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Shell model in nuclei—a historical overview
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Abstract. The nuclear shell model is (over)viewed with examples from its early phase to its
current status.
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1. Introduction

The first serious proposal for a shell-model in nuclei was made independently by
Mayer (following a suggestion of Fermi) and by Haxel, Jensen and Suess (see Mayer
and Jensen 1955). The underlying picture in the model is that each nucleon moves
in an average potential which is created by its interaction with all the other nucleons
in the nucleus and is identical for all nucleons. This simple single particle model has
been remarkably successful in correlating a large amount of experimental data in
nuclei. ‘

It ought to be mentioned here that, prior to 1949 when the shell-model was proposed,
the general view amongst physicists was that, for a complicated system like the nucleus,
one had to invoke a liquid drop type model. This view was held very likely due to
the successful application of the liquid drop model to nuclear binding energies
(semi-empirical mass formula) by Weizsacker (1935) and Bethe (1936) and to fission
problem by Bohr and Wheeler (1939). Thus, the success of the single particle shell
model was a big surprise but it also provided theoretical nuclear physicists with a
tremendous challenge: to attempt to explain the properties of nuclei in terms of an
apparently simple shell model which must be deduced from a microscopic, quantum,
many-body theory involving neutrons and protons (and perhaps mesons) and their
mutual interactions. ‘

Nearly forty years after the introduction of the shell-model the activity is still
continuing and evolving. There has been much progress and many successes and as

~ it appears not too many unresolved questions. It is important to realise that crucial

to all these developments, has been the increasing availability of high quality data
and high speed computer facilities.

We review here, partly in an historical manner, the shell-model and its development.
The early work is discussed in §2 and the more recent work in §3. The last section
contains some concluding remarks and the outlook for the future.
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2. Shell model—The early phase
In a formal sense, the shell-model is a tool to solve the many-body problem for a

nucleus consisting of A nucleons (N neutrons, Z protons, 4 = N + Z) and described
by the Hamiltonian H

I*u
e

A A g
H=73Y —+YV; | (1)
l=12 i<j

3

Here the first term is the kinetic energy of the nucleons and the second term is the
interaction (assumed to be two-body) between the nucleons. As is well-known this is
an impossibly complicated problem to solve exactly. In order to simplify the problem
one resorts to the idea of the average potential—i.e. H of (1) is rewritten as -

H=H,+H,
4 [ p?
Ho = i=Z1 <-2—rln*+ U')’
4 A
H, = igj Vij“ i; Ui, (2)

where U, is the average potential experienced by the ith nucleon.

There are various ways of proceeding further. One may from the known nucleon-
nucleon interaction try to compute the average potential, using the Brueckner
Hartree-Fock method. This would be theoretically the most satisfying approach,
although there are uncertainties about the interaction, and the computations are
involved. In their original work, Mayer and coworkers (see Mayer and Jensen 1955)
followed a phenomenological approach and took for U the (central) harmonic
oscillator potential together with a strong one body spin-orbit term—i.e.

U =imw*? +adls. N (3)

Further the sign of the parameter a was chosen such that for a nucleon with orbital
angular momentum ! the state with total angular momentum j=1+1/2 is lower in
energy than the one withj = —1/2. The resulting single nucleon level scheme together
yvxth the appropriate quantum numbers is schematically shown in figure 1. If one also
1gnores the residual interaction term H 1> then one has a simple single-particle model
for the nucleus. In this case the figure clearly indicates where the closed shells can
occur. An important success of this scheme was the explanation of the “magic”
numbers 2, 8, 20, 28, 50, 82, 126 for N and Z. We can, in terms of these numbers,
understand why nuclei such as “He, 160, 4°Ca, 298P} etc are extra stable. The most
important achievement of this extreme single particle model was the correct prediction
of the_ ground state spins and several isomeric states of almost all nuclei which have
spher.lcal' shape. For this purpose, it is necessary to assume that the nucleons tend
to pairwise couple their spins to zero. Therefore, all even-even nuclei have zero spin
zxu‘t:}l\e ground state whereas for odd-A nuclei it is given by that of the last unpaired
eon.

Following the success of this model it seemed natural to extend the model to the
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Figure 1. Single-particle level scheme for nuclear shell model (Following Mayer and Jensen
1955 and Pal 1982).

study of the excited states of nuclei. The experimental information at that time was
meagre and hence it was adequate to use the simplest extensions of the extreme single
particle model. As we shall see this involves extensive use of geometry and symmetry
in the problem. It is obvious that to evaluate the energies of excited states the
interaction term H, in the Hamiltonian must be included.

One of the simplest example of the study of excited levels is in oxygen isotopes
(Talmi et al 1962). Consider the nuclei 80 and !°O, which respectively have 2 and
3 (valence) neutrons outside of the doubly magic nucleus °O (see figure 1). Further o
it is assumed that in these oxygen isotopes, the low-lying excited states are described
by configurations in which the double magic 160 core remains inert, and the valence
neutrons are confined to the 1ds,, orbit. Thus, the configuration for **0 is (1ds,)}

P J=0, 2, 4 and that for '°0 is (1ds,,)] J =3/2, 5/2, 9/2. The J-values arg the only
: ones consistent with the Pauli principle. Using the experimentally observed energies,
of the J =0, 2, 4 states in #0, one determines the energies of the °O states by using
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the relation between the energies of n particles in a j-shell with those of (n — 1) particles
(Talmi et al 1962).

n
([ MIH]j"a M) = —

Y U HogJ I} jmad)

a1xiJy

X" B I ) < ey B e TS, (@)

In (4) the left hand side is the energy of the n-nucleon state wi.th angular momentgmh
J. On the right hand side we have the coefficients of fract.lonal parenta.ge whic
contain the geometry of the problem—i.e. the manner in w%nch the n_parucle sta’tes
are built from (n — 1) particle states by adding a single particle. Th-e right hand flgde
also has the (n — 1) particle energies. Figure 2 shows the 180 (e_xpe'nmental) and *’O
(calculated and experimental) spectra which illustrate the application of. 4):
Another beautiful example of these simple elegant ideas is the relgtlon between
particle-particle and particle-hole spectra (Pandya 1956). One conS}ders here the
energy levels of two nucleons with one in orbit Jj and another in orbit j* and re{ate
them to the energy levels of a nucleon hole in orbit Jj and a nucleon in j'. Asspmmg
pure j —j coupling and two-body interaction, Pandya (1956) derived the relation

E LT 1=- JZ(N o + DW(iji;JJ0)E;, Lif 1 (3)

This was very successfully tested in the spectra of $5CI (1ds , 1f5),) and 43K (1d;)511+2)

and the results are shown in figure 3. The discrepancy between the calculated and
the observed 38Cl spectra is <25keV.

Going further, Pandya and French (1956) carried out a more detailed theoretical
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Figure 2. Comparison of calculated and experimental levels of 1°0.

1324 .
& 1.312

0.89 -
.80 7 .0.748 3 0.762 N
0698 5 5
0.696 0.672
0.032 o
0 3

K4°(exp) CIBBcuIc Clmexp

-]

d
( d3/2) f7/2 (dala) '7/2

Figure 3.  Comparison of calculated and experimenta] levels of 38Cl.
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analysis of the discrepancy, by taking account of contribution to the energies coming
from other configurations and argued that the remaining discrepancy may be
attributed to 3-body forces. In this case they estimated that 3-body forces contribute
between 50 and 250keV to the energy levels of 4°K.

The success of these simple elegant models to reproduce the observed spectra, the
development of Brueckner’s approach to deduce effective nucleon-nucleon interaction
in a nucleus from the bare nucleon-nucleon interaction and the increasing availability
of spectroscopic data and high speed computers led to the modern day shell-model
activity. This is discussed in §3. :

3. Shell model—-current status

The basic features of the shell-model today are

(i) Assumption of an inert core for nucleons—i.e. the configuration for a given nucleus
(with Z protons, N neutrons, N + Z = A4) is partitioned into an inert core part
(containing Z, protons, N, neutrons, Z,+ N,=A4,) and an active valence part
(containing Z —Z, and N — N, protons and neutrons respectively). For practical
reasons the number of valence nucleons must be small, as the numerical computations
increase dramatically in magnitude with this number.
(i) Valence nucleons move in a finite number (often those in a major shell) of j-orbits.
(iii) The Hamiltonian of the valence nucleons is given by

H= E0+Zea a;+%Y (ijllklYaf af aya, (6)

ijkl

where E, is the energy of the inert core, ¢;’s are the single particle energies of the
valence orbits and {ij|v| kI are the matrix elements of the 2-body residual interaction
amongst the valence particles. ¢s effectively take account of interaction between a
valence particle and those in the inert core; in practice these are taken from the
experimentally observed energy levels of (closed shell) + 1 valence nucleon. v is taken
from theoretical calculations or phenomenological models.
(iv) With these assumptions the Schrédinger equation is exactly set up in the model
space and solved. Given a suitable basis (say harmonic oscillator states) one obtains
eigenvalues and eigenvectors by diagonalizing the H-matrix. The eigenvectors in turn
are used to obtain matrix elements of other physically interesting operators such as
electric and magnetic moments, EM transition probabilities, -decay matrix elements,
one- and two-nucleon transfer probabilities, etc.
(v) Finally, the shell-model calculations are confronted with all the available data. A
commonly used procedure is to parametrize the effective interactions (and even single
particle energies of valence orbits) and other such operators (M1, GT, E2 etc.) and
then obtain the values of these parameters which give the best numerical fit to the
observed set of data points.

Such a comparison provides the most detailed and the least model-dependent test
of the theory. The objective of most of the shell model calculations todate has been
two-fold:

(i) To understand systematically and comprehensively, as many properties of as many
nuclei as possible, first with a small sample, and then by expanding it to larger regions
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till the model breaks down. Such detailed comparison between calculated and observed
data covering large samples will not only establish the validity of the model, but will
also eventually expose its limitations, and through examples where the model fails,
will show need for including new physics. For example, discrepancy of shell model
calculations with observations in highly neutron-rich isotopes of Na or Mg shows
the possibility that in such cases N =20 may not be a good magic number, and the
whole underlying picture of spherical shell model orbits may have become invalid.
- Other calculations of Gamov-Teller decay rates etc show the need for including
larger configuration spaces, mesonic current effects, etc.

(i) To deduce the properties of the model interactions (and also other operators) in
the assumed configuration space. The important questions here are: is the effective
interaction unique? how “universal” is it? can it help to distinguish between different
bare NN interactions proposed? (through, off-the-energy-shell effects, perhaps!), is
there any signature of density-depeudence or many-body terms in such interactions?
and a host of other such theoretical points.

It should be stressed that such a programme has been exhaustively pursued only
for nuclei in the 25 — 1d shell—i.e. for § < Z, N < 20. Computer programs to construct
and diagonalize Hamiltonian matrices have been in existence for almost 20 years
now. The most durable of these have been the Oak-Ridge-Rochester (French et al
1969) code (an improved modern version is OXBASH) and the Glasgow code
(Whitehead er al 1977). The former code is in the angular momentum coupled (J)
scheme whereas the latter is in the uncoupled (M) scheme. Some of the earlier work
in 25— 1d shell is reviewed by Halbert et al (1971).

During the past 15 years or so there has been a concerted effort by Wildenthal
and his collaborators to obtain interactions which will reproduce the experimental
Fesults t'hroughout the 25— 1d shell nuclei. In their early work they had different
Interactions for the lower (18 < 4 <22) and the upper (32 < A < 38) parts of the
25 — 1d shell (Preedom et al 1972, Chung et al 1979). More recently Wildenthal (1984)
took the 3 s.p. energies and the 63 (JT-coupled) two-body matrix elements in the
25— 1d §hel} as free parameters, and varied them to give a best fit to the binding energies
and‘ excitation energies of about 440 levels throughout the 2s — 1d shell. The r.m.s.
dev1a}10n was found to be about 150 keV. It ought to be mentioned that the two-body.
matrix elements were taken to be A-dependent; more precisely they took

(M= (V)4=15(18/4)°3, o 7

In addition, the two neutron separation energies were calculated for this interaction

g]t: -thte same kind of deviation (~ 150 keV) in most cases. This is shown in figure 4.
betal(rjl eraction has also been used to study magnetic moments, M 1 transition, and
et te}izaty strengths. A comparison of the experimental and theoretical beta decay
quitc:gimsp (rilggx‘fne(d ovgr the ﬁx;al states) is shown in figure 5. Again the agreement is
. € (see Brown 1987 for highlight i i
mentioned mteraogon ghlights of the calculations using the above
Recently Fiase et g] (1988) tried to generate a simple A-dependent effective inter-

acti i
ction starting from a more fundamental approach. They use the Reid soft-core

otenti i .
iu;:;;‘*:n:c’ﬁsglz ‘(’;’;gl a set of correlation functions to simulate the effect of the
: uce ' S _
write an effective Hamiltonian for the 25 — 1d shell nuclei. They
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Figure 4. Two neutron separation energies for nuclei in 2s — 1d shell (from Brown 1987).

H g = iz_fij(H)barefijs ' (8)
<j
where f;; are the two-body correlation operators and assumed to have the form (Fiase
et al 1988)
fij'""“-f(rij);(l + a;(A4) Sy (&)

where 1 denotes a reaction channel and §;; is the usual tensor operator. f(r;;) takes
account of short range correlations with the form

fr)=1—exp[—Blry;—r.)*] | (10)

and r, = 0-25fm; f = 25 (fm)>.

The tensor correlations are assumed to exist in the (3S; — 3D, ) channel only and
hence the parameter a,;(A4) =0 unless A =3S; — 3D,. This parameter «(4) is deter-
mined by fitting to nuclear properties in different nuclei to obtain its 4 dependence.
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Figure 5. Theoretical vs experimental T(GT) matrix elements (from Brown 1987).

It was found to be a monotonically decreasing function of 4 with a(4 =4)=01,
a(A = 16)= 008 and asymptotically o(A — 00) = 0-06.

A comparison of these matrix elements was made with those of Preedom and
Wildenthal (1972), Chung et al (1979) and Wildenthal (1984). 1t is found that for
18 < A <22 the effective interaction of Fiase et al (1988) is in excellent agreement
with that of Preedom and Wildenthal and for 32 < 4 < 38, the effective interaction
is in agreement with that of Chung et al (1979). The agreement with the matrix element
of Wildenthal (1984) is not as good. In addition, these authors (Fiase et al 1988) find
that only the diagonal matrix elements have the A-dependence whereas the off-
diagonal ones do not. The A-dependence of the diagonal matrix element has the

scaling factor (18/4)%3 found by Wildenthal (1984).

It seems therefore that the shell-model programme in the 2s — 1d shell has to a
large extent been successfully implemented. The p-shell nuclei are much simpler, and
have succumbed to shell model much earlier. Even the nuclei spanning the p- and
the sd-shell have been successfully described (Millener and Kurath 1975).

4. Future of shell-model

From the achievements of the shell-model (Brown 1986; Fiase et al 1988) in the 2s — 1d
shell, it seems natural to extend the programme to heavier nuclei. The next logical
region to attack is the fp shell, with 40 < 4 < 56, Brown, Wildenthal and collaborators
have undertaken an extensive programme to extend their “universal” sd shell
interaction to this region. There is certainly a lot of experimental information which
can be correlated and perhaps reasonable confidence about the manner in which the
effective interaction can be obtained in view of the recent work of Fiase et al (1988).
However, in order to implement this traditional shell-model approach in its
completeness, a substantial increase in computing power is required. With this
requirement in mind the Glasgow group (Mackenzie et al 1988) has recently advocated
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the use of parallel processing and have designed and constructed a dedicated
multiprocessor for shell-model calculations. This would be able to handle matrices
of dimensionally 105-107 in m-scheme.
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