ON DIFFUSER EFFICIENCY IN COMPRESSIBLE
FLOW

By P. NILAKANTAN

Received June 22, 1945
(Communicated by Sir C V. Raman, Kt., F.RS., N.L.)

INTRODUCTION

THe diffuser is a device whereby the kinetic energy of flow of a high velocity
fluid jet is transformed into pressure energy. It has many practical applica-
tions in turbines, wind tunnels, pumps and various duct systems.

The conditions of fluid flow in the diffuser are determined by the

energy equation and the equation of continuity of fluid dynamics. In the
simple case of the flow of an incompressible fluid, or the case of a com-
pressible fluid at very low Mach numbers, these equations are:

PyUA; + 3 pU %A = PUsA, + 4 pUSPA, (1)
U]_Al = U2A2, (2)

where Py, U, A, and Py, U,, A, denote the pressure, velocity and area of
cross-section at the entrance and exit sections of the diffuser, respectively,
and p 1s the density of the fluid. The efficiency of the diffuser is defined as
the fraction of the difference in the kinetic energy of the jet at the entrance
and exit sections that is transformed into pressure energy; that is,
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Another definition of diffuser efficiency used in design expresses it as
the ratio of the difference of pressure between the entrance and exit sections
to the dynamic pressure at the entrance: that is,

p=tam P P— Py

Po— Py G

where P, and P, arc the pressures at the entrance and exit respectively and
P, is the stagnation pressure. This quantity, however, does not give any
indication of the energy losses involved. On the other hand, the efficiency
as defined by (3) does not give the fraction of the kinetic energy at the
entrance that is actually transformed into pressure. Hence both definitions
are useful when designing a diffuser in order to obtain maximum pressure
recovery with a minimum of energy loss. Formule (3) and (4) are directly
applicable only under ideal flow conditions. Andin view of the fact that under
actual conditions the velocity of the jet is not constant across any section
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of the diffuser, the definition of efficiency according to equation (3) has to
be suitably modified in order that it may be calculated from actual experi-
mental data. We shall assume that the static pressure and the density are
constant across any section, which is justifiable when the divergence angle
of the diffuser is small. In this case, we get the following expression :!

Pz“"' P]_
n = ©)
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where, f 3 pU3A =1 pU3A a
Al

f $pUMA =} pU,’A,8
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A, and A, are the entrance and exit areas of cross-section as defined before
and U, and U, are the average velocities respectively, defined by the relations,

f UdA

U=y (6)
f UdA
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Hence the determination of the efficiency at low speeds involves the
measurement of Py, P,, U; and U, and the calculation of U;, U,, « and R
under conditions of steady flow.

At high speeds, when compressibility effects become prominent, the
above definitions of the diffuser efficiency are no longer sufficient and we
run into thermodynamic complications. The object of the present paper
is to present a practical solution of the problem in the case of compressible
flow that has been employed by the author in testing scale models of several
diffusers for a high speed wind-tunnel.

THEORETICAL CONSIDERATIONS

Ackerzt? has defined diffuser efficiency in compressible flow as

n =

which is the same as formula (4) in the case of mcompressible fluid flow.

But 9 is not equal to P—z—:]:-lil since, in compressible flow,
X .
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. : P,—P .
We may therefore write 5= P "i*_ ;%1\1412), to a first approximation. The

efficiency as defined above does not again give any indication of the
energy losses. A satisfactory definition in the case of compressible fluid
flow has been used by L. Crocco® in his important paper on high speed wind-
tunnels, taking into consideration the non-isentropic character of the flow.
‘According to the Bernoulli equation for the flow of a non-viscous coms-

pressible fluid, we have the following fundamental relation:
UdU = — ‘-? - ®)

L. Crocco assumes that the actual equation of flow, taking into account
frictional dissipation of heat, is of the form,

JUdU = -%13

where 7 is the efficiency factor.

©)

The problem of determining 7 reduces to that of integrating the above
expression. If in the first place, 9 is assumed to be constant for any flow
under specified conditions in the diffuser, then, »

n( U22) f "P (10)

Due to the frictional evolution of heat during the transformation, the
changes taking place are no longer isentropic and in order to integrate 51-:3
it will be necessary to know the actual law governing the variation of P with p.
This law will be different from the usual adiabatic relation, II:—- constant,

although of the same form. It may be noticed that in equation (10), 7 is
the fraction of the kinetic energy which is transformed into pressure
energy and hence is the efficiency of the diffuser while (1 — n) is the fraction
of the energy which is rendered unavailable from the standpoint of pressure

recovery.

The definition of the equation of flow expressed by (9), which is
characteristic of the diffuser, defines also the adiabatic non-isentropic law
of variation of pressure with density, if we regard % as a constant for the
diffuser under any specified condition of velocity and pressure distribution.
" In this connection it must be clearly borne in mind that 7 is not a constant
for the diffuser under all conditions of flow. In other words, if we specify

any condition of fluid by the Mach number at the entrance of the diffuser,
A7
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then » will be a function of this Mach number. Corresponding to each Mach
number, we shall have a certain velocity distribution across the entrance
and exit sections of the diffuser, a corresponding pressure distribution along
the length of the diffuser, and a certain value of n (regarded as constant only
for the flow from the entrance of the diffuser to its exit) which we shall now
express in terms of the other quantities. This can be accomplished with the
help of the energy equation, E

U2 .
| d(—z—) + Jdi =0, (11)
where di is equal to C; dT and J is the mechanical equivalent of heat.
. 14pP .
Hence, I di= SR JCpdT= =0 1) RdT, (12)

where y is the ratio of specific heats and R is the gas constant defined by
the relation P/p = RT. Equation (12) may then be reduced to the form,

dP_ yq dT ,
| TG=-DT (13
which gives an integration, |
log P= ( 1) logT 4+ C (14
is constant

(,, 721)

From the equation of state we also get the relation connecting pressure
and density as follows:
pa/l

P, _ v —v-+1
-0 as
‘The above relation enables us to integrate equation (10) and we get,
-0
P,\ 77
U 2__ U — .
(0 9/ y—1RTs {(Pl) 1} (16)

The subscripts 1 and 2 refer to the entrance and the exit of the diffuser
. respectively.

- The following special case of equation (16) is interesting. If U,
approaches zero, P, becomes, in the limit, the stagnation pressure at the

exit, and we have,
-0

1.2 ¥ Py 77 _ '
U= 2y RTl{ ITI) 1. (7
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Dropping the subscript 1 and designating the exit pressure as Py, the
equation becomes,

-1
Uz 1 P\
b =5=nile) 1) (18)
where a is the local velocity of sound: a= 7_'_;-
Hence,
¥7
Bo_ (. =D UHY D
P {H 2 E”} (19)
The corresponding formula for the isentropic case given by Glauert* is,
y -1 |
Py_ (7 — 1) U2 Y
P {1+ @)

Equation (16) is still not in a suitable form for making any computations
from experimental data, since the velocity distribution is not uniform across
the entrance and exit sections.

If U, and U, are the average velocities, then by the continuity condition,
A1U1P1 = Azﬂsz- (21)

We shall make the simplifying assumption that Py, P,, p, and p, are constant
across any section of the diffuser. Further, we shall define,

[ UldA=dU;3A,,

A

f Usz. = ﬁUazAg,

Az
A,\? 2
Also, zzm(K:) (zi) 0,? from (21).
Then equation (16) becomes,

s (@0 L) e
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If further, it is assumed that the velocity is constant across the entrance
of the diffuser (which is generally the case) so that a= 1, we have,

where =

=83 () ~etuate) - @
sifice (I;:) %f
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Hence . o - o | 4
o 4, ¥ P g AN BNIOD , p PYF g

I+ v—1gq B (Az) (Pz) + (y—1) /81 Pz) (24)
‘We have to solve the above ‘equation for F. ‘
Putti v P afBYy o
Putting = R, an (Pz) S
we have, A2 Prs :

— pa | I1 2 :
[+R=§8 (Az) (Pz) S?+ RS, (25)

.which is a quadratic in S and gives as a solution

TR «/R2+ 481 +R) (f{}i)z(%f
- ANE/ PN
#(x) ()
taking only the positive value of &,

“Then, C log S=~Flog(%)

. _ _log § SR '
e -

. ’ P
- log (%2 PR

OUTLINE OF EXPERIMENTAL: AND ‘COMPUTATIONAL PROCEDURE

The quantities that have to be determined ‘experimentally are P, P,,

g: and B. Py, P, and ¢, may be easily determined by means of a suitable

Pitot-static tube, whereas the determination of B will involve the evaluation

of [UA/TU,%A,, as defined earlier. This involves a velocity survey of the
Ag

exit section for the integration of U2JA. The value of U at various points
on the exit section may be determined by pitot traverses across the section,
reasonably sufficient to cover the whole area and to take into account all

» / UdA ,
variations of velocity. U, is given by the relation @..A_‘_, and may also be
. 2 . P
evaluated from the velocity survey. ‘ -
The steps in the calculation of 7 from the experimental data obtained are
as follows: » ‘ : o o

b -
1) Calculate R=_Y__ %1
(1) Calculate v bl




(2) Evaluate U, =2

[ UdA

and B = %W from the velocity survey at the exit section.
2 432

_ AN /PNE 0
—R+\/R2+4ﬁ(1+R) A (B
(3) Calculate ,S = (A2) (P2) A, and ‘

finally find ) {Oi.(_%)

DiscussioN

No attempt will be made here to discuss the results of earlier
experimental work on diffuser efficiency at comparatively low speeds.
- Regarding these, reference may be made to the article by G. N. Patterson,
on modern diffuser design® and also to the article on turbulent flow by
H. Bateman® in which he discusses flow in a conical channel. Published data
on the efficiency of high speed diffusers are unfortunately meagre since the
subject has come into prominence only recently. The formul® for effi-
ciency presented in this paper are expected to be useful in future experimental
work.

It may be remarked that theoretical formule for estimating losses in any
new design of a diffuser are of little practical value. Empirical formule
based on previous experimental work may be of limited use. It has been
established that at low speeds a conical diffuser of about 7 degrees divergence
angle is about the most satisfactory one. High speed jets, however, exhibit
a tendency to separation for divergence angles even as low as 5 degrees. The
character of the divergence of the cross-section from the entrance to the exit
also appears to be a critical factor. Straight walls are more satisfactory than
curved walls and, contrary to conventional ideas based on esperiments at
low speeds, greater efficiency is achieved by designing for a rapid expansion at
the entrance followed by a slower expansion rate near the exit than vice versa.
In any case the design of a high speed diffuser to meet specified conditions
remains at present, a problem that can be solved satisfactorily only after
considerable experimentation. Accumulation of a vast amount of data
will no doubt provide theoretical bases for future design.
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SUMMARY

An expression for diffuser efficiency in compressible flow has been deve-
loped. Experimental procedures for the determination of the efficiency are
outlined and the steps for calculating it from the experimental data are
indicated.
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