(X) is the intermediate Jacobian of X. As in Clemens [2] we now give a
sufficient condition for these classes to generate a subgroup of infinite ranks in J(X ).

Assume that (X, C,) is the pair corresponding to the geometric generic point. of S,
in a situation

(gd Ty ‘%‘d
pl ip
T 5 s,

as in Lemma 2; here we have used the subscript to indicate dependence on d. Further
assume that for each I # d we have a commutative diagram which specializes to (X, C))
at the geometric generic point of S, :

Cgl‘d sy gcrd
T Iz
sq =8y

where @,— S is a smooth family of connected curves with embeds into & in such a
way that it misses the ordinary double point of X,.

All the above data is defined for all d over a countably generated field over Q.
Hence it makes sense to assume that there is a geometric generic point s;€S, — o for
each d, where the above data specializes to (X,{C,}). '

Lemma 3. If (X,{C,}) are as above then classes e, generate a subgroup of infinite rank
in the intermediate Jacobian J(X) of X.

Proof. As in Lemma 2 the action of 1 fixes the class of C, since we have assumed

e s e e e N
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that H*(X,Z) = Z. Thus we have an additional class

deg Cd,t)

1eg) = eg=1(Cy) — deg C
0

— -7~ Co
in the intermediate Jacobian of X.

With notation as in the proof of Lemma 2, we have e, — ¢, = o(t). The action of
7 on the classes ¢, for I #d is trivial since the class of C, is fixed and C, is fixed.
Suppose that we have a relation Zg, ;. nsey =0 then by applying 7 to this relation we
get nge;+ X, ,me; =0. Thus we see that n,o(t) =0. Then by degeneration we have
n,0(0)=0 and by Lemma 2 we see that n, must be even.

For any relation X, ;. ne; =0 in the intermediate Jacobian of X, this shows that
ny is even for all d. Thus e, are independent mod 2. Now let G be the group generated
by e,. We can apply the following easy lemma to G to show that its rank is infinite.
C

Lemma 4. If G is an abelian group such that its torsion subgroup Gu,rs is a subgroup
of (Q/ZY, then we have

ranko(G® Q) +r > rank, ,,(G® Z/2Z).

Using Lemma 1 we can characterize the families &, — S, by means of conditions
on the special fibres X, = X, ;. A precise meaning will be given to the deformation
schemes in the examples considered in §4. ‘

1. X, has at most ordinary double points as singularities.

2. For I #4d, the curves C; are smooth and lie in the smooth locus of X, and the
morphism Def(X,, C;)— Def(X,) from the space of deformations of the pair
(Xo, C)) to the space of deformations of X, is étale at the point corresponding
to (X, C)).

3. C, s a smooth curve in X, passing through exactly one ordinary double point
peX, and the morphism Def(X,,C,)—Def(X,) is doubly ramified along a
divisor containing the point corresponding to (X, C,).

4. Let X, be the blow-up of X, at all its ordinary double points, and let {E | .
denote the exceptional d1v1sors If peC, is the spec1a1 point then the image of

PlC(X 0 ®Q— ®qe(XO),|,,.PIC(Eq) ®Q
does not contain Pic(E,).

The next section will give a general procedure for constructing examples of such
degenerations. :

3. The principal construction

Let Y be a smooth del Pezzo fourfold, i.e. ¥ = P" and Ky = 0y ® 0p(1) = Oy(1). Let
S < Y be a smooth surface such that S is the scheme theoretic intersection of Y with
a linear subspace, i.. if V =T'(Y, I5y ® Oy(1)), then we have a surjection

V& Oy =I5y @ Oy(1) = Isy(1).
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Let E c S be an exceptional divisor of the first kind, i.e. E = P! and Ngjs = Opi(—1).

Lemma 5. Let Y, S and E be as above. We can find a hyperplane section X of Y

containing S and smooth along E. .
In this situation, if Hilb (X, E); Y) denotes the space of deformations of the pair (X, E)
in Y and Hilb (X;Y) the deformation of X in Y then the natural morphism

Hilb ((X, E); Y)—Hilb (X; Y)
is étale at the point corresponding to (X, E).

Proof. N¥y(1) is generated by its global sections, in fact we have a surjection
V ® Os— N¥,y(1). Thus on restricting this to E we have

V® Op— NEy(Dle.

Hence we can find a section ve ¥ such that this gives a nowhere vanishing section. of
N%y()|g. Let X, be the corresponding hyperplane section of Y. Then X, contains
S and is smooth along E. ,

Now we have an exact sequence of vector bundles on E.

0— Ngs— Ngjx, — Ngx,lg 0.
 Furthermore Ky, = Ky ® 0y(X,)® Ox, = 0,thus det Ny, =Kz = Op:(—2), and so
NS/Xu lE = detNE/Xu ® Ng/é' = (Opx(‘— 1).

As a result the above sequence splits and Ngx = Op:(— 1)®2

The infinitesimal deformations of the pair (X,, E) in Y are given by
U = ker(HO(E, Ngyy) @ HO(X, Ny, y) » H(E, Ny, | E)).
From the exact sequence
0—Ngx, = Ngjy— Ny, vlg—0

we see that H(E,Ngy)= H°(E, Ny, y|E) which yields the isomorphism U=
HP°-(X, Ny, y) under the natural morphism. 0

Let G be the vector bundle on S defined by the sequence
0"”G*‘—) V@ (OS—)NE/Y(]')_)O’

Let f: Py(G)—P(V*) denote the natural map. For any point veP(V*) such that f
is étale over v, the set £ ~1(v) consists of finitely many points. The projections of these
points give the singularities of X, along S. It is easily seen (see Appendix A) that
these are ordinary double points. We now need to choose v so that exactly one of
these singularities lies on E and also ensure the rigidity of E in X, for this choice of
v. The first step is .

Lemma 6. Let N be a vector bundle on a smooth projective curve E, V< T'(E,N) be a

R Al
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space of sections such that g:Pz(N)— P(V) is an embedding. Let G be the vector bundle
defined by the exact sequence

0->G*> V®O;— N-0.

Then the map f:Py(G)—P(V*) is birational to its image and the ramification locus of
this morphism has codimension two in Pg(G).

Proof. Now f*(Op+ (1)) = Og(1) is the tautological line bundle on P(G) which is a
quotient of n¥ G where n, :Pz(G) — E is the natural projection. Observe the following
diagram of Euler sequences

0 0
! l
(9G = @G
! !
0o WE*R0 ) —» V@0s(1) - mNO(I) —0
i } !
0 Teyoue = [Ty —» X -0
l
0 0

and the following diagram of exact sequences

0> Teor = Toe = 71Tp -0

I ~ l l

0> Toor - ff Ty —» X -0
These show us that df is computed by a map on Pg(G)
b:7* Ty = XN ® Og(1).

Similarly, if 7,:Pg(N)— E denotes the natural projection, one shows that dg is
computed by a map on Pg(N)

yind Te—n*G® Oy(1).
In fact, if 7:P.(G) x gPg(N)— E is the fibre product we have a natural morphism
y:m*(Tg) = 0(1) @ On(1)

such that ¢ = (p,)(¥) and y = (p2) ). o
We are given that g is an embedding, and thus dg and also y are inclusions of

vector bundles. This gives us a subvariety
D =P,y (cokery) = Pg(G) x g Pg(N)

which is precisely the vanishing locus of . It follows that D = P(V*) x Pg(N) is
precisely the collection of pairs (v, n), such that the hyperplane section of Pg(N ) defined
by v is singular at n. Let D' < P(V*) be the image of D; this is the dual variety of
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P.(N)— E and the divisor P5("), for the quotient N — (N/v-Og)/torsion = I with
(v,n),v=D’ a smooth point and neP(V) such that the hyperplane in P(V*) defined
by n is-tangent to D’ at v. The fibre of the map D— D' is a projective space at the
general point of D'.

If veP(V*) is in the image f(Pz(G)), then the corresponding hyperplane section
of P;(N) contains a fibre of n. Thus this hyperplane section is singular. Furthermore,
for any veP(V*), the hyperplane section is the union of finitely many fibres of
P.(N)—E and the divisor Pg(J), for the quotient N —(N/v: Og)/torsion = J with
rank 1 kernel. Thus, for any veP(V*) the singularities of the corresponding hyperplane
section are contained in finitely many fibres of Pz(N)— E. In particular, D’ is the
image of P5(G) and the map P(G)— D' is generically finite. Combined with the fact
that D— D’ has general fibre a projective space we see that D, Px(G) and D’ are
birational.

The cokernel of ¢ is supported on the subset of Pg(Gg) where the birational map
D—P(Gy) has at least 1-dimensional fibres. Since D is irreducible this is of
codimension =2 in Py(Gg). O

Let X be a hyperplane section of Y which contains S and has exactly one ordinary
double point lying on E and no other singularities on E; such an X will be provided
using the above lemma. We must find a condition for

Hilb ((X, E); Y)— Hilb(X; Y)

to be ramified to order two along a divisor containing (X, E).

Let &:Y— Y be the blow up of Y along S; the exceptional divisor is P = Pg(Ngy(1));
we have a ruled surface Q = PE(N %y(1)|g) contained in P. Let X be the strict transform
of X in Y. Then X meets P in a smooth surface S which is the blow up of S at the
finitely many ordinary double points of X; one of these is a point eeE. Let F, be the
exceptional divisor of S5 over e and E be the strict transform of E in §. Then X
meets Q in EuFe, note that E is a section of Q — E and F, is the fibre of Q — E over
e. Further, X is smooth along E, thus we see that there is a natural map Nz S Noiles
the cokernel of which can be canonically identified with the fibre of Ny yat &= EnF.,.
We have a diagram of exact sequences,

0 - Ngg - Ngg - Ngzle — 0

! ! |
0, - NQ/P - NQ/7|E - P/?lf - 0
! ! l

0 - Ngs = Ngy = Nglg = 0

where Npz/z can be computed to be O and the inclusion Npls S Nyl is the one
induced by the given morphism E=~ E < Q.

The last row of the diagram gives us I'(E, N E}r) ~T(E,N S/ylé) and thus we have a
lift Npslz— Ngy, in fact it is easily shown that the section actually lifts to N, 3!z to
split the middle sequence. In order to show that N3 has no sections we must show
that the image of this splitting maps non-trmally under the morphism N,3,— Nz .
We shall show this by varying the choice of X.

|

— Mg v

e

P
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Lemma 7. Let f: Pg(G)—P(V*) be the natural map. Assume that N =P(Glg) = Ps(G)
is not entirely contained in the ramification locus of f. Further assume that fl|y IS
birational to its image and is unramified outside codimension 2.

Then, there is a hyperplane section X of Y containing S which has at most ordinary
double points as singularities. Further, exactly one of these singularities lies on E and
Hilb ((X, E); Y)—- Hilb(X; Y) is ramified to order two along a divisor containing the
point (X, E).

Proof. Let I', = N x E denote the graph of m:N —E. On N x E we have a map
} Y0y, 5(T2) = Pt 06(1) @ pE(NEy(1)]x)
which restricts to  on I', é N. Using the isomorphisms
Oy £T) = pE1* O (1) ® p3 Opu(1) and Njy(1)|5 = Ny ® Ops(1)
this is equivalent to a map

PH(&L) =p¥(Oy(— 1) @7* (991(1))“’P§(NSJY|E)-

Let Z be the vanishing locus for ¥. Then Z meets ', in the vanishing locus for ¥
which is given to be of codimension 2. Further, I', meets every effective divisor in
N x E and thus Z is also of codimension 2 in N x E; in particular, the map
&L < p%(Ngylg) is saturated. Hence, if U=NXE—Z, we have a morphism
p:U—Q =Pg(N§y(1)|g) such that p*Op(1) = £~ '@ p3(Oy()lg)-

The sequence 0— Ny, = Ny3— Npslg—0 on Q pulls back under p to

OﬂprE/sﬂp*NQ/y*pT(,?)%O

since Np3lo = Og(1) @ *(Oy(— 1)|g). Taking direct images under p, we see that this
sequence splits to give a map p¥(Z)— p* N5 As seen in the arguments preceding
the lemma we have a natural surjection on T, from the restriction of Ny to the
restriction of the pull back p*(OyX). Note that 0y(X)= Oy — P)® e*0y(1) which
restricts on Q to Oy(1). In order to show that we have rigidity for E in X we need
to show that the composite morphism on I', = N

&~ p*Nyglr, = P* OV,
is non-zero. The kernel of the second morphism can be computed to be
(71*1\])3/3@3)@)(@‘(5~1 ®77~'*((9Y(1)|E))_1 = ~(f®2®n*((or(1)lE®NE/s)- |

So, if .# landed completely inside this on U, we would have a non-trivial section of
&L ® n*(0y(— 1)|g® Nps) which is isomorphic to Oy(— 1)@ n*(Oy(— 1lg). Since the
complement of U is of codimension two any such section would extend to all of N
and that is clearly impossible.

To summarize, at some suitably chosen point of n we have

1. If v= f(n)eP(V*) then X, has no singularities other than finitely many ordinary
double points on S. '
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2. There is exactly one ordinary double point of X, which lies on E.
3. The curve E < X is rigid; in fact, from the exact sequence

O_’(DP‘(”Z)—"NE/J?_’@P"_’O
and the fact that I'(E, Ngz) =0, we see that Ngz = Opi(— 1)®2,

The curve EUF, is an exccptlonal tree of curves of the first kind on S and thus
by an argument similar to the one in Lemma 5 it deforms into nearby X’s. Thus each
of the curves E and EUF, deforms to nearby X’s. This gives the result. |

Now, assume that V= I"(YIS,,,(l))_I“(Y Oy(1)® O3(— P)) gives a very ample
linear system on Y. Then V is also very ample on Q= Pr(N§y(1)|g) so that we
can apply Lemma 6. Furthermore, for a general ve V, if . X, denotes the corresponding
hyperplane section of Y, then we have Pic(X,) = Pic(Y) = Pic(Y)@® Z[P]. Now, the
blow up of the singularities of X, gives the same result as blowing up all the fibres
of P— S which lie in X, from thlS we see that the hypothesis (4) at the end of §2 is
satisfied.

Finally, assume that S has infinitely many exceptional curves of the first kind {E,}.
We can then choose an infinite subcollection {C,} so that the images of P¢,(G|c,) in
P(V*)are distinct. Then by the above lemmas and subsequent discussion, it is possible
to choose, for each d a point v, so that the hyperplane section X, satisfies the
conditions stated at the end of § 2.

To summarize the hypothesis on S and Y:

1. Y < P"is such that Ky! = 0y ® Op.(1)

2. S< Y is such that if V' =T'(Y,I5y(1)) then, V generates I S,y(l) at stalks

3, If ¥ is the blow up of Y along S, then the map ¥->P(V) is an embedding
4. S contains infinitely many exceptional curves of the first kind

~ We shall produce such examples in the next section.

4. Examples

Let b:S —P? be the surface obtained by blowing up 9 points in general position Let
H =b*0.(1) and let E; denote the exceptlonal curves in S over the points in P? which
have been blown up. Let C be the unique elliptic curve in the linear system
|3H — X7, E;.

Lemma 8. With notation as above, S can be embedded in P> by the linear system
|4H — X7_, E,;|. Further, we have a surjection

@Ps(_" 2)@3 @ (OPS("" 3)_>IS/P5 .

Proof. We have a short exact sequence on.S

9 9 .
i=1

i=1

T . R
. —— V)
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Since H'(S, Os(H)) = H' (P2, 0p:(1)) = 0, the associated long exact sequence on cohomo-
logy shows that the linear system D = |[4H — £2_, E,| on S is of dimension five and
has no base points on C. In addition, the linear system D contains all curves of the
form C + H where H is the pull-back of a line in P2, so it has no base points outside
C. Hence we have a base-point free linear system on S and a map to P°. We can use
the results of Nagata [8] to show that the linear system D in fact embeds S in P° as
a surface of degree 7.

Let A be a general curve in the linear system D. Now, H 1(S,05)=0, so that D
restricts to a complete linear system of degree 7 on A. The linear system on A given
by |Z7-,(E;n4)—(HN A)]| is of degree 5 and thus has a section consisting of five
points {g;}}-, on A4; since 4 is general in the linear system we may assume that none
of these three ¢;’s are collinear.

Let §' be the surface obtained by blowing up P? at these five points and F ; the
corresponding exceptional divisors. We have an embedding of §' in P* by the linear
system |3H'—X3_, F;|, where H' is the pullback to S of a general line in P2. It is
well known that this surface is the complete intersection of two quadrics in P* (see [1]).

Let A’ be the strict transform to S’ of the curve 4 in S; then there is a natural
isomorphism between A and A’. Furthermore, by the choice of g;’s, we see that the
embedding of A’ in P* is by the same linear system as the one that embeds A as a
hyperplane section of § in P°; thus we may identify this P* with the hyperplane in
P? which cuts out 4 in S. The line bundle O5.(— A')® Op.(n) is generated by global
sections for n 2 3 (see Nagata loc. cit.). For n=2 this is O5.(2H' — X3, F;) which has
exactly one section Q, a line in P*. The union 4’'UQ is then defined by quadrics in
P* and A’ is defined by cubics. Thus we have a surjection

@PL(— 2)®3 @ @PA('— 3) —)IA'/P‘ = IA/P"
Since A is a general hyperplane section of S, we have the result. O

With notation as above, let P be the plane spanned by the elliptic curve C. For Q
as in the proof above we have Q = P NP*. From,this one can see that the net N of
quadrics containing S also contains P, and in fact SU P is the complete intersection
of these three quadrics. Hence we have a sequence

002’ ® Ops(—2) = Ngjps— T—0
where T = N¢jp= 0c® Ops(— 3). The dual sequence is
0— Ngjps— 02 ® 0ps(2) = O ® U5(C)® Op(C) 0.

The last surjection induces a map C— N. A point outside the image of this gives
a quadric containing S which is smooth along S. Similarly, we take the sequence

0"")013(‘“ 2)63—>N§/P5_> T -0
where T' = N¥;. The dual sequence is
0—Npps— 0p(2)%° - 0. ® 05(C)® 0p(C)—0

which again induces the same map C— N and so a point outside the image gives us
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a quadric which is smooth along Su P. Since this is the base locus of N, there is a
smooth quadric Y containing S. '
Choose such a smooth quadric. Then § is defined by cubic equations in Y, ie. if
=T(Y,I5y ® Ops(3)) then we have V; ® Oy — I5y ® Ups(3) is surjective. Further,
by adjunctlon we have Ky =2 0y ® Ops(— 4) Now we apply the following lemma

Lemma 9. Let S < Y be a pair of projective varieties, and L a very ample line bundle
on Y. If V, =T(Y,Isy® L®") generates at stalks then V=T(Y,15,y ® L®"*") is very
ample on Y, the blow up of Y along S.

Proof. The surJecnon V, ® Oy —Igy® L®" induced by the evaluation map gives an
inclusion Y = Y x P(V,). The line bundle M = p* L® p% % Op(y,(1) is very ample on
Y x P(V,). Restricting this to Y and taking direct image to Y we see that
I'(Y,Ml;)=T(Y,I5y® L®"*). Hence the result. O

Similarly, we can choose Y to be a smooth cubic containing S and then S is defined
by quadric equations in Y, ie. if ¥, =T(Y,Igy® 0ps(2)) then we have a surjection
V,® Oy— Is;y ® 055(2). Also note that by adjunction we have Ky = Oy ® Ups(— 3) s0
that we can again apply the above lemma.

Finally, to produce the exceptional curves of the first kind on S we use

Lemma 10. Let S be the surface obtained by blowing up P? at at-least 9 general points.
Then S contains infinitely many exceptional curves of the first kind. O
The proof can be found in [8].

We are now in a position to state and prove

Theorem 11. Let Y be smooth quadric or a smooth cubic in P*. The anticanonical
bundle Ky' of Y is very ample. Let X be the geometric generic divisor in the
corresponding linear system. Then, the Griffiths group of X contains a subgroup of
infinite rank.

Proof. A simple dimension count shows that every smooth cubic contains a surface
S as in Lemma 8. Since all smooth quadrics are isomorphic, the same is true for
quadrics as well. Further, as a consequence of Lemma 8, if V=T(Y,I5,®Ky')
then we have a surjection

]

VRO Iy @Kyt

Furthermore, by Lemma 9, if Y is the blow up of Y along S, then we have a natural
embedding ¥ <, P(V). We note that this implies that the map P =P(N§,)—»P(V)
is also an embeddmg Now Y is simply connected and has PIC(Y) Z; as a
consequence Pic(Y)=Z@Z[P]. Let us adopt the notation Oy(1) = Ky 1.

First of all we use Lemma 5 to find X, which contains S and is smooth along all

the exceptional curves in S. Since there are countable many such curves X o 18 defined
over some countably generated field.

Let G be the vector bundle defined by the exact sequence

0-G*->TV® 05— N§5y® 0y(1) - 0.
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We have a map Pg(G)— P(V*). Since Pic(Y)=Z, the same is true for any smooth
divisor D in the linear system |Ky!|. Then by the adjunction formula, a smooth
divisor in D is of general type; in particular, no smooth D can contain S. From this
it follows that the map Pg(G) — P(V*)is generically finite, let B 1 denote its ramification
locus. Let B, denote the locus in P(V*) consisting of v such that the corresponding
hyperplane section X, has singularities outside S, and B =B, v B,.

By Lemma 10 and S has infinitely many exceptional curves of the first kind. We
need to choose among these, curves E = S such that the image of P.(G|g) is not
contained in B. There are clearly infinitely many of these. Further, we choose an
infinite subcollection {E,} such that, in addition, the images of Py, (Gl Y P(V*)
are distinct. Since the map Pg(N¥,(1))>P(V) is an embedding we can apply
Lemma 6 to show that f,’s are birational to their images.

Now for each d, we choose a point v, in the image of f,, which is not in the image
of f; for any 1#d. Further we may assume that v, is not in B. Let X, be the
corresponding hyperplane section of Y; then (X )y, is a finite collection of ordinary
double points lying in S. We apply Lemmas 5 and 7 to conclude that X, satisfies
conditions (1)—(3) listed at the end of §2. -

Let X denote the strict transform of X, in Y; this is the small resolution of X 4
Since it is a hyperplane section of ¥ it has Pic(X;)=Z@®Z[S,]; where §; = Pn X/,
is the strict transform of S in X7;. The result of blowing up the finitely many exceptional
curves of the map S;- 8 in X} is X,, which is the blow up of the finitely many
ordinary double points of X ;. From this we see that condition (4) of § 2 is also satisfied.

Note that Hilb(X; Y) is just the projective space |Ky'|. Let A, be a curve in
Hilb(X; Y) joining X to X,. We use the second part of Lemma 5 to construct infinitely
many rigid rational curves in X, by deforming along A4, all the exceptional curves of
the first kind in S. For each d we choose a curve B, in P(V*) joining X, to X, which
is not entirely contained in any of the divisors Py (G|g,) or in B. We may choose a
deformation A, of A,u B, in Hilb(X; Y). The above construction ensures that
deformations along the different 4,’s give the same collection of rigid rational curves
in X. Now we can apply the argument following Lemma 2 to conclude that the classes
e, (with notation as in §2) generate a subgroup of infinite rank in the intermediate
Jacobian J(X) of X. : .

As a final point, note that H*(Y,Z) =0 and thus by well known arguments (as in
[6]), the abelian part of J(X) is zero. This implies that this infinite rank subgroup is
actually contained in the Griffiths group. a

Remark. Constructions similar to the one above will also allow us to conclude the
theorem in the case where Y is P#, thereby giving the original results of C H Clemens.

Appendix A. Bertini type results

Let X be a smooth variety and Y be a smooth subvariety of codimension r and L
be a line bundle such that £y, ® L is generated by global sections. We wish to
understand the singularities of the general global section of Fyx ® L.

Let & be the coherent sheaf on X defined by the exact sequence

0— L 15 T(X, Sy ® L)*® Oy — F —0.
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Then Py(F) = X x P(I'(X, Sy x @ L)*)is the incidence locus between sections of Sy x
and their zero sets. ‘

For any ye Y we can pick sections fy,...,f,e[(X,Fyx® L) which define Y in a
neighbourhood of y. The remaining sections can then be expressed as linear
combinations of the f;s,

gi= Y, a;f;where i=1,...,1

.
"M*x
-

Thus, the first homomorphism of the above sequence can be rewritten in a
neighbourhood of y as

@x,y—*(@;=1(9x.ij)@(@§=1(9x.yGi)
r li
1 Zlf"F‘l -+ .21 giGi
i= i=

where F,,...,F,,G,,..., G, is the basis of ['(X, £y ® L)* which is dual to FiseeesSrs
Gi»--20. PutHj=F; + T!.,a; ;G;so that the above homomorphism can be written as

@X.y%(®;=l @X,ij)('D (@i= 1 (DX,yGi)
1Y f;H;
i=1
where f,...,f, define Y, a smooth subvariety of codimension r in a neighbourhood

of y and may thus be thought of as “coordinates”.
Thus, we have

P (%)= Proj(@x,y[ﬂl,...,H,,Gl,...,G,])

(Zj=11;H;))
which can thus be expressed as the union of the affine open pieces of two types
1. The regular pieces are, for each j between 1 and r
Spec((ox”’[Hl/Hj"'"H’/Hj’Gl/Hj""’G‘/Hj])
(fj+ Zx=ifiH/H;j)
2. The singular pieces are, for each i between 1 and [
Spec((oX,y[Hl/Gia---er/GiaGl/Gia”-sGl/Gi])
(Xj=1/;H;/Gy)

which is an ordinary double singularity along the locus defined by the vanishing of
fis--.sf, and H,/G,,...,H,/G,.

Thus the singular locus of Py (%) is smooth of dimension dim X —r+[/— 1. The
dimension of P(I'(X, #y,;x ® L)*)isr + | — 1. Therefore, if dim X < 2r then the general
element of I'(X, #y,x ® L) defines a smooth divisor in X contajning Y. If dim X = 2r,
then the general element as above has finitely many ordinary double points along Y
and is smooth outside.

»
B
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