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Abstract

Let A be an abelian variety over a number field K : Let f be an endomorphism of AðKÞ
into itself which reduces modulo v for almost all finite places v of K : The question we discuss in

this paper is whether f arises from an endomorphism of the abelian variety A: We answer this

question in the affirmative for many cases. The question is inspired by a work of C. Corrales

and R. Schoof, and uses a recent work of Larsen. We also look at the analogue of this question

for linear algebraic groups.
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1. Introduction

Let A be an abelian variety over a number field K : There is a finite set S of places
of K and an abelian scheme A over OS; the ring of S-integers of K ; with generic fibre
A: For v not in S we can consider reduction mod v of A at v: We will abuse notation
to denote the reduction mod v of A also by A: All the places v we consider below are
outside S even if this is not mentioned explicitly.

Consider the specialisation map spv : AðKÞ-AðkvÞ; and denote the image of AðKÞ
under spv by AðvÞ: We say that a homomorphism f : AðKÞ-AðKÞ specialises mod v
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if there is a homomorphism fv : AðvÞ-AðvÞ such that the diagram

AðKÞ !f AðKÞ

spvk kspv

AðvÞ !fv
AðvÞ

commutes.
The following are the two main theorems proved in this paper.

Theorem 1. Let A be an absolutely simple abelian variety defined over a number field K

and let PAAðKÞ be a point of infinite order and QAAðKÞ another point such that the

order of Q mod v divides the order of P mod v for almost all places v of K : Then there is

a K-endomorphism j of A such that Q ¼ jðPÞ:

Theorem 2. Let A be an absolutely simple abelian variety over a number field K : If a

homomorphism f : AðKÞ-AðKÞ specialises mod v for almost all places v of K ; then

the restriction of f to a subgroup of finite index of AðKÞ is induced by a

K-endomorphism of A: If AðKÞ is torsion-free, f itself is induced by a

K-endomorphism.

Remark. In Theorem 1 it is necessary to have P of infinite order. Otherwise taking P

and Q to be two linearly independent elements of order p in EðKÞ for an elliptic
curve E without CM leads to a counter-example.

Theorem 1 when dimðAÞ ¼ 1 is a result of [CS]. A result very close to Theorem 1
has been proved in [L] where it is proved that there is a K-endomorphism j of A such
that nQ ¼ jðPÞ for some integer n: The proof of Theorem 1 uses crucially the result
of [L].

We were led to the investigations of this paper by the results of [CS,K], and in
particular we view Theorem 2 as an analog of the results of [K], that are for
compatible systems of Galois representations, in the present geometric context.

An earlier version of this paper was written in late 2001. Around that time, and
since then, there have been many works that are devoted to generalising the theorem
of [CS] to abelian varieties (see [L] for a bibliography). The result in [L] is the
strongest in that direction. In the earlier version we had proved Theorem 1 with
stronger assumptions on A: These results are now superseded by Larsen [L]. We can
now simply use the result of [L] and a technical lemma (see Lemma 5) to prove
Theorem 1. For the convenience of the reader, we state Larsen’s theorem proved
in [L].

Theorem 3. Let A be an abelian variety defined over a number field K : Let P and Q be

two points in AðKÞ such that the order of Q mod v divides the order of P mod v for
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almost all places v of K : Then there is a K-endomorphism f of A and an integer na0
such that fðPÞ ¼ nQ:

Our main contribution to the proofs of Theorems 1 and 2, after the above theorem
due to Larsen, are Lemmas 5 and 6. Lemma 5 is used to make the above theorem of
Larsen more precise under our assumption that A is simple (as in Theorem 1), and
Lemma 6 proves that the endomorphism which relates P and fðPÞ which we get
from Theorem 1 is independent of P:

The viewpoint of our paper is different from the other works (which were
interested in generalising the result of [CS] per se) and is more ‘‘group theoretic’’: this
is exemplified in Theorem 2. It is this viewpoint which led us to seek analogs of
Theorem 2 in the context of arithmetic subgroups of linear algebraic groups, where
there is no direct analog of results of [CS] (and hence Theorem 1) as mentioned at the
end of the introduction of [CS]. Thus in the last section of the paper we prove an
analog of Theorem 2 (see Theorems 4 and 5) for arithmetic groups that we find
appealing.

2. Reduction of points of infinite order in AðKÞmod v

The main results of this section are Lemmas 4 and 5 below. We need some
preliminaries.

The following lemma is well known, cf. S. Lang’s book, Algebra, Section 10 of the
chapter on Galois theory for the case i ¼ 1: It also follows from generalities on
cohomology once we know it is true for i ¼ 0; which is of course clear.

Lemma 1. Let G be a group, and E a G-module. Let t be an element in the center of G:

Then HiðG;EÞ; i ¼ 0; 1;y is annihilated by the map on HiðG;EÞ induced from the

map x-tx � x from E to itself.

Lemma 2. Let A be an abelian variety over a number field K : Let Kcn ¼ KðA½cn�Þ;
and Gcn ¼ GalðKcn=KÞ: Let GcN ¼ GalðKcN=KÞ with KcN ¼ ,nKcn : Then

H1ðGcm ;A½cn�Þ ðmXnÞ and H1ðGcN ;A½cn�Þ are of finite orders, bounded independent

of m and n:

Proof. We note that GcN being a compact c-adic Lie group, is topologically finitely
generated, hence each finite quotient such as Gcm is generated by a set of elements of
cardinality independent of m:

From the definition of H1ðG;EÞ in terms of maps f from G to E such that

fðg1g2Þ ¼ fðg1Þ þ g1fðg2Þ; it follows that an element of H1ðG;EÞ is determined by a

map on a set of generators of G: Since A½cn�DðZ=cnÞ2 dimðAÞ as abelian groups, it

follows that H1ðGcm ;A½cn�Þ is a finitely generated abelian group which is generated
by a set of elements of cardinality independent of m; n:
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It follows from a theorem of Bogomolov, cf. [Bo], that the c-adic Lie group GcN

contains homotheties congruent to 1 modulo cN for some integer N40: Therefore

by Lemma 1, H1ðGcm ;A½cn�Þ is annihilated by cN : It follows that H1ðGcm ;A½cn�Þ is a
finitely generated abelian group which is generated by a set of elements of cardinality

independent of m; n; and annihilated by cN ; and thus is of finite order, bounded
independent of m; n:

The statement about H1ðGcN ;A½cn�Þ follows either by noting that the cohomology

H1ðGcN ;A½cn�Þ can be calculated in terms of continuous cochains on GcN ; for which

the earlier argument applies as well, or by noting that H1ðGcN ;A½cn�Þ is the direct

limit of H1ðGcm ;A½cn�Þ (direct limit over m), and a direct limit of finitely generated
abelian groups each of which is generated by a set of elements of cardinality

independent of n; and each annihilated by cN ; is of order bounded independent
of n: &

Lemma 3. For sufficiently large integer n; and mXn; the extension Kcm;P=cn ¼
KðA½cm�; 1

cn:PÞ is a non-trivial extension of Kcm ¼ KðA½cm�Þ:

Proof. Denote the Galois group GalðKcn=KÞ by Gcn : By the Kummer sequences, we
have a commutative diagram involving short exact sequences,

0 - AðKÞ=cnAðKÞ - H1ðGK ;A½cn�Þ - H1ðGK ;AÞ½cn� - 0

k k k

0 - AðKcmÞ=cnAðKcmÞ - H1ðGKcm ;A½cn�Þ - H1ðGKcm ;AÞ½cn� - 0:

As the kernel of the restriction map H1ðGK ;A½cn�Þ-H1ðGKcm ;A½cn�Þ is the image

of H1ðGcm ;A½cn�Þ in H1ðGK ;A½cn�Þ; the kernel has order which is bounded
independent of m; n by Lemma 2. As P is non-torsion, the image of P under the

coboundary map (in the first exact sequence) to H1ðGK ;A½cn�Þ has unbounded order

as n varies, hence also in H1ðGKcm ;A½cn�Þ which represents the extension

KðA½cm�; 1
cn:PÞ of Kcm : From this the lemma follows.

Lemma 4. Given an abelian variety A over K ; a point P of AðKÞ of infinite order, and

any prime c; there are infinitely many places v of K (in fact a set of positive density)
such that the reduction of P mod v has order divisible by c:

Proof. By Lemma 3, for sufficiently large n; KðA½cn�; 1
cn:PÞ is a non-trivial extension

of Kcn ¼ KðA½cn�Þ: Therefore there is a positive density of places v of K that split in

KðA½cn�Þ but not in KðA½cn�; 1
cn:PÞ: Clearly, for such v’s, the reduction of P mod v has

order divisible by c: &

Lemma 5. Given an absolutely simple abelian variety A over a number field K and a

point P of AðKÞ of infinite order, and any prime c; there are infinitely many places v of
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K (in fact a set of positive density) such that the reduction of P mod v has order

prime to c:

Proof. Let KP;cn ¼ KðA½cn�; 1
cn:PÞ; and Kcn ¼ KðA½cn�Þ: By Lemma 3, KP;cn ¼

KðA½cn�; 1
cn:PÞ; is a non-trivial extension of Kcn ¼ KðA½cn�Þ: We will prove that the

intersection of the fields KP;cn and Kcnþ1 is Kcn for some n large enough. This, together

with the theorem of Bogomolov recalled in Lemma 2, will imply that there is a
positive density of primes v in K which are split in KP;cn and for which the

Frobenius as an element of GalðKcnþ1=KÞ is a non-trivial homothety in

GL2gðZ=cnþ1Þ; g ¼ dim A; which is congruent to 1 modulo cn: For such primes v;

it can be easily seen that the order of P modulo v is not divisible by c; completing the
proof of the lemma. It thus suffices to prove that the intersection of the fields KP;cn

and Kcnþ1 is Kcn :
Let Ecn (resp. Gcn ) denote the Galois group of KP;cn (resp. Kcn ) over K ; and let Acn

denote the Galois group of KP;cn over Kcn : We have the exact sequence of groups,

0-Acn-Ecn-Gcn-1:

It is easy to see that the intersection of the fields KP;cn and Kcnþ1 is Kcn if and only if

inside the group Ecn which is a quotient of Ecnþ1 ; the image of Acnþ1 is Acn :
Let EcN denote the Galois group of KP;cN ¼ ,nKP;cn over K ; and AcN ; the Galois

group of KP;cN over KcN ¼ ,nKcn : We have the exact sequence of groups,

0-AcN-EcN-GcN-1;

and a natural mapping of this short exact sequence to the exact sequence earlier
involving Ecn : One can think of AcN as a subgroup of TcðAÞ obtained by choosing a

sequence of points Pn in Að %KÞ with c 
 P1 ¼ P; and c 
 Piþ1 ¼ Pi: This same sequence
of points can be used to get an embedding of Acn into A½cn�: We wish to prove that
the mapping from Acnþ1 to Acn is surjective for n large. All these groups contain

cmTcðAÞ (or its quotient by cn) for some m by a theorem due to Bertrand,

cf. Theorem 2 of [B], according to which AcN is an open subgroup of TcðAÞ ¼ Z
2g
c ;

hence contains cmTcðAÞ for some m: Dividing by this group, we get an inverse
system A½cr�=cm (indexed by r) in which all but finitely many maps are isomorphism

from ðZ=cmÞ2g to itself. In this the subsystem Acr=cm; must necessarily become
stationery for large r; proving that the mapping from Acnþ1 to Acn is surjective

for n large. &

Remarks. (1) The above proof can be generalised to yield that for any abelian
variety A defined over K and any point P of AðKÞ which does not project to a non-
zero torsion point in any (geometric) subquotient of A; given a prime c there are a
positive density of places v of K such that P mod v has order prime to c:

(2) Although we have given separate proofs of Lemmas 4 and 5, observe that
Lemma 5 implies Lemma 4 when A is an absolutely simple abelian variety. This
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follows by applying Lemma 5 to the point of infinite order P þ R where R is a non-
zero c-torsion point. (We note that to prove Lemma 4, we are allowed to go to a
finite extension of K ; and hence assume that A has non-zero c-torsion point over K :)
Lemma 5 implies that there are infinitely many places v of K for which the order of
P þ R is coprime to c: It is easy to see that for such places v; the order of the
reduction of P mod v must be divisible by c:

(3) We note that Bertrand’s theorem recalled during the course of the proof of
Lemma 5 implies Lemma 3.

(4) Lemmas 4 and 5 were proved in the case of dimðAÞ ¼ 1 in [CS] using Siegel’s
theorem on finiteness of S-integral points on elliptic curves. The proofs of [CS] seem
difficult to generalise to higher dimensions.

3. A linear algebra result

We need the following lemma for the proof of Theorem 2.

Lemma 6. Let A be a finitely generated free abelian group. Let D be a division algebra

which contains Q and is finite dimensional over Q: Let O be an order in D: Suppose O
acts on A on the left making it into a left O-module. Suppose that f is an endomorphism

of A as an additive group such that for all aAA; there exists faAO such that f ðaÞ ¼
fa 
 a: Then f is multiplication by an element of O:

Proof. Clearly A#ZQ is a vector space overQ on which O#ZQ ¼ D acts, making it
into a D-vector space. From the hypothesis that f ðaÞ ¼ fa 
 a for all aAA; we find
that any D-subspace of A#ZQ is stable under f (extended to A#ZQ). Write
A#ZQ ¼ L1"?"Ln; as a direct sum of D-subspaces Li of dimension 1 which as
has been noted is invariant under f ; i.e., f ðLiÞCLi: Write Mi ¼ Li-A; then Mi is a
lattice in Li; and "Mi is a subgroup of finite index in A: Since both Li and A are
invariant under f ; so is Mi: Also, each Li and A being invariant under O; so is Mi:
We will now prove that the restriction of f to Mi is given by multiplication by an
element fi in O:

We can clearly assume that Mi is a lattice in D which is invariant under O: Also,
after scaling by an element of D� on the right, we can assume that the lattice Mi in D
contains 1.

Suppose that fið1Þ ¼ aiAO: We can thus after replacing fi by fi � ai; assume that
fið1Þ ¼ 0: We would like to prove that fi is identically zero. Assuming the contrary,
let x be an element in Mi-O such that fiðxÞa0: After scaling x; we can moreover
assume that fiðxÞ belongs to O:

By hypothesis, for every element mAZ; there exists an element lmAO such that
fiðm þ xÞ ¼ lm 
 ðm þ xÞ: For an element zAD; let NormðzÞ denote the determinant
of the left multiplication by z on D: Since fiðxÞ ¼ fiðm þ xÞ ¼ lm 
 ðx þ mÞ; it follows
that Normðm þ xÞ and Normð fiðxÞÞ are integers in Q; and Normðm þ xÞ divides
Normð fiðxÞÞ: Since Normðm þ xÞ is a polynomial in m with coefficients in Z of
degree equal to the dimension of D over Q of leading term 1 and constant term
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NormðxÞ; the polynomial Normðm þ xÞ; as m varies, takes arbitrary large values,
hence cannot divide the fixed integer Normð fiðxÞÞ:

We have thus proved that f restricted to any 1 dimensional D submodule of
A#ZQ is multiplication by an element of D: From this it is trivial to see that the
action of f on A#ZQ is multiplication by an element of D; which must moreover lie
in O; completing the proof of the lemma. &

Remark. The lemma above holds good only in the integral version stated above, and
not for vector spaces, and hence is not totally trivial. We point out an example to
illustrate that the analogue of the lemma is not true for vector spaces. For this, let K

be a finite extension ofQ of degree41: There is an action of K� on K via left or right
multiplication. Let f be an automorphism of K (considered as a vector space over Q)
which does not arise from the action of an element of K�: Such an automorphism f

satisfies the hypothesis of the previous lemma as for any aa0; f ðaÞAK�; hence
f ðaÞ ¼ fa 
 a with faAK�; but such an f does not satisfy the conclusion of the lemma.

4. Proof of Theorems 1 and 2

4.1. Theorem 1. Proof

We will deduce Theorem 1 from Lemma 5 and Theorem 3 above due to Larsen.
Note that by Theorem 3 and the hypotheses of Theorem 1 there is an isogeny j0 of A

such that j0ðPÞ ¼ nQ for some integer n: We wish to prove that n can be chosen to be
1 for an appropriate choice of j0: Let L ¼ KðA½n�Þ: Let cr be the highest power of a
prime c which divides n: We will prove that cr torsion points of AðLÞ are contained
in the kernel of j0: If that were not the case, there would be an cr torsion point of
AðLÞ; say R; which does not belong to the kernel of j0: By Lemma 5, there are
infinitely many places v of L such that the order of P þ R is coprime to c in the
residue field cv of L; and hence the c-primary component of the orders of P and R

are the same, of order cr: For such places v of L; the order of j0ðP þ RÞ ¼
j0ðPÞ þ j0ðRÞ ¼ nQ þ j0ðRÞ is also coprime to c: By choice, j0ðRÞ is a non-zero
torsion point on A of order dividing cr; say cs; 0ospr: Thus since the order of
nQ þ j0ðRÞ is coprime to c; the c-primary components of the order of j0ðRÞ and nQ

are the same. Hence the c-primary component of the order of nQ is cs; and therefore

of Q; crþs; contradicting our hypothesis that the order of Q divides the order P at

each place of K ; and hence of L: This proves that the cr torsion points of Að %KÞ are
contained in the kernel of j0 where c

r is the highest power of c dividing n: Thus all the

n-torsion points of Að %KÞ are contained in the kernel of j0: Therefore the isogeny j0
can be written as nj for an isogeny j of A: Since j0 is defined over K ; it follows from
the equation j0ðPÞ ¼ nQ that j is also defined over K : (This follows from the fact that
the endomorphism ring of an abelian variety is a torsion-free abelian group.) Thus
we have nð jðPÞ � QÞ ¼ 0: This implies that jðPÞ ¼ Q þ S for a certain torsion point
S on AðKÞ: If S is non-zero, let the order of S be divisible by a prime c: Using
Lemma 5 choose a place v of K where the order of P; and hence of Q and jðPÞ; is
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coprime to c: However, since jðPÞ ¼ Q þ S; the order of jðPÞ is forced to be divisible
by c; a contradiction to S being non-zero.

Remark. Note that because of Proposition 2 of [L], Theorem 1 is not true without
the assumption that A is simple.

4.2. Theorem 2. Proof

The proof of Theorem 2 is easily accomplished using Theorem 1 and Lemma 6.
First note that by the hypothesis of Theorem 2, for almost all places v of K ; the order
of fðPÞmod v divides the order of P mod v: thus we are in a position to apply
Theorem 1. Choose a torsion-free subgroup B of finite index in AðKÞ that is
preserved by EndKðAÞ; the latter being an order in a division algebra as A is simple.
We deduce from Theorem 1 that for any PAB there is an K-endomorphism jP of A

such that fðPÞ ¼ jPðPÞ: From Lemma 6, we may conclude that jP can be chosen
to be independent of P (in fact is independent of P as A is simple): thus there is a
K-endomorphism j of A such that fðPÞ ¼ jðPÞ for all PAB: The last line of the
theorem follows as in the case when AðKÞ is torsion-free we can take B ¼ AðKÞ: This
finishes the proof of Theorem 2.

5. Rigidity for arithmetic groups

We begin with the following result for tori.

Proposition 1. Given homomorphism f : O�
K-O�

K that reduces mod v for almost

all places v of a number field K ; then f is induced by the mth power map for some

integer m:

Proof. The proof is a direct consequence of Theorem 1 of [CS] and the fact that any
finite subgroup of K� is cyclic. &

We next have the following theorem for arithmetic groups.

Theorem 4. Let G be a subgroup of SLð2;ZÞ of finite index. Let f be a non-trivial

homomorphism of G into itself. Assume that for all primes p in an infinite set S of

primes, f factors to give a homomorphism fp : SLð2;Z=pÞ-SLð2;Z=pÞ

G !f G

k k

SLð2;Z=pÞ !
fp

SLð2;Z=pÞ:
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Then f is an automorphism of G which is the restriction to G of the inner-conjugation

action of an element in GLð2;QÞ:

Proof. Let B be the ring which is the direct product of Z=p for all p in S: Clearly Z is
a subring of B; and there is thus an injective homomorphism from SLð2;ZÞ to
SLð2;BÞ: Since there is an injective homomorphism from SLð2;ZÞ to SLð2;BÞ for B;
the direct product of any infinite set of primes, it is clear that fp can be trivial for at

most finitely many p in S: After replacing S by this slightly smaller set, we assume
that fp is surjective for all p in S; and hence the fp are given by the inner-conjugation

action of an element gp in GLð2;Z=pÞ: Here we are using the well-known facts:

1. any surjective homomorphism of SLð2;Z=pÞ into itself is given by the inner-
conjugation of an element of GLð2;Z=pÞ:

2. any homomorphism of SLð2;Z=pÞ into itself is either trivial or is surjective if p43:

From this we see that the representations f :G-GL2ðQÞ and the ‘‘identity’’
representation id : G-GL2ðQÞ have the same trace. Further the second representa-
tion is irreducible. From this we conclude that f and id are conjugate by an element
of GL2ðQÞ; i.e., f is the restriction to G of an inner-conjugation action on GL2ðQÞ:
(In particular, this inner-conjugation takes G into itself.) By comparing covolumes of
G and fðGÞ; we see that f is an automorphism of G: &

Remarks. (1) The above proof is due to Serre; we had a different proof in an earlier
version.

(2) To deduce rigidity results for SL2 one just needs that the abstract
homomorphism specialises for any infinite set of primes rather than for almost all
or even a positive density of primes which is crucial for abelian varieties.

(3) The proof works for SLðn;ZÞ for any n to say that if f is a homomorphism of a
subgroup of finite index of SLðn;ZÞ onto another subgroup of finite index SLðn;ZÞ
which specialises for infinitely many primes p to give a homomorphism of SLðn;Z=pÞ
to itself, then f is algebraic. (We recall that an automorphism of SLðn;Z=pÞ is
generated by inner automorphism from GLðn;Z=pÞ; and the automorphism

A-tA�1:) The proof above works also for lattices in SL2ðRÞ constructed using
quaternion division algebras.

(4) The point of Theorem 4 is that although abstract homomorphism of G into
itself are in general not algebraic, those which reduce mod p for infinitely many p are
algebraic. (Rigidity theorems in Lie groups roughly say that for a lattice G in a Lie
group G of rank greater than 1, an abstract homomorphism of G into G is already
algebraic.)

The following theorem when combined with Theorem 4, proves that for a
subgroup G of finite index in SLð2;ZÞ; any homomorphism of G into itself which
extends to SLð2;BÞ for B ¼

Q
pAT Z=p; T an infinite set of primes, must be given by

an inner-conjugation action by an element of GLð2;QÞ; giving a different perspective
to the earlier theorem.
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Theorem 5. Let G be any simply connected, split, semisimple algebraic group over Q:
Then any homomorphism of GðBÞ to itself where B is the product of Z=p for primes p

belonging to a set T that may be finite or infinite (and contains only sufficiently large

primes) is factorisable, i.e., any homomorphism f from GðBÞ to itself is of the formQ
pAB fp for certain homomorphisms fp from GðZ=pÞ to itself.

Proof. We will accomplish the proof of this theorem in several steps.

1. Any homomorphism from GðZ=pÞ to GðZ=qÞ; p not q is trivial (for p a sufficiently
large prime but q arbitrary).

Assume that the mapping is non-trivial. Then as GðZ=pÞ is a simple group
modulo its centre, any homomorphism from GðZ=pÞ to GðZ=qÞ must be injective
when restricted to unipotent elements in GðZ=pÞ: Because p is not q; image of a
unipotent element in GðZ=pÞ cannot have a unipotent component in the Jordan
decomposition in GðZ=qÞ: So image of any unipotent element in GðZ=pÞ is semi-
simple in GðZ=qÞ:

Note that a unipotent in SL2ðZ=pÞ has many powers that are conjugate to itself.
By Jacobson–Morozov (which is applicable since we are looking only at large
primes), the same holds good about non-trivial unipotents in GðZ=pÞ: Hence the
image of a non-trivial unipotent in GðZ=pÞ too will have many distinct powers
that are conjugate to itself. But a semi-simple element in GðZ=qÞ has at most jW j
many powers that are conjugate to itself, where jW j denotes the order of the Weyl
group of G; completing the proof of this step.

2. Step 1 proves that any homomorphism from GðBÞ to itself when restricted to
direct sum is factorisable. However going from direct sum to direct product needs
some more arguments and essentially the following step suffices.

3. Any homomorphism from GðBSÞ to GðZ=pÞ must be trivial for some finite set S

(depending on p) of primes in B where S is the set of prime divisors of d ¼
jGðZ=pÞj; and BS denotes the subring of B in which primes in S are omitted.

We first prove that a unipotent in GðBSÞ must go trivially to GðZ=pÞ: Again by

Jacobson–Morozov (applied to the ring BS which is a product of fields), this

would follow if we can prove that under any homomorphism from SL2ðBSÞ to

GðZ=pÞ; any unipotent in SL2ðBSÞ must go trivially in GðZ=pÞ: But this follows
because multiplication by d is an isomorphism on BS whereas multiplication by d;
i.e., raising by the dth power takes any element of GðZ=pÞ to the trivial element.

We will be done if we can prove that unipotents in GðBÞ; for any ring B which is
a product of fields, generates GðBÞ: (This step is not true for an arbitrary ring B;
but is true here as we will see below when B is a product of fields.)

4. For B any Borel subgroup in G defined over Q; any element of BðBÞ belongs to
the group generated by the unipotents in GðBÞ: For this it suffices to prove that
for a torus T contained in B; and defined over Q; elements of TðBÞ belong to the
subgroup generated by the unipotents in GðBÞ:

For SL2ðBÞ; this follows from the following matrix identity which expresses a
diagonal element of SL2 as a product of 4 unipotent matrices. We have taken this
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identity from Deligne’s article in Modular functions of one variable II, Springer
Lecture Notes in Mathematics, vol. 349:

a�1 0

0 a

� �
¼ 1 �a�1

0 1

� �
1 0

a � 1 1

� �
1 1

0 1

� �
1 0

�ða � 1Þ=a 1

� �
:

As G is simply connected, any element of TðBÞ is a product of elements of one-
dimensional tori in TðBÞ arising out of the image of the diagonal torus in SL2

under mappings of SL2 to G corresponding to the simple roots.
5. Unipotents in GðBÞ generate GðBÞ:

This follows from step 4 combined with Bruhat decomposition (applied
component-wise to write g ¼ ðgpÞ as ðupwpbpÞ) and the fact that any element of the

Weyl group is a product of unipotent elements, over a set of size bounded
independent of p:

6. It follows from steps 1 and 3 that any homomorphism from GðBÞ to GðZ=pÞ is
trivial on GðBpÞ (where Bp denotes the subring of B in which the factor
corresponding to Z=p is omitted), hence we have proved that any homomorphism
from GðBÞ to itself is factorisable. &
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