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1

The aim of this paper is to give some applications of seesaw duality in the
theory of Weil representations to obtain the decomposition of certain repre-
sentations of a group over a non-Archimedean local field when restricted to
a subgroup. We obtain some results on triple product for GL(2) from the
theorem of Tunnell [Tu] on the restriction of a representation of GL(2) to a
torus corresponding to a quadratic field extension, and an extension of this
result proved here. The method of this paper yields sharper results than were
obtained in [P1] but are applicable to only certain representations of GL(2),
and we are able to say nothing about the corresponding theorems about rep-
resentations of the invertible elements of the quaternion division algebra. We
also use seesaw duality to give branching laws for the decomposition of cer-
tain representations of SO(5) over a local field when restricted to SO(4). Here
too we are reduced to the smaller pair (SO(4),SO(3)). In the final section
we reformulate, using seesaw duality, the well known results about theta lift-
ings from two dimensional quadratic spaces to SL(2) to get the tensor product
of the Weil representation of (the two fold cover) of SL(2) with any rep-
resentation of SL(2), and conjecture a similar result for general symplectic
groups.

The results obtained in this paper give further evidence to the important
role played by the epsilon factors in branching laws involving multiplicity 1
situations, cf. [Tu], [P1], [P2], [P3] for earlier results, and the paper [GP] for
some general conjectures.

We now state more precisely the results obtained in this paper. We first
recall that the following theorem was proved in [P1]. In this theorem, and in
the rest of the paper, we will write the epsilon factor associated to a finite
dimensional representation ¢ of the Weil-Deligne group W, of a local field £
and a non-trivial additive character Y of k as e(o,y). If the determinant of
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¢ is trivial, then (o,y) does not depend on ¥, and we write it simply as

e(o).

Theorem 1. Let my,7,, nt3 be three irreducible, admissible, infinite dimensional
representations of GL(2,k) for a local field k such that the product of their
central characters is trivial. Then the space of GL(2,k)-invariant linear forms
£ m@my,®n3 — C is atmost one dimensional, and it is non-zero if and only
if €(0n, ®0n, ®0y,) = 1 where oy, is the two dimensional representation of the
Weil-Deligne group W, of k associated to the representation m; of GL(2,k).

Assume that the representations m; and my of GL(2,k) come from charac-
ters y1 and x, of a quadratic extension K of k. Let GL(2,k)* be the subgroup
of index 2 of GL(2,k) consisting of those elements of GL(2,k) whose deter-
minant is a norm from K*. The representations 7, and n, decompose into two
irreducible components when restricted to GL(2,k)* which are permuted by
any element of GL(2,k) which does not lie in GL(2,k)". Write

T =n ®n;

m=n en, .

(Once m; has been written as 7, = 7} @ 7], there is a natural way of writing
the decomposition of m, as m, = n; @ n; ; this is by requiring 7, to have
Whittaker model for the same characters for which nf’ has a Whittaker model,
the results below do not depend upon the initial indexing of the two components
of m as n) and =] .)

Therefore,

MmOm=(n@ny dn; n; )d(n] ®n; G, @71y ).
Clearly this is a decomposition of G[SL(2) x SL(2)]-modules where
G[SL(2) x SL(2)] = {(91,92) | 91,92 € GL(2), anddet g; = det g,} .

Since the space of GL(2)-invariant forms in 7; ® 7, ® 73 is atmost one dimen-
sional, only one of [7{ ® 7y @7 ®7; 1®m; and [n} @7, B7; ®n) @73 will
have a GL(2)-invariant form. The next theorem refines Theorem 1 to decide
which of these two representations has a GL(2)-invariant form. Before coming
to this refinement, we observe that the 4-dimensional representation o, ® Or,
of the Weil-Deligne group decomposes as a sum of two 2-dimensional repre-
sentations. Let the two dimensional representations associated to 7, and 7, be
Ind% y, and Indz".‘ x2 respectively. Then

Op, ® O, = (IndW’: x;) ® (Ind,V(V’ﬁ xz)
= IndZt (1x2) ® IndPt (i ) -

We will be using w, to denote the central character of an irreducible admissible
representation n of GL(2,k) throughout this paper.
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Theorem 2. The representation [nf ® nf & ny ® n, ] ® 3 has a GL(2)-
invariant form if and only if €[o,, ® Indft (1 22)] = 0n(-1) and efo, ®
Indg (1 7,)] = 0ny(—1), and representation [nf ® n; & @ n71® n3 has
a GL(2)-invariant form if and only if s[cf,,3 ® Ind,’g’:(xl 2, )] = —n,(—1) and
e[om ® Indit (11 7,)] = —wr(-1).

Remark. The two dimensional representation Indjty can also be written as
Indz"i ¥ but clearly this does not cause any ambiguity in the above theorem as
s[o’,r3 ®Ind§”£ (axz )] and &:[a,r3 ®Ind,'<7’: (nis )] have the same value. However,
if one wanted to formulate an analogous statement for the quaternion division
algebra, where these two epsilon factors will have opposite value, this ambigu-
ity will have to be fixed directly in terms of the decomposition of © = n+@®n~,
where the ordering of the two components of n without the recourse to Whit-
taker model, is also ambiguous. One of the possibilities for fixing this is to
use the refinement of Tunnell’s theorem proved in [P3] where the characters
of K* appearing in 7t and n~ are described in terms of epsilon factors.

The next refinement of Theorem 1 is when 7; = m, = n. In this case

2
TN = Sym*n @ A .
Similarly,
2
0, Q@ 0, = Symza,T D Noy .

Theorem 3. For infinite dimensional irreducible admissible representations
m,n' of GL(2) such that o2 - wy = 1, Sym*n ® n’ has a GL(2) invariant

2
form_if and only if e(Sym’c ® ox) = wa(—1) and e(Aoy ® o) = we(~1),
and /2\n®7z’ has a GL(2)-invariant linear form if and only if e(Sym*o,®0 ) =

2
—wn(=1) and e(Aoyr ® /) = —w(—1).

The proof of this theorem will in fact depend on a refinement of Tunnell’s
theorem to which we now turn.

Let 7 be an irreducible admissible representation of D* where D is a quater-
nion algebra over &, and let K be a separable quadratic algebra over k (so K
could be £® k) which is contained in D. Let NK* denote the normaliser of K*
in D*. Let p be a character of k*. Assume that the central character, w,, of
7 satisfies w,(x) = p(x?) for x € k*. Tunnell’s theorem [Tu] gives conditions
under which the representation p o det of K* appears in #. We extend this
theorem of Tunnell to give conditions under which the representation p o det
of NK* appears in 7.

Theorem 4. Let n be an irreducible admissible representation of D* where
D is a quaternion algebra over a local field k, and assume that m is infinite
dimensional if D is a matrix algebra. Then the representation podet of NK*
appears in m if and only if e(a,®p~") = ep and e(6,®p™ ' ®wi) = wgp(—1)
where ep = 1 if D is the matrix algebra, and —1 if D is a division algebra,
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and wgy is the quadratic character of k* associated to the quadratic algebra
K (SO wK/kEl ifK=k@k).

We now turn to the decomposition of a representation of SO(5) when
restricted to SO(4). It will, however, be simpler to consider instead the decom-
position of a representation of GSp(4) when restricted to G(SL(2) x SL(2)) =
{(x, y) € GL(2) x GL(2) : det(x) = det(y)}, and this is what we shall do.

For representations V;,V; of groups Gy, Ga, we let V) ® V2 denote the
tensor product representation of G; x G,. In the following theorem, the notion
of L-packets is taken from Vigneras [Vi]; see section 5 for more details.

Theorem 5. Let {n} be a generic L-packet on GSp(4) over a local field k
with Langlands parameter o(n) : W) — GSp(4,C). Let 1 = 1 ® 12 be
an irreducible representation of GL(2) x GL(2) with both 1, and 1, infinite
dimensional, and with Langlands parameters o(t,),0(12) : Wi — GL(2,C).
Assume that the similitude factor associated to a(n): W) — GSp(4,C) is the
product deta(t,) - deto(tz). Then there exists atmost one representation,
say =, in the L-packet {n} and atmost one irreducible representation ' of
G(SL(2) x SL(2)) = {(x, y) € GL(2) x GL(2) : det(x) = det(y)} appearing in
71 ® 12 such that

Homgst)x sty T'1#0 .

Moreover, such a pair (n,t') exists if and only if &(a(n)®0(11)*®a(12)*) = 1.

There is an analogous branching law to the subgroup GL(2,K ) of GSp(4,k)
where K is a separable quadratic extension of k with Galois automorphism
x — %, and GL(2,K)* = {g € GL(2,K)|detg € k*}. Recall that for a repre-
sentation © of GL(2,K) with Langlands parameter o(7) : Wy — GL(2,C), we
have constructed in [P2] a 4-dimensional representation of W; by a process
which we called multiplicative induction there, and denoted by MLa(t); the
restriction of M%a(t) to Wy is a(t) ® o(f) where 7 is the representation of
GL(2,K) obtained from t by applying the Galois automorphism of GL(2,K).

Theorem 6. Let {n} be a generic L-packet on GSp(4) over a local field k
with Langlands parameter o(n) : W, — GSp(4,C). Let t be an infinite
dimensional irreducible representation of GL(2,K)* with Langlands parameter
o(t) : Wy — GL(2,C). Assume that the similitude factor associated to o(m) :
W] — GSp(4,C) is the product deta(t) - deta(?). Then there exists atmost
one representation, say m, in the L-packet {n} and atmost one irreducible
representation v of GL(2,K)* appearing in t such that

HomGL(z,K)t [15, T’] +0.

Moreover, such a pair (n,7’) exists if and only if &(o(n) ®Mka(r)*) =1
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2

We summarize the Howe duality correspondence and the seesaw duality for
similitude groups in this section.

Let (¥,q) be a finite dimensional vector space V over k together with a
quadratic form g on it. Define

GO(V) = {g € GL(V)|q(gv) = Ayq(v) for some A, € k*} ;

4g is called the similitude factor associated to g. Similarly, for a finite dimen-
sional symplectic space W, define GSp(W ) and the notion of similitude factor
for elements of this group.

Let G be a subgroup of GO(V') containing O(V'), and let H be a subgroup
of GSp(W') containing Sp(W). Assume that Ag = Ay where Ag is the subgroup
of k* defined by

A6 = {x € k*|x = 4, for someg € G},

and Ay is defined similarly.
Define (G x H), a subgroup of G x H, by

R(GxH)={(gh) € Gx H|iy - dy=1}.

There is a natural map of #(G xH) into Sp(V ® W) over which the metaplectic
covering of the symplectic group splits. The Weil representation w of Sp(V ®
W) will be considered to be a representation of #(G x H) via this splitting.
There is an explicit description of this representation of #(G x H), cf. [H-K,
5.1.5], in terms of the action of Sp(W), and the natural action of GO(V) on
functions on ¥ ® W, where W, is a maximal isotropic subspace of W this
description also serves to prove the splitting of the metaplectic cover restricted
to (G x H).

Let = be an irreducible admissible representation of H. Via the natural
surjection #(GxH) — H, n can be thought of as a representation of #(GxH ).
It follows that Hom(w,n) is a representation space for #(G x H), and the
space of Sp(W )-invariant vectors in it, i.e., Homsyw)(w, 7) is a representation
space for #(G x H)/Sp(W) = G. This representation space is not a smooth
G-module, and is in fact the algebraic dual 6y(n)* of a smooth (admissible)
G-module 6y(n). When k is of odd residue characteristic and i = Ay = {e},
Bo() has a unique irreducible quotient by a theorem of Waldspurger, and the
case of general similitude groups can be reduced to this case (cf. [R]) in many
cases to prove that 0y(n) has a unique irreducible quotient. We will denote
this irreducible quotient of 8o() by 6(r); the representation 6(n) is called the
Howe lift of n. If # = ) =, is a sum of irreducible representations of H,
then define 6(n) = Y°, O(my).

A pair (G, H) and (G’, H') of dual reductive pairs in a symplectic similitude
group is called a seesaw pair if H C G’ and H' C G. Under such a condition
Ac = Ay = Ag' = Agr. Such a pair (of dual pairs) is usually pictorially depicted
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by the following diagram where vertical arrows denote inclusion, and slanted
arrows connect members of dual reductive pairs

G G

H H'.

With the notation as above, here is the basic lemma about seesaw pairs.

Lemma. For a seesaw pair of dual reductive pairs (G,H) and (G',H') as
above, let m be an irreducible representation of H, and n' of H', then we
have the following isomorphism:

Homy [00(7‘1 )a 7[] = Homy: [00(7':): 7[’] .

Proof. For any smooth representation ¥ of an /-group, let V'* denote the
algebraic dual of ¥, and let V'V denote the smooth dual of V. The context will
always make clear the underlying /-group with respect to which the smooth
dual is being taken.

Let w be the Weil representation of the big symplectic group in which both
the pairs (G, H) and (G',H’) are contained. Let H] denote the subgroup of H'
where the similitude factor is 1. We have

Homgg x (1Y ® n'V,w*) = Homy(n¥, Homg; (7", 0*))
= Homgy(n", 6o(n')")
= Homp(0o(n'), m) .

Similarly,
Homggxary(n¥ ® 7'V, 0*) = Homy: (8o(n), ') ,

proving the lemma.

Remarks. 1. Let (G, Hy) and (Gy, Hz) be two dual reductive pairs in a sym-
plectic similitude group. Assume that G; C G, and the isometry groups asso-
ciated to G; and G, are the same, and similarly H, C H, and the isometry
groups associated to H; and H, are the same. Then it is clear from the defini-
tions that for a representation m of G,, the restriction to H; of the Howe lift
of © to H, is the same as the Howe lift to H; of the restriction of © to Gj.
2. If V is a 2 dimensional orthogonal space with the quadratic form
the norm form of a quadratic field K, and G = GO(V) then Aig = {x €
k*|ogp(x) = 1}. If W is a 2 dimensional symplectic space, then we take
H to be GL(2)* = {g € GL(2)|wku(detg) = 1}. In this case Howe dual-
ity correspondence gives a 1-1 correspondence between irreducible admissible
representations of GO(V) and certain representations of GL(2)*. These rep-
resentations of GL(2)* remain irreducible when induced to GL(2), and it is
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customary to call the induced representation of GL(2) also to be the Howe lift
of the representation of GO(V).

3. In the basic seesaw duality lemma above, it is the representation 0y(m)
and not the irreducible representation &(m) which appears, and makes the
method of seesaw pairs restrictive. By Kudla [K2], 6y(n) = 6(rn) if = is super-
cuspidal, and in many other cases 8y(n) = 6(n) as for example when lifting
an infinite dimensional representation of GL(2) which is not special to GO(4).
Our applications of seesaw will deal only in the situations that we already
know 0y(m) = 6(n) except in one situation where we are able to deduce this
equality from branching laws arising out of seesaw duality.

We will prove Theorem 2 in this section. Let K be a separable quadratic
field extension of a local field & with the Galois automorphism x — x. Let
D = K @ Kj with Nm(j) = —j2 = a, and jxj~' = . Then D is a division
algebra if and only if wgx(—a) = —1. Define, ¢p = 1 if D is a matrix algebra,
and ¢p = —1 if D is a division algebra. Therefore ¢p = wxi(—a).

For a general quadratic space V' with quadratic form ¢ on it, recall that
GO(V') denotes the group GO(V) = {g € AutV |q(gv) = Ayq(v) for all v €
V'}. The mapping g — 4, on GO(¥') is a group homomorphism whose kernel is
O(V). Clearly (detg)? = Ay where n = dim V. If n is even, define GSO(V') to
be the subgroup of GO(V') with detg = ,13. For quadratic spaces (qi, V1) and
(92, V2), let G[O(V1) x O(V>)] denote the subgroup of GO(V;) x GO(V;) con-
sisting of (g1,9) with Ag; = Ag,. Clearly G[O(V}) x O(V2)] — GO(V; @ V>).
Define G[SO(V}) x SO(V3)] to be G[O(V;) x O(V,)]|N[GSO(V1) x GSO(V>)].

If D* is the group of invertible elements of D, there is a homomorphism
from [D* x D*]1/4k* to Aut(D) given by (g1,92)X = nggz" for g,,9, € D*,
and X € D. This gives an isomorphism of [D* x D*]/4k* with GSO(D).

Both GSO(K') and GSO(X - j) are isomorphic to K*, and since any element
of K! is of the form y/j for y € K*, an arbitrary element of G[SO(K ) X
SO(K - j)] is of the form (x « y,x - 7).

We have the inclusion of G[SO(K ) x SOK - j)] into D* x D*/Ak* given
by

G[SO(K) x SO(K - j)] — GSO(K @ Kj) = GSO(D) = D* x D*/4k* .

It can be seen that under this inclusion, the element (xy,xj) of G[SO(K ) X
SO(XK - j)] goes to the element (x, y~!) of [D* x D*]/4k*. If a character of
the group G[SO(K ) X SO(K - j)] (thought of as a subgroup of K* x K*) is
given by a pair of characters (¥1, x2) of K*, then it corresponds to the character
(xix2, (1%2)~") of K* x K* contained in [D* x D*]/4k*.




We will now use the following seesaw diagram

GISL(2) x SL(2)}* GO(K® K+ j)

GL(2) G[O(K) x O(K-j)]

where GL(2)* = {g € GL(2)|wgpn(detg) = 1}, and G[SL(2) x SL(2)]* =
{(91,92) € GL(2)* x GL(2)*|detg) = detg,}.

It is known from [J-L] that for a representation n3; of GL(2), its Howe
lift to GO(D) remains irreducible when restricted to GSO(D), and under the
isomorphism GSO(D) 2 D* x D*/Ak*, it is n3 @ n; if D = GL(2), and is
ny ® ny* if D is the quaternion division algebra and 7} is the representation
of D* associated to the representation 73 of GL(2) by the Jacquet-Langlands
correspondence (so 73 = {0} if 73 is not a discrete series representation). For
a character y of K* such that y(x)=# x(x) for some x € K*, the character x
induces to give a two dimensional irreducible representation of GO(K). The
Howe lift of this two dimensional representation of GO(K) to GL(2,k) is the
representation of GL(2,k) associated to the character y of K*.

Let m,, ,, be the representation of G[SL(2)x SL(2)]* obtained by the Howe
lift of the representation of G[O(2) x O(2)] which restricts to the character
X1 X x2 on G[SO(2) x SO(2)].

From seesaw duality and Frobenius reciprocity

Homgyz2y+ [y, 1,5 3]

~ GIO(K)XO(K * j
= Homgok)x o * j) [7t§ ® na,lndc{?é(}§x§o(x’?§,,(x: X Xz)]

& Homgysox)xso « il ® m3, x1 X x2]
= Homg. 7, 1142] ® Homg-[m3, 17 ' %5 '] -

Using Tunnell’s theorem, it follows that Homgy2)+ [y, 5,, 3]0 if and only
if e[ox, ® A2 (11)2)] = @m(=1) - Wxi(—1)ep and €0, ® Indgt(117,)] =
g, (—1) + wgp(—1)ep. In the notation introduced before Theorem 2, it is clear
from the construction of 7y, ,, that my, ,, = 7y ® 73 if @ = 1, and my, ,, =
nf ® n; if wgp(a) = —1. From the relation ep = wgp(—a), it follows that
Homgry+[n] ® 77, 73140 if and only if €0y, ® I (1ix2)] = wn(=1)
and &[0z, ® Indft(x17,)] = @n,(—1). Similarly, Homgr)+[7] ® 77 ,73]40
if and only if €[ox, ® Indit(1)2)] = —@r,(—1) and [on, ® IndRt(117,)] =
—wy(~1). Since 7} @1 O 7] ® 17 = Indgron(nf ® nF), and 7} @ 77
TNy = Indgf“g),,(n;L ® 7, ), another application of Frobenius reciprocity
completes the proof of Theorem 2. Observe that even though we are able to
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obtain results here only for triple products of GL(2), we need to use Tunnell’s
theorem both for GL(2) and the quaternion division algebra.

4

We prove Theorem 4 in this section. It is easily seen that the theorem can be
reduced to the case when the central character of = is trivial. We will assume
this to be the case and take p = 1.

It is a theorem of Frohlich and Queyrut that for a character y of L* which
is trivial on k* where L is a quadratic extension of a local field &, and for a
character Yy of L of the form y.(x) = y(trx) for  any additive character
of k,

e(xuyL) = x(4),

where 4 is any element of L* whose trace to k is zero. We consider Theorem
4 as a generalisation of this theorem to the situation of quaternion algebras. In
fact the proof of Deligne [D] generalises easily to this situation. We recall that
Deligne proved the theorem of Frohlich and Queyrut using the local functional
equation of Tate:

S f@lxl' =y (x) d*x
L(X—l’ 1 - S)

Jpo SFOIx | x(x) d*x
L(y,s)

where f is any compactly supported function on L with f its Fourier transform
taken with respect to Y (x) = Y(trx), d*x = "‘%‘" where dx is the Haar

=e(y, l/lL,S)

measure on L self dual for the character ;.

In our present situation D plays the role of L and K plays the role of &, and
the local functional equation of Tate is replaced by the following functional
equation of Jacquet-Langlands

jb-f(x)" detx||§‘s¢(x—-l )yd*x
L(m*, 1 —s)

Jpe £ ()|l detx]|3+5¢(x) d*x
L(m,s) :

Here ep = +1 if D = M(2,k), and —1 if D is the quaternion division algebra,
f is a compactly supported function on D, f its Fourier transform using the
character ¥ p(x) = Y(tr[x]) and ¢ is a matrix coefficient of © which we take to
be ¢(x) = (xvo,vo) Where vy is the vector in m on which K* operates trivially,

d*x = i d(eitxx" where dx is the Haar measure on D self dual for the character

= &(m, Yp,s)eD

D-

In the present proof the role of 4 in the theorem of Frohlich and Queyrut
is played by the element j € D* introduced in the last section such that D =
K®K - jis a direct sum of quadratic spaces. Clearly ¢(xgy) = ¢(g) for all
x,y € K*, and ¢(j) = 1 if and only if NK* operates trivially on vy. We omit
to give complete translation of Deligne’s proof to the present situation except
pointing out that it works for any supercuspidal representation of GL(2) and
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any representation of D* where D is the quaternion division algebra, and yields
that for a representation of D* containing a vector vp on which K* operates
trivially, NK* also operates trivially if and only if e(n) = ¢p. Combining this
with Tunnell’s theorem according to which there exists a vector vy on which
K* operates trivially if and only if &(n) - e(n ® wkp) = epwgi(—1), we get
Theorem 4 for such representations.

If 7 is the principal series of PGL(2) induced from the characters (x,x~'),
then e(n) = e(x®x~") = x(—1). From the decomposition BK* = GL(2) where
B is any Borel subgroup of GL(2), one can easily calculate the action of NK™*
on the vector fixed by K*, and we find that NK* operates trivially on this
vector if and only if y(—1) = e(n) = 1. The case of special representation can
also be treated in the same way.

Finally, if K = k @ k, then K* is the diagonal subgroup of GL(2). The
linear form which is invariant under the diagonal subgroup is most conveniently
described in the Kirillov model. If  is supercuspidal, then the Kirillov model
consists of compactly supported functions on k£ which vanish at the origin.
In this case f — fk. f(x)d*x is the linear form invariant under the diagonal
subgroup. The action of Weyl group is also given by a simple formula involving
the epsilon factor, and this proves the theorem for supercuspidal representations.
For principal series the theorem could be proved by looking directly at the
action of K* on G/B; we omit the details.

5

We prove Theorem 3 in this section. When the representation n is either a
principal series or is a special representation, then the theorem can be easily
proved using the orbit method to write the symmetric square of 7 in terms of
explicit induced representation and applying Theorem 4; we omit the details
of this. For supercuspidal representations, we will be able to prove the theo-
rem only for representations # coming from a character x of a quadratic field
extension K of k. The proof in this case will again depend on the seesaw pair
used in section 3, the notation of which we will continue to follow here:

G[SL(2) x SL(2)]* GO(K® K-j)

GL(2) GLO(K) x O(K-j)].

We recall from section 3 that D = K @ Kj with Nm(j) = —j*> = a, and
as seen there, the isomorphism of [D* x D*}/4k* with GSO(D) induces the
isomorphism of [K* xK*]/4k* with G[SO(K)xSO(K - j)], taking the character
x X x of G[SO(K) x SO(K - j)] to the character [x% (x7)~'] of K* x K* C
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D* x D*. The automorphism J, : K ®Kj — K ®Kj given by x + yj — ay +xj
belongs to GSO(D), and under the mapping D* x D* — GSO(D), this element
of GSO(D) can be represented by (xp,j " 'xo) where xo € K* with tr(xp) =
0. Let (K* x K*)* denote the group generated by K* x K* and (xo, ;" 'x0)
inside D* x D*, and let [x* x (xf)~']¢ denote the extension of the character
O x (x0)™'1 to (K* x K*)° by declaring [x* x (x7)~'1*(x0,j~'x0) = x(a).
Let 7 = n* @ n~ as in the introduction, so n* and n~ are representations
of GL(2)*. Let g, = ( (l) a?,
n? = n~ if wgx(a) = —1. The action of g, on = takes n* to n%. The Howe lift
of (x x x) (by which we mean the Howe lifts of all irreducible representations
of G(O(K) x O(K - j)) which contain the restriction of the character y x x to
G(SO(K)xSO(K - j))) gives the representation n* ®@n® of G[SL(2) x SL(2)]*.
By Frobenius reciprocity,

. Define n* = n* if wgp(a) = 1, and

Homg2)[n ® =, TI’*] = Homgy3)+ [1!.’+ ® 7t+, 71.’"] @ Homgy 2+ [7'L’+ ®n~, ﬂl*] .
From this it can be checked that,
Homgyz)[Sym?(n), n*]

= Homgyy+ [Sym*(nt), n"*] @ Homgyry xo[nt @ n7, '],

where ¢ is the involution of order 2 on n*®=#~ commuting with GL(2)* action,
given by vy ® v; — g7 'v; ® gav; Where a € k* with wgx(a) = —1; if we use
such a g, with wgi(a) = —1 to identify nt to n~, then this automorphism of
nt @ 1~ becomes the automorphism x® y — y @ x of n* @ n*.

The Weil representation w of the big symplectic group in which the see-
saw pair under consideration is contained in, operates on #(K)® £(K). The
element (g,,J;) belongs to this symplectic group (without similitude) and from
the formula 5.1.5 in [H-K], it follows that (g,,J,) acts on #(K) ® £(K) by
[1® f2 — x(a)f2® f1 (after the identification of n* to n~ by g, where a will
be a fixed element of k* with wgx(a) = —1). Therefore the y(a) eigenspace of
this automorphism on #(K) ® ¥(K) consists exactly of symmetric functions.

The natural action of (g,,J;) on GL(2)* x (K* x K*) defines a semi-direct
product which will, for typographical reason, be written as [GL(2)* x (K* x
K*)]1%(ga,Ja). As 7' is a representation of GL(2), the representation 7’ ® [y? x
(x7)™'1 of GL(2)* x (K* x K*) has a natural extension to a representation of
[GL(2)* x (K* X K*)] X (ga,Ja) (using the action of J, defined earlier) which
will be denoted by n’ ® [¥? x (xjf)~']°. Calculation of the 7’ ® [¥* x (xi7)~']¢
isotypical representation of #(GL(2)* x (K* x K*)) X (ga,Ja) in w, as in the
seesaw duality lemma yields the following isomorphism:

Homg+ xxye[n"™* @ 7, [x* % (x7)~'1°] = Homgy () x (o3[ @ 7, 7] .

Therefore the question of when 7n'* appears in Sym?(m) reduces to the
question: when does the representation [x? x (xf)~']¢ of (K* x K*)¢ appear in
™ Q'
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By theorem 4, j~'xo operates on the (i)~ eigenspace in n’ by y(—ax;?)
if and only if (recall that ep = wxu(—a))
&(or ® Al ) = wgp(—a)
&(on ® Xk ® wii) = wgp(—1).

It follows that (xo,/~'xo) operates by x(—a) on the [x2,(xi)~'] eigenspace
in n'* ® 7’ if and only if

e(ow ® Indgt x*) = wku(a)
e(ow @ xlk+) = wkp(—a)
&(on ® xlee ® wgp) = wkp(—1),

and therefore, (xo,/ 'xo) operates by x(a) on the [x2,(x%)"'] eigenspace in
™ @ n’ if and only if

e(on ® Ind}{ﬁ x%) = wxu(a)
e(ow ® xlk=) = x(=1)wgn(—a)
(o ® xlk ® wii) = x(—1)wgp(-1).

Since o, = Ind}* y,
Sym?o, = Indft(2) ® i~
2
Aox = Wr = Xlkx * OKj »

Theorem 4 follows.

6

We will prove theorem 5 in this section. We begin by summarising the work
of Vigneras [Vi] on the Langlands parameter of discrete series representations
of GSp(4), structure of their L-packets, and the Howe lifting between GO(4)
and GSp(4).

We recall that the L-group of GSp(4) is GSp(4, C). We let V* denote a four
dimensional quadratic space which is split, and let '* denote a four dimensional
quadratic space which is anisotropic. Since k is non-archimedean, V' is unique
up to isomorphism. We note that GSO(V*) = {GL(2) x GL(2)}/4(k*), and
similarly GSO(V?) = {D* x D*}/A(k*) where D is the unique quaternion
division algebra over k.

For a quadratic field extension K of k& with the Galois automorphism x — x,
let ¥ be the 4-dimensional space ¥ = {X € M(2,K)|X =X} together with
the determinant as the quadratic form (which takes values in k). For an ele-
ment g € GL(2,K), we have the automorphism X — gX'g which lies in
GSO(V'), and for the action of k* on V by scaling, we have the isomorphism
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[GL(2,K) x k*)/K* = GSO(V) where K* is included as scalar matrices in
GL(2,K), and through the inverse of the norm in k*.

From these descriptions of the orthogonal groups we find in particular that
the L-packets of GSO(V*), GSO(V?), and GSO(V') are singleton sets. The
following theorem is a paraphrase of the results of Vigneras in [Vi].

Theorem 7. The following is a complete list of the Langlands parameters
of discrete series representations of GSp(4), over a non-archimedean local
field k of odd residue characteristic, together with the structure of their L-
packets and the information about which of these representations could be
lifted from GO(4) and the associated representation of GO(4) (corresponding
to the quadratic spaces V*,V*, and V).

. 0 = 01 @0, where o) % 0, are 2-dimensional irreducible representations
of the Weil-Deligne group W, with deto, = deto,. This parameter is con-
tained in the cuspidal subgroup G(SL(2) x SL(2)) of GSp(4,C). The L-packet
of representations of GSp(4,k) corresponding to such a parameter o has two
elements, exactly one of which is generic. The generic representation is ob-
tained as the Howe lift from a representation of GO(V*) which is induced
from the representation n, @ 3 of [GL(2) x GL(2))/4k* = GSO(V*) where =,
and m, are discrete series representations of GL(2) with parameters ¢, and
02. The representation which is not generic is obtained as the Howe ltft Sfrom
a representation of GO(V?) which is induced from the representation n; @ y*
of [D* x D*)/4k* = GSO(V*) where | and ny are the representations of D"
with parameters o, and o,.

2. ¢ = Ind/ " 0 where 6 is a two dimensional representation of W} for a

quadratic ﬁeld extensxon K of k, which does not extend to W) but such that
det 0 does extend to Wy. The representation ¢ with values in GL(4,C) can
be embedded in GSp(4,C) in exactly two in-equivalent way. The L-packet
corresponding to either of these two representations W, — GSp(4,C) con-
sists exactly of one element, and both the representations can be obtained
as Howe liftings from GO(V). (Actually the duality correspondence is be-
tween GSp(4)* and GO(V'), but we follow remark 2 of section 2 which ap-
plies here also, to construct correspondence between GSp(4) and GO(V).)
The corresponding two representations of GO(V) are obtained by induction
Sfrom GSO(V') of representations which remain irreducible when restricted to
GL(2,K) (recall that GSO(V') = [GL(2,K) x k*]/K*), and has the parameter
6 (so the two representations of GSO(V') are the two ways of extending this
representation of GL(2,K) to GSO(V)).

3. 0 =t ®sp(2) where t is an irreducible two dimensional representation
of Wi with values in GO(2) (this condition is automatic in our situation
of odd residue characteristic), and sp(2) is the two dimensional irreducible
representation of W) which is trivial on Wy. The corresponding L-packet has
exactly one element, and it does not come from Howe lifting from GO(4) for
any 4-dimensional quadratic space.

4. x ® sp(4) which is the 4-dimensional irreducible representation of Wy
on which Wy operates by the character y. This corresponds to the Steinberg
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representation of GSp(4) and does not come from the Howe lifting from
GO(4) for any 4-dimensional quadratic space.

Remark. In cases 1 and 2 of the above theorem, supercuspidal representa-
tions of GSO(4) lift to supercuspidal representations of GSp(4). This follows
from the work of Kudla [Ku] together with the known correspondence between
GO(4) and GL(2).

Remark. To be strictly correct, Vigneras constructed certain representations of
GSp(4) by lifting them from a quadratic form in four variables, and constructed
certain other representations as subquotients of principal series and checked
that the L-functions and epsilon factors (constructed by Piatetski-Shapiro and
Soudry) of these after twisting by an arbitrary representation of GL(1) and
GL(2) is what is predicted by the parameters given in the above theorem. So
she did not prove that the representations she constructs have these parameters,
nor did she prove that this list exhausts all discrete series representations but she
did prove that if Langlands’ conjecture on the parametrisation of representations
of GSp(4) is true then the list is complete in odd residue characteristic. Our
methods say nothing about representations of GSp(4) which are not lifted from
a quadratic space of dimension 4.

We now come to the proof of Theorem 5. We will be proving this theorem
for only those discrete series representation of GSp(4) which are obtained as
Howe lift of a representation of an orthogonal group in four variables; in par-
ticular we will not be able to handle cases 3 and 4 of theorem 7. For principal
series representations induced from supercuspidal representation of a parabolic,
the standard Mackey theory can be used to reduce theorem 5 to the situation
of triple products for GL(2) but we will not do that here. Similarly, Steinberg
representation being part of a principal series whose other factors are easy to
describe, can be taken care of. However, the representations in case 3, though
also part of a principal series (induced from a supercuspidal representation of
the Levi of a parabolic which stabilises a line), we do not know how to handle
as the other component of the principal series is as mysterious.

Our proof of theorem 5 will use the seesaw pair originally used by Harris
and Kudla [HK] involving the dual pairs (GSp(4),GO(4)) and (G(SL(2) x
SL(2)), G(O(4) x O(4))):

GSp(4) G(0(4) x 0(4)

G(SL(2) x SL(2)) GO(4).

Assume that the L-packet {n} of representations of GSp(4) is as in case 1
of Theorem 6 above with Langlands parameter o(n) = 01 © 03. Write {n} =
{n',7*} with ' the generic element which is obtained from GO(V*) as the
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Howe lift of the representation n; ® n3 of [GL(2) x GL(2)])/4k* = GSO(V*) as
there. Let 7’ be a representation of G(SL(2) x SL(2)) appearing in T = 1, ® 13,
and let Op(7’) be its Howe lift to G(O(V*) x O(V*)). By the seesaw duality
theorem, and Frobenius reciprocity, we have

Gov*
Homgsz2)xsey ', 7] = Homgogy[0o(1"), Indcsé(yl,m ® 73]

= Homgsor+)[0o(1'), m @ 73] .

Summing over all the representations ' of G(SL(2) x SL(2)) in the represen-
tation 7; ® 1, of GL(2) x GL(2), and noting that the Howe lift to GO(V*) of
a representation 7, of GL(2) remains irreducible when restricted to GSO(V*),
and is 7; ® ] under the isomorphism GSO(V') & {GL(2) x GL(2)}/4(k*), we
have

Homg(sz2yxszay ', 11 ® 12] = Homegr)xarz)[(11 ® 1) ® (12 ® 73), 1y @ 3] .

Therefore Homg(sz2)xsz2))[®', 71 ® 12140 if and only if Homgy)[1) ® 12, 11]
#0 and Homg(2)[1] ® 3, 75]%0. Therefore by the multiplicity one theorem
for triple product, cf. [P1], HomG(SL(z)st(z))[n',r']=1=0 for atmost one repre-
sentation 7’ of G(SL(2) x SL(2)) appearing in 7; ® 7,, and by the theorem
on epsilon factors proved in [P1], we get that Homgsr2)xszepn's 11 ® 2]
#0 if and only if ¢(g; ® 0(71)* ® 6(72)*) = 1 and &(02 ® 0(11)* ® a(12)*)
= 1.

Repeating all the analysis done above with the seesaw pair after replacing
V¢ by ¥, we find that for 7%, the representation of GSp(4) obtained by lifting
from the corresponding representation of GO(V?), HomG(SL(z)st(z))[nz,r, ®
72]#0 if and only if £(0, ®0a(71)*®0(12)*) = —1 and &(02,®0(11)*Ra(12)*) =
—1. This proves Theorem 5 for L-packets of GSp(4) as in case 1 of Theorem 6
except that it assumes, in the notation of section 2, 0y(m; @ 73) = O0(m; ® m3),
which as mentioned in section 2, one knows apriori only for supercuspidal
representations 7; ® n;. We will check below that this is the case when w;
is supercuspidal and 7, is a special representation, but have not been able to
treat the case when both 7, and m, are special representations.

The idea of the proof for fy(m; ® St) = O(m; @ St), is, amusingly enough,
to use the same seesaw duality, and to conclude that if they are not equal, then
0o(m; ® St) will have more irreducible components of G(SL(2) x SL(2)) than
is allowed by the branching law using the seesaw.

For simplicity of notation, let M = m; ® St where m; is a supercuspidal
representation of GL(2) with trivial central character, and therefore isomorphic
to its own dual. The Jacquet module of M ®0(M ) with respect to the unipotent
radical of the parabolic [GL(2) x B]/4k* of GSO(4) = [GL(2) x GL(2))/ 4k*
where B is the upper triangular subgroup of GL(2), is m; ® |x/y|'? ® 6p(M ) as
a GL(2) x {k* x k*} x GSp(4) module where |x/y| is the obvious character of
k* x k*. From Kudla [Ku, Theorem 2.8] it follows that the m;-isotypical part
of the corresponding Jacquet module of the Weil representation is

m ® |x/y[? ® Indg P (my| - |='7),
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where P is the parabolic in GSp(4) stabilising an isotropic plane with Levi
subgroup GL(2) x k* and m;| - |~"/2 is a representation of GL(2) x k* which
is trivial on k*. It follows that 8p(M) is a quotient of Indg""*)(n,| . |='2).

By Mackey theory, and results on triple product for GL(2) in terms of
epsilon factors, it is easy to see that for supercuspidal representations 7,,7, of
GL(2), an irreducible component 7’ of 7, ® 1, restricted to G(SL(2) x SL(2))
appears in Indps"“’(n | + |="2) if and only if &(a(1;) ® a(12) ® a(my)) = 1.
On the other hand, by seesaw duality argument given before, we know that an
irreducible component t’ of 7; ® 1, restricted to G(SL(2) x SL(2)) appears in
0o(M) if and only if e(a(1))®a(12)®0(m;)) = 1 and e(o(1))®a(12)®0(St)) =
1. If we can now prove that there exists supercuspidal representations 7, and
7, of GL(2) with e(a(1))®@0(12)®0a(m)) = 1 but e(a(ta)®a(tz)®o(St))=#=l
then it would follow that 6o(M) is not equal to Ind>*(m| - |='2), and
as IndS"*(n,| - |=12) is known to have only two irreducible components,
we will have proved that 0o(M) is irreducible, and is the unique irreducible
quotient of Ind,, (my| + |~/2). From [P1], looked at from the point of view
of division algebra, it is clear that e(o(7)) ® o(12) ® a(St))+1 if and only if
71 = 13, and &(0(7;) ® 0(12) ® 6(m;)) = 1 if and only if the representation
of the division algebra does not appear in rf’ ® t;'. If m] has level at least 2
(i.e. m} and all its twists by one dimensional characters are not trivial on the
first congruence subgroup of the division algebra), then taking 1) = 73 of level
one does the trick, and even in the case when m| has level one a little more
careful choice of 7 = 73 of level one works.

We remark that by a similar analysis, one can prove that the representation
m ® 1 of GSO(4) appears in the duality correspondence with GSp(4), and one
has 90((, 1 ® 1) = 6(m; ® 1) which is equal to the other irreducible component
of Ind5*P®(,| + |=1/2). Moreover, the seesaw duality can be used to give the
decomposition of this representation too restricted to G(SL(2) x SL(2)).

We now turn our attention to representations of GSp(4) obtained using
Howe lift from representations of GO(V) where V is a four dimensional
quadratic space whose discriminant algebra is a quadratic field extension K
of k. In this case GSO(V) = [GL(2,K) x k*]/K*, and the lifting of a rep-
resentation # from GL(2,k) to GO(V') remains irreducible when restricted to
GSO(V), and is n|x ® w, where n|x is the base change of n to GL(2,K),
and w, is the central character of 5, cf. [Co]. (Actually, we should be using
the group GL(2,k)* instead of GL(2,k) for the duality correspondence.) If
a(0) is the two dimensional representation of Wy associated to a representa-
tion @ of GL(2,K) (which is not invariant under the Galois automorphism of
GL(2,K) but whose central character is), then the Langlands parameter (with
values in GL(4 C)) of the two representations of GSp(4) obtained by Howe
lift is Ind *0(0), and a similar seesaw argument together with the following
identity of eps1lon factors proves theorem 5 in this case. (We will need to use
Frobenius reciprocity too to take care of the difference between GL(2,k)* and
GL(2,k).)

e([Indpk 6(60)] ® o(71)* ® (1)) = £(0(0) ® 0(71)* Iwe ® 0(2)" i) -

b
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Remark. The proof given above of Theorem 5 infact gives more information as
predicted by [G-P1] but not incorporated in Theorem 5. It shows that when the
L-packet {n} of GSp(4) has more than one element, then one can decide which
representation in the L-packet of GSp(4) contains a particular representation
(or rather the sum of representations in an L-packet) of G(SL(2) x SL(2)) in
terms of epsilon factors.

7

We will prove Theorem 6 in this section. As the arguments are very similar
to the proof of Theorem 5, we will be very brief.

For a vector space V over K, let RxyV be the same space ¥ but now
thought of as a vector space over k. If ¥ is given with an alternating form
(,), then Rgx V acquires the alternating form tro(, ). If W, is a quadratic space
over k, then clearly Wy ®; K is a quadratic space over K. Define GSp(V)¥ to
be the subgroup of GSp(V )(K) where the similitude factor takes values in k*;
similarly define GO(W, ®; K).

We have the following isomorphism of symplectic spaces:

RV @k (Wo ®x K)] = (ReiV) @k W .

This gives rise to the following seesaw diagram.

GSp(R, V) G(O(W, ®, K))*

GSp(V)! GO(W,).

We now specialise to the case when V is a 2-dimensional vector space
over K and W, is 4-dimensional over k. If the discriminant algebra associated
to Wy is K, then for X! the norm one subgroup of K*, we have the inclusion
GL(2,K)/K' — GO(W,), and the embedding GO(W,) — GO(W, ®; K) gives
rise to GL(2,K)/K' — [GL(2,K) x GL(2,K)}/4K* given by g — (g,3).

If the representation n of GSp(4,k) comes as the Howe lift of a represen-
tation 6 of GL(2,K), with parameter o(6) : W} — GL(2,T), and if o(7) is the
parameter of a representation t of GL(2,K), then it is clear from the above
seesaw diagram that some irreducible component 7’ of the restriction of t to
GL(2,K)* appears in = if and only if Homg o 4)[t ® 7,01 %0, or from [P1], if
and only if e(o(7) ® 6(7) ® 6(0)*) = 1. The following identity now proves

Theorem 6 for the representation 7.

e([Indy} 0(6)] ® MEa(1)*) = e(a(r) ® o(7) ® a(6)*) .

When the L-packet {n} on GSp(4,k) comes from split orthogonal group in 4-
variables, then again theorem 6 can be reduced to the situation studied in [P2]
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on the decomposition of a GL(2, K) representation when restricted to GL(2,k);
however, as the theorem there on epsilon factors was not proved in all cases,
the same gap remains: here.

We will use the following seesaw pair in this section to obtain the tensor
product of the Weil representation (of the two fold cover) of SL(2) with any
representation of SL(2).

03) SL(2) x SL(2)

0(2) x 0(1) SLQ)

We begin by summarising the well known Howe duality correspondence
between O(2) and SL(2) which has been studied for a long time starting with
the works of Shalika, Tannaka, Casselman, etc. The following theorem fol-
lows from their work though it does not seem to have been explicitly stated
anywhere.

Theorem 8. Let O(Q) denote the orthogonal group in 2 variable correspond-
ing to an orthogonal space Q. Let {« - Q} be the set of isomorphism classes
of quadratic forms which are multiples of Q (so by local class field theory,
the set {o - Q} has cardinality 1 or 2 depending on whether Q represents a
zero or not). All the groups O(aQ) are isomorphic, and given an irreducible
representation x of SO(Q) (a character in fact as SO(Q) is abelian), let S
be the set of irreducible representations of O(aQ) which contains this char-
acter. Then the Howe lift to SL(2,k) of this set S of representations is an
L-packet on SL(2,k). Here the Howe lifting is with respect to the symplectic
space aQ ® W where W is any fixed 2-dimensional symplectic space, and the
additive character  used to define the Weil representation of Sp(aQ ® W)
is arbitrary but fixed.

We will use the notation introduced in Theorem 8 above in the rest of
this section. We note that for Q an-isotropic, as {«Q} runs over the set of
isomorphism classes of quadratic forms which are multiples of O, the quadratic
spaces a0 @ 1 run over the distinct quadratic spaces of dimension 3 with a
given discriminant. So, O(xQ @ 1) represents both the groups Dy/k* x {£1}
and PGL(2,k) x {£1} exactly once. It is a theorem of Waldspurger [W] that
for O an-isotropic, the Howe lifts from O(a@ @ 1) for different a give disjoint
sets of representations of SL(2,k), and exhaust all the genuine representations
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of .§Z(2,k) (i.e. those representations which do not factor through SL(2,k)).
Moreover, if det denotes the quadratic character of O(aQ @ 1) obtained by
taking the determinant, then for any representation ¥ of O(aQ @ ® 1) exactly
one of V' or V ® det appears in the duality correspondence with SL(2)

Let Oy and Q, denote the two distinct isomorphism classes of quadratic
spaces of dimension 3 of a given discriminant. Define a genuine L-packet on
SL(2) to be the set of representations consisting of Howe lifts of representa-
tions of O(Q,) and O(Q,) whose restrictions to SO(Q;) and SO(Q,) (which
are isomorphic to Dy/k* and PGL(2,k) in some order) are related by the
Jacquet-Langlands correspondence. The L-packets thus defined have at most
two elements.

If the quadratic form Q is the norm form of a quadratic algebra K, then
SO(Q) = K*/k* and it can be seen that the embedding of SO(«Q) in SO(aQ @&
1) is the natural embedding of K*/k* in PGL(2) or D;/k‘. If NK*/k* denotes
the normaliser of K*/k* in PGL(2) or D}/k*, then the image of the natural
embedding of O(«Q)x O(1) in O(«Q®1) which is PGL(2)x {1}, or D} /k* x
{£1}, is NK*/k* x {£}.

It is well known that if 7 is a discrete series representation of PGL(2)
then any character of K*/k* appears in exactly one of the representations 7 of
PGL(2) or n’ of Dg/k* where m and n’ are related by the Jacquet-Langlands
correspondence, and any character of K*/k* appears in a principal series rep-
resentation of PGL(2).

Using the seesaw pair,

00 ®1) SL(2) x SL(2)

0(«Q) x 0(1) SL(2)

the above theorem, and the various observations made in this section we get
the following theorem. (We will also need to use the trivial case of seesaw
duality that when a representation of 3’2(2) does not occur in the duality cor-
respondence with O(xQ @ 1), then it also does not appear in the tensor product
of a representatlon of SL(2) which is lifted from O(«Q) with the Weil repre-
sentation of SL(2) )

Theorem 9. Let wy be the Weil representation of S’Z(Z) associated to a char-
acter  of k, and {n,} an L-packet of infinite dimensional representations of
SL(2,k) coming from a quadratic algebra and {m,} a genuine L-packet on
3’2(2,k) which does not factor through SL(2,k). Assume that the Howe lift of
my to O(V) is not one dimensional for some m, € {m,}, and V 3-dimensional
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isotropic quadratic space. Then there is exactly one representation 7, in {n;}
which appears as a quotient of SL(2,k)-modules

“W( 5 })""2‘

ﬂ€{1t|

Motivated by the above theorem and the multiplicity 1 theorem for the
restriction of an irreducible admissible representation of O(n) to O(n — 1)
of [GPR], we end the paper with the following conjecture which the above
theorem answers for all non-exceptional representations of SL(2,k). It is the
analogue of conjecture 8.6 of [G-P] for Weil representations.

Conjecture. Let {1} be an L-packet of representations of Sp(2n,k) and let wy
denote the Weil representation of the metaplectic group Sp(2n,k) associated
to a non-trivial additive character of k. Then any representation of Sp(2n,k)

Dn
n € {n}
In particular, for any representation © of Sp(2n,k), wy ® n decomposes with
multiplicity at most one.

appears (as a quotient) in ( ® wy with multiplicity at most one.
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