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Abstract. Representationsof D¥ /k* for a quaternion division algebra D, overalocalfield k are
orthogonal representations. In this note we investigate when these orthogonal representations
can be lifted to the corresponding spin group. The results are expressed in terms of local root
number of the representation.
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Let D be a quaternion division algebra over a local field k. Then D} /k* is a compact
topological group, and all its irreducible representations are finite dimensional. It can
be seen that, in fact, all the irreducible representations are orthogonal, i.e. for any
irreducible representation V of D¥ /k*, there exists a quadratic form g on ¥ such that the
representation takes values in O (V). Using the natural embedding of O(V)in SO(V @ C)
given by gi—(g, detg), we get a homomorphism of D} /k* into SO(V @ C). In this note
we investigate when this can be lifted to the spin group of the quadratic space V@ C.
The results are expressed in terms of the local root number of the representation ¥, or of
the corresponding two dimensional symplectic representation of the Weil-Deligne
group. We recall that by a theorem of Deligne [D1] the local root number of an
orthogonal representation of the Weil-Deligne group W; of a local field k is expressed
in terms of the second Stiefel-Whitney number of the representation, or equivalently in
terms of the obstruction to lifting the orthogonal representation to the spin group. In
our case we have a symplectic two dimensional representation of the Weil-Deligne
group and its root number is being related to the lifting problem for the orthogonal
representation of the quaternion division algebra. The formulation of Deligne’s
theorem is very elegant and has important global consequences. We, however, have not
succeeded in making such an elegant formulation of our results and have neither
succeeded in any global application.

As the problem is trivial in the case of an archimedean field, we will confine ourselves
to the non-archimedean case only. We have been able to treat the case of only those
non-archimedean fields with odd residue characteristic; we will tacitly assume this to be
the case all through, and let g denote the cardinality of the residue field of k, and w the
unique non-trivial quadratic character of Fy.

Lemma 1. Any finite dimensional irreducible representation of D /[k* is orthogonal.

Proof. If x+»X denote the canonical anti-automorphism of D} such that x-x = Nrd(x)

where Nrd(x) is the reduced norm of x, then as an element of D¥ /k*, X = x "', By the
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Skolem—-Noether theorem, x and X are conjugate, and therefore x is conjugateto x~ !in
D /k*. By character theory, this implies that every representation of Dy /k* is self—dgal.
Now it can be proved that for any irreducible representation V of D} /k*, there exists
a quadratic extension L of k such that the trivial character of L* appears in V; see V.
Lemma 2 below for precise statement. Since every character of L* appears with
multiplicity <1 in any irreducible representation of D¥, cf. Remark 3.5 in [P], the
eigenspace correspondin gto the trivial character of L* is one-dimensional. The unique
non-degenerate bilinear form on v must be non-zero on this one-dimensional sub-
space, and therefore the bilinear form must be symmetric.

The following Lemma follows easily from the construction of representations of D;
it can also be proved using the theorem of Tunnell [Tu].

Lemma 2. Let 7t be an irreducible representation of Dif /k* associated to a character of
a quadratic extension K of k. Let L be the quadratic unramified extension of k if K is
ramified, and one of quadratic ramified extensions if K is unramified. Then the trivial
representation of L* appears in m. The trivial representation of K* appears in m if and -
only if K/k is a ramified extension of k, and g =3mod (4). .

The proof of Lemma 1 shows more generally that a self-dual irreducible representa- !
tion ¥ of a group G must be orthogonal if we can find a subgroup H such that the
restriction of V to H is completely reducible and contains the trivial representation of
H with multiplicity one. From this remark, one gets the following Proposition.

PROPOSITION 1

Every irreducible, admissible, self-dual, generic representation V of GL(n,k), k non-
archimedean, is orthogonal for anyn> 1.

Indeed, the theory of new vectors for generic representations of GL(n k) (cf.

[J-PS-S]) gives the existence of an open compact subgroup C such that the space of
C-invariant vectors in V is one-dimensional.

According to a program begun by Carayolin [C] for the GL(2) case, representatio:s ﬁ;"
of D* where D is a division algebra over a non-archimedean field, together with ¢
corresponding representations of GL(n) (assumed to be supercuspidal) and W, are
expected to appear in the middle dimension cohomology (H"~!) of a certain rigid

analytic space. Considerations with Poincare duality suggest the following conjecture
generalising lemma 1.

Conjecture. Let D* be the multiplicative group of a division algebra central over
a non-archimedean local field k. Let o, be the representation of W, associated by the

local Langlands correspondence to x. Then whenever o, 1s self-dual, symplectic, and
trivial on the SL(2,C) factor of W, mis orthogonal. :

The following Proposition calculates the determinant of a representation of D /k*,
and implies in particular that the determinant is never trivial; this was the reason why
we have to consider the representation V@ C of Dg /k* instead of just V.

PROPOSITION 2 4

Let 7 be an irreducible representation of D} /k* associated to q character of a quadratic
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extension K of k. Then
det(n) = w, ,°Nrd,

where L= K if K is the quadratic unramified extension of k or if K is ramified with
q=1mod (4); if K is ramified with q = 3mod (4), then L is the other ramified quadratic
extension. Y

Proof. Since the kernel of the reduced norm map is the commutator subgroup of D},
we can write det(r) as u© Nrd for a character i of k*. As 7 is self-dual, its determinant is
of order <2, and by class field theory, 4 is either trivial or is gy, for a quadratic
extension E of k. For any quadratic extension M of k, write the decomposition of 7 as
M*-module as’

T=) u® Yy pl'@al@bv (i)
ueX ueX
where a and b are integers 0 <a,b < 1,v is the unique character of M*/k* of order 2,
and X is a finite set of characters of M*/k* of order > 3. Since the dimension of 7 is
known to be even, a = b.
It follows that the determinant of # restricted to M */k* is trivial if and only if the
trivial representation of M* does not appear in x in which case s trivial on the norm
subgroup Nrd(M*). Lemma 2 now easily completes the proof.

Remark 1. It should be noted that self-dual representations 7 of D* not factoring
through D*/k* need not be orthogonal. For instance, for k = R, 7 = p ®det(p)~ /3,
where p is the standard two-dimensional representation of D*, is a symplectic rep-
resentation of D*. It will be interesting to characterize self-dual representations of
Dy which are orthogonal.

Lemma 3. Let SO(2n+1, C) correspond to the quadratic form q=x;x,+...+
Xon—1Xon+ X3, 1, and T the associated maximal torus. For characters (X1s---»%,) Of an
abelian group G, let i be the representation of G with values in SO(2n + 1, C) given by
X0y (), 1 (s 22 (%), 25 1), - - 4, (%), %7 1(%), 1). Then the representationn of G lifts
to Spin(2n + 1, C)if and only if TI'_, y, = p? for some character i of G,i.e.if and only if
IT;_, x; is trivial on the subgroup G[2] = {geG|2g = 1}.

Proof. The proofis a trivial consequence of the fact that the spin covering of SO(2n + 1,C)
when restricted to the maximal torus T = {(zy,20 125,25, 2,2, 1, 1) 2,€C* s the

two-fold cover of T obtained by attaching ./ Iz,.

Lemma 4. A homomorphism n: D [k* — SO(n) can be lifted to the corresponding spin
groupif and onlyif mrestricted to K*/k* can be lifted for any quadratic extension K of k‘.

Proof. As the two sheeted coverings of a group G are classified by H*(G, Z/2), one needs
to prove that an element of H (D} /k*,Z/2) is trivial if and only if its restriction to
H?*(K*/k*,Z/2) is trivial for all quadratic extensions K of k. Let D* be the image in
D /k* of the first congruence subgroup of D under the standard filtration. Then since
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the residue characteristic of k is odd, H'(D*,Z/2)=0 if i>0. It follows that
H*(D¥/k*, Z)2) = H?*(D}/k* D*,Z,2). Now Dy /k* D¥ is the dihedral group:

0—FZ%/F*— D¥ /k* D* 5 Z/2 0,

where F is the residue field of k. Dividing Dy /k* D¥ by the maximal subgroup H'of o.dd
order of F%/F¥ we again get the dihedral group D,=D}/k*D¥H' with
H*(Df/k*,Z/2) = H*(D¥ /k* D*H', Z/2):

0-Z/27>D,-»2/2-0.

Clearly Z/2@ Z/2 = D,, and it can be seen from the explicit description of cohomology
of dihedral groups, cf. [Sn, page 24], that H2(D,,Z/2) injects into H*(Z/2® Z/2,
Z/2)® H*(Z/2", Z/2) under restriction. An element of H 2Z2®Z/)2,Z/2)is zero if and
only if its restriction to all the three Z/2’s in Z/2®Z/2 is zero. These three Z/2’s come

from the three quadratic extensions; also, Z/2" comes from the quadratic unramified
extension, proving the proposition.

The following Lemma summarizes the information we need about the characters of
irreducible representations n of D*/k*, for k non-archimedean, cf. [Si, pages 50-51]
where he calculates the characters of representations of PGL(2, k).

(WL

Lemma 5. For K a quadratic extension of k, let & = n, be the representation of D*/k*
attached to a character y of K*. Then we have the following table

K/k cond(y) dim(rx) cond(rn)

unramified  f 2¢ 1 2f
ramified 2f (g+1)g’ ! 2f+1

Let L be any quadratic extension of k, and x, the unique element of L*/k* of order 2.
Denote by ©,, the character of n. Then we have:

L If L£K, ®_(x5)=0. 4
2. If L=K and K/k unramified, O, (xo) =(— 1)+ 12x(x,) '
3. If L=K and K/k ramified,

0,(x0) = —2G, 0w (— 1Y ~1y(x,),
where

zeﬁ Y 21+ 7 " x)o(x).

xe(Crc/mec)*

We now begin analysing the lifting of orthogonal representations of Dy /k* to spin
groups.

PROPOSITION 3

Let m be an irreducible representation of D /k* with values in O(V) associated to
a quadratic extension K of k. Then the associated representation with values in
SO(V @ C)lifts to the spin group, Spin(V @ C), when restricted to L*/k* for La quadratic
extension of k different from K if and only if w(— 2=—1ifKisa ramified extension,
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and w(— 1) =1 = — 1 if K is the unramified extension where 2f is the conductor of the
representation n. (We recall that w is the unique non-trivial quadratic character of F}.)

Proof. Let L=k(x,) with x3ek*. Clearly x, is the unique element of L*/k* of order 2.
As 7 is self-dual, whenever a character p of L* appears in 7, so does u~*. Let us now
write the decomposition of « as L*-module as

=Y u® Y u t+al+bv ()
ng neX
where a and b are integers 0 < a, b < 1, vis the unique character of L*/k* of order 2, and
X is a finite set of characters of L*/k* of order > 3. Since the dimension of = is even,
a=b. Note that v(x,) = — 1 except in the case when L is a quadratic unramified
extension of k with ¢ = 3mod(4) in which case v(x,) = 1. '
By Lemma 3, the representation n of L*/k* with values in SO( V @ C) lifts to the spin
group, Spin (V @ C), if and only if

(oo
neX .

As x, has order 2in L*/k*, all the characters of L*/k* take the value + 1 on x,,. Let r be
the number of characters u from X such that u(x,)=1, and let s be the number of

characters y from X such that u(x,) = — 1. From Lemma 5, the character of = at x,, is
zero. Assuming that L is not the quadratic unramified extension with ¢ = 3 mod(4), so
that v(x,) = — 1, we have from the decomposition of 7 as in (i)
dim(rn) =2(r + 5) + 2a (i)
O,(x0) =2(r —5)=0, ‘ (iii)

From (ii) and (i),

dim(rn) = 4s + 2a. (v)
Also,

(V"' Hﬁ)(xo) =(—1y"" : v)
ueX

From (iv) and (v), and using Lemma 5 for the dimension of =, it follows that if K is
a ramified extension of k, and L is not the quadratic unramified extension of k with
q = 3 mod (4), the representation n restricted to L*/k* lifts to the spin group if and only
if g=5 mod (8) or g=7 mod (8). Similarly, when K is the quadratic unramified
extension of k, the representation n restricted to L*/k* lifts to the spin group if and only
if g =3 mod (4) and f even. Finally, if Lis the quadratic unramified extension of k with
q =3 mod (4), then the representation « restricted to L*/k* lifts to the spin group if and
only if g = 7mod (8) as follows from a similar analysis. All these conclusions combine to
prove the proposition.

We next consider the lifting of a representation = of D /k* associated to a quadratic
field K when restricted to K*/k*. In this case the obstruction to lifting is related to the
epsilon factor of z. We will assume that the reader is familiar with the basic properties of
the epsilon factor for which we refer to [T]. We, however, do want to state two theorems
about epsilon factors which will be crucial to our calculations; the first due to Deligne
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[D2, Lemma 4.1.6] describes how epsilon factor changes under twisting by a character

of small conductor, and the second is a theorem of Frohlich and Queyrut [F-Q,
Theorem 3].

Lemma 6. Let o and B be two multiplicative characters of a local field K such that
cond(a) > 2 cond(p). For an additive character Y of K, let y be an element of K such that
a(l +x)=y(xy) for all xeK with val(x) > § cond(a) if conductor of o is positive; if
conductor of w is 0, let y = m ") where m, is a uniformising parameter of k. Then

@B y) =B (y)e(o, ¥).

Lemma 7. Let K be a separable quadratic extension of a local field k, and \y an additive
character of k. Let s be the additive character of K defined by x(X) =y (trx). Then for
any character y of K* which is trivial on k*, and any x,eK* with tr(x,)=0

e ¥yg) = x(xo).

In the next proposition we analyse the lifting of a representation 7 of D [k*
associated to a quadratic field K when restricted to K*/k*.

PROPOSITION 4

Let m be an irreducible representation of D [k* with values in O(V) associated to
acharacter y of K* fora quadratic extension K of k. Then the associated representation
with values in SO(V @ C) lifts to the spin group, Spin(V @ C), when restricted to K*/k* if

and only if e(n) = — w(2) if K is ramified, and w(— 1Y e(n) = 1 if K is unramified and the
conductor of r is 2f. ‘

Proof. The proof of this proposition is very similar to that of Proposition 3. Since the
proof is essentially the same in the case when K is unramified or ramified, and in fact
since the unramified case is much simpler, we will assume in the rest of the proof that
K is ramified.

Since k has odd residue characteristic, K*/k* has exactly one character of order
2 which is an unramified character of K* taking the value —1 on a uniformising
parameter 7y of K; denote this character by v. We fix 1, such that m, = g belongs to

k so that K = k(\/v?k). Clearly r, is the unique element of K*/k* of order 2.
Let us now write the decomposition of = as K*-module as in Proposition 1:

=3 u® Y u ' Sa1@b-y ' (1)
peX neX
where a and b are integers 0 < a,b<1,and X is a finite set of characters of K* /k* of order
> 3. Since the dimension of 7 is (g+1)g’ ™%, it is in particular even. Therefore a=b.

By Lemma 3, the representation 7 of K*/k* with values in SO(V @ C) lifts to the spin
group Spin(V @ C) if and only if

(v“- I1 N)(nx)= L.
ueX

Asmyghasorder2in K */k*, all the characters of K*/k* take the value + 1 on 7 k- Letrbe
the number of characters y from X such that () =1, and let s be the number of
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characters ufrom X such that u(ny) = — 1. Therefore from the decomposition of r asin
(1) we get,
dim(n)=2(r + s) + 2a (i1)
©,(ng) = 2(r — ), (iii)
(V"' I #)(nx) =(—1y"" (iv)
ueX

From (ii) and (iii),

dim(n) — © (r) = 4s + 2a. W
Using Lemma 5 for the character of r at n, we get

9, (k) = —2G, 0 (2)x(nk),
and as dim(rn) = (g + 1)¢’ !, we get from (v) that

(@+1)g' 7' +2G, w2)x(ng) = 4s + 2a. : (vi)

We next calculate the epsilon factor ¢(n). As the associated representatlon of the Weil
group is induced from the character y of K*.

&(m) = e(Indy, Y1)
= e(Ind¥*(y — 1),¢,)-¢(Ind”*1,y,)

= &(y, ‘/’K)g(wx/ks Yi)

Here ¢, is any additive character of k, and yy is the additive character of K obtained
from y, using the trace map from K to k.

We now use the theorem of Frohlich and Queyrut to calculate &(x, x). As the
restriction of x to k* is wy , and not the trivial character, we cannot directly apply this ‘
theorem. However, a slight modification works. For this observe that as k has odd
residue characteristic, the quadratic character wy, of k* is trivial on 1 + 7, 0, where 0,
(respectively O ) is the maximal compact subring of k (respectively K). Also, since K is
a ramified extension,

Ox/(1 + 1 Og) = OF /(1 + 1, 0).

Use this isomorphism to extend wy, from 0F to 0% and then extend this characterof
O%-k* to K* in one of the two possible ways. Denote this extension of wy, to K* by @.
As the conductor of @ is 1, by Lemma 6,

&(m) =e(y- @', Pg) 8(501(/1:’%)
=&(x" @, ) DY) ey, ¥i)
= (x @) (7g) B(y)-e(@gp> Vi) (vii)
- where y is the element of K* with the property that |
1@ +x)=y(xy) forall x with val(x) > %cohd %
therefore y = ng @/ + g, (y) + higher order terms. It follows that
1+ 7 = x) = Y(m ag(x)-x).
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From the definition of epsilon factors,

Y 0¥ %) = /g m)e( g by,

X&(Cs/mec)*

and therefore,

2 oM+ 71 x) = /g, (ag(2) 1) el 0 V).

Xe{C k/mic)*

Comparing with the definition of G,, we get

G, = wK/k(ao(X)'nk)'g(U)K/k, V)

Using (vii),
&(m) = (- @)mg)d(mg > Vay (1)) ey us )
= x(mg) (=116,
Finally, we can use (vi) to give the value of s as follows:
4s+4a=(q+1)g’ " +2a + 2¢(n).
We note that by Tunnell’s theorem, the trivial character of K* appearsin n ifand only if
e(n)-e(n Qwg,) = — Wgp(—1).

Butsincen = n®w k> and &(m) = + 1, the trivial character of K* appearsinm,ie.a=1,
if and only if @ xp{—1)= — 1. Now the proposition can be deduced by a case-by-case
analysis depending on the values of o(2) and w(—1).

Propositions 3 and 4 can now be combined using Lemma 4 to give the following
theorem.

Theorem 1. Let n be an irreducible representation of D}/k* with values in O(V)
associated to a character y of K* for a quadratic extension K of k. Then the associated
representation with values in SO(V @& C) lifts to the spin group, Spin(V @& C), if and only if
o(—=2)= —1land ¢(n) = w(— 1)if K isramified, and o(— 1)/ "1 = — | ande(m)= —1if
K is unramified and the conductor of mis2f.

Remark 2. We do not know when an orthogonal representation of a connected
compact Lie group can be lifted to the spin group, say in terms of the highest weight of
the representation. The question is interesting for finite groups too, for instance the

symmetric group all whose representations are known to be orthogonal, or for finite
groups of Lie type.
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