

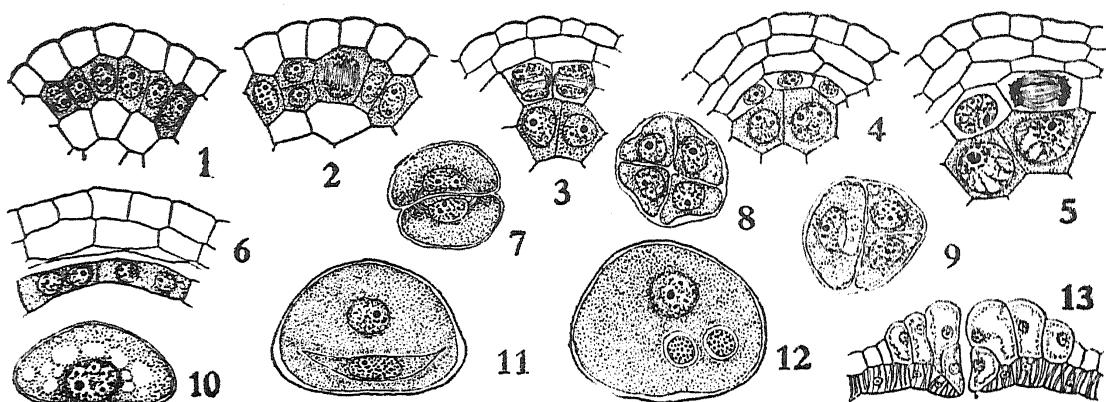
A CONTRIBUTION TO THE EMBRYOLOGY OF *CHLOROPHYTUM ATTENUATUM* BAK.

By K. SUBRAMANYAM AND A. NAGARAJA RAO

(*Department of Botany, Central College, Bangalore*)

Received September 8, 1952

(Communicated by Dr. L. Narayana Rao, F.A.Sc.)


INTRODUCTION

THE Liliaceæ is a very interesting family for it shows five distinct types of embryo sac development, viz., Polygonum type, Allium type, Drusa type, Fritillaria type and Adoxa type. Eunus (1950) has drawn attention to this feature and an exhaustive review on these types of embryo sac development has recently been presented by Maheshwari (1948). The genus *Chlorophytum* is placed in the third sub-tribe Asphodeloideæ by Engler (1888) in the family Liliaceæ. In South India eight species of this genus are recorded (Gamble, 1925). *Chlorophytum attenuatum* is a perennial herb with cylindric, frequently tuber-like, roots. The inflorescence is a scape on which the white racemose flowers are arranged. The material was collected at Nandi Hills, a hill station about 35 miles from Bangalore, and fixed in formalin-acetic-alcohol. Sections were cut at a thickness of 14–18 microns and stained in Heidenhain's iron-alum haematoxylin with eosin as a counter stain.

MICROSPORANGIUM AND MALE GAMETOPHYTE

The flower has six stamens arranged in two whorls of three each. A transverse section of the young anther lobe shows the hypodermal archesporium made up of a plate of six to eight cells (Fig. 1), with prominent nuclei and dense cell contents. They divide transversely forming the primary parietal layer and primary sporogenous layer (Fig. 2). The primary parietal layer by further divisions forms the wall of the anther (Figs. 3–6) and the sporogenous cells after undergoing a few more divisions become converted into spore mother cells (Figs. 3–5). The outermost layer in the young anther is the epidermis, next comes the endothecium, then a middle layer which soon becomes flattened and crushed (Figs. 4–6) and finally the glandular tapetum. The tapetal cells are uninucleate at first but later become binucleate (Figs. 5–6).

The microspore mother cells round up and undergo the usual reduction divisions. The first division is followed by the formation of a cell plate

FIGS. 1-13.

Fig. 1. Portion of cross-section of young anther showing archesporial cells, $\times 270$. Fig. 2. Formation of primary parietal and primary sporogenous cells, $\times 270$. Figs. 3 & 4. Stages in formation of anther wall, $\times 270$. Fig. 5. Portion of young anther showing epidermis, endothecium, middle layer, uninucleate tapetum, and sporogenous cells; note division in one of the tapetal cells, $\times 270$. Fig. 6. Same at a later stage showing crushed middle layer and binucleate tapetum, $\times 270$. Fig. 7. Microspore Dyad, $\times 450$. Fig. 8. Isobilateral tetrad of microspores, $\times 485$. Fig. 9. Decussate opposite arrangement of microspores, $\times 485$. Fig. 10. Uninucleate microspore, $\times 679$. Fig. 11. Two-celled pollen grain, $\times 679$. Fig. 12. Pollen grain showing tube nucleus and two male cells, $\times 679$. Fig. 13. Portion of mature anther to show stomium and fibrous endothecium, $\times 120$.

(Fig. 7); after the second division a cell plate is laid down in each of the dyad cells resulting in the formation of isobilateral tetrads (Fig. 8). Sometimes the microspores show a decussate arrangement (Fig. 9). A young microspore has a prominent nucleus surrounded by vacuolate cytoplasm (Fig. 10). Its wall is composed of a thin intine and a thick smooth exine with a single germinal furrow. The nucleus of the microspore divides to form an elongated generative cell and a rounded tube nucleus (Fig. 11). This is the shedding stage of the pollen grain, but occasionally the generative cell divides producing two male cells (Fig. 12).

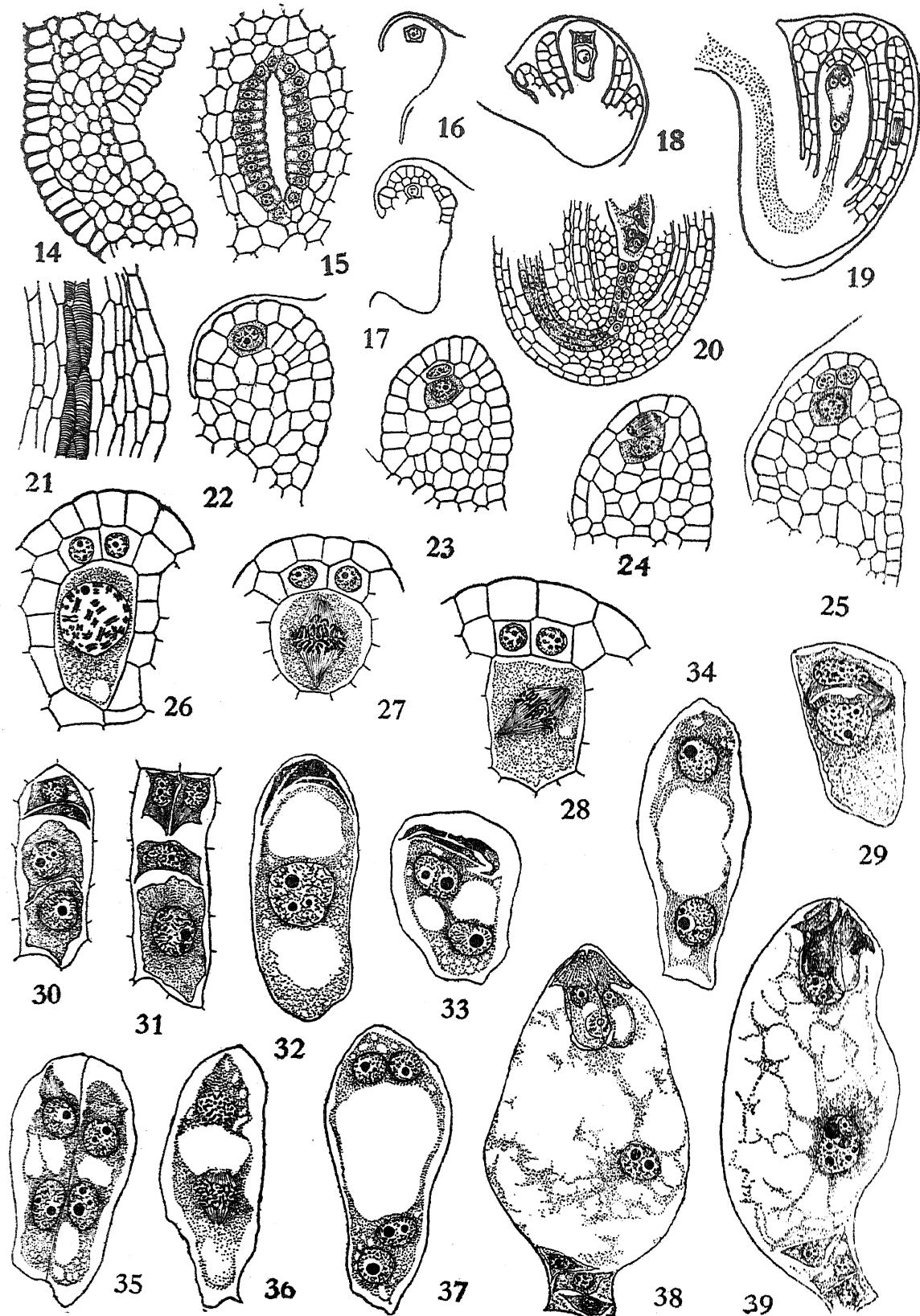
In the mature anther, the tapetum and middle layer completely disorganise; only the epidermis and the endothecium persist and the latter develops characteristic fibrous thickenings. At the line of dehiscence some of the epidermal cells enlarge conspicuously and constitute the stomium (Fig. 13).

OVARY

The ovary is superior, tricarpellary, syncarpous and trilocular with two rows of axillary anatropous bitegmic ovules in each locule. The wall of the ovary consists of an uniform group of five to seven layers of thin-walled parenchymatous cells. In the mature fruit the cells of the innermost layer of the ovary wall develop lignified thickenings on their inner and tangential walls (Fig. 14). Prominent septal nectaries are present (Fig. 15).

MEGASPORANGIUM AND FEMALE GAMETOPHYTE

Stages in the growth and curvature of the anatropous ovule are shown in Figs. 16-19. The micropyle is formed by the inner integument (Fig. 19) and it always grows earlier than the outer integument (Figs. 17, 18). The inner integument consists of two layers of cells except in the region of the micropyle where it is three to four layered. The outer integument consists of three to four layers of cells. The funicular strand ends at the base of the chalaza (Figs. 19, 20). To start with it consists of elongated cells (Fig. 20) which later show the characteristic thickenings of xylem (Fig. 21). At about the four-nucleate stage of the embryo sac, a biseriate row of nucellar cells at the chalaza connects the lower end of the embryo sac with the funicular strand. This row (Fig. 20) functions as a conducting strand for transporting food materials from the funicular strand to the antipodal end of the embryo sac.


The hypodernal archesporium (Fig. 22) divides periclinally producing the parietal cell and the megasporangium mother cell (Fig. 23). The parietal cell usually divides anticlinally (Fig. 24) producing two cells (Fig. 25). The megasporangium mother cell soon enlarges in size (Fig. 26) and divides (Figs. 27) to produce the dyad. Sometimes the spindle is obliquely oriented (Fig. 28). Of the two cells of the dyad the upper is frequently smaller than the lower (Fig. 29). Both the cells divide again forming the linear tetrad (Fig. 30). A T-shaped tetrad is also met with (Fig. 31). The upper three megasporangia degenerate and the chalazal megasporangium (Fig. 32) undergoes three more divisions to produce the mature embryo sac which is of the *Polygonum* type (Figs. 33, 34, 36, 37 and 38). Fig. 35 shows two binucleate embryo sacs lying side by side.

The mature embryo sac (Fig. 38) is elongated and broad in the middle. Its chalazal end is in the form of a pouch. The synergids are hooked and sometimes exhibit a filiform apparatus. The pear-shaped egg is situated between them. The two polar nuclei fuse in the centre of the embryo sac to form the secondary nucleus which soon moves down. The antipodal cells are organised as cells and they lie in the chalazal pouch-like portion of the embryo sac.

The entry of the pollen tube is porogamous and double fertilisation occurs (Fig. 39).

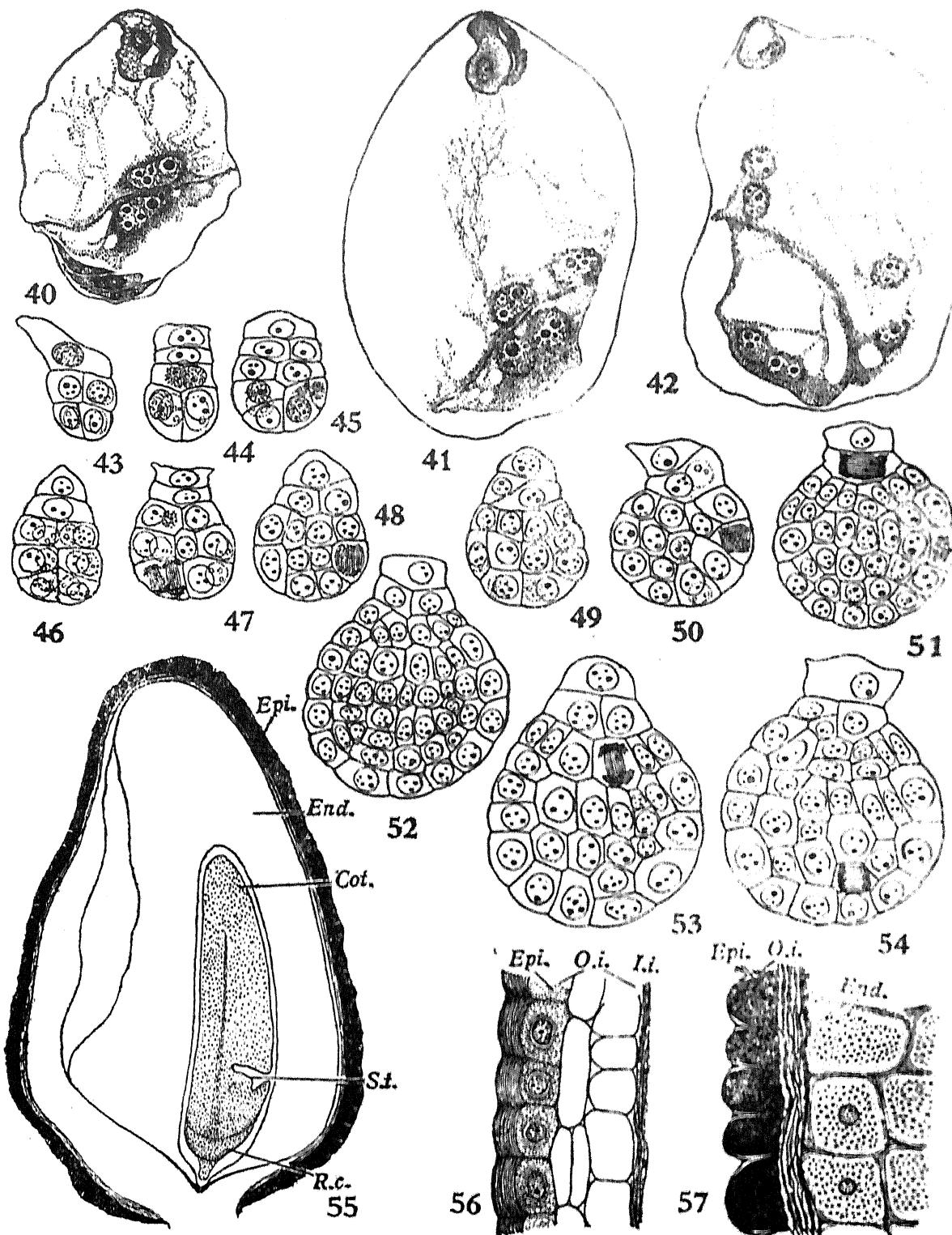
ENDOSPERM

The primary endosperm nucleus divides near the lower end of the embryo sac by a transverse or slightly oblique wall to form two chambers

FIGS. 14-39

Fig. 14. Portion of mature ovary wall, $\times 30$. Fig. 15. Section of septal nectary $\times 60$. Figs. 16-19. Stages in development of anatropous ovule, $\times 120$ $\times 129$; $\times 129$; $\times 129$. Fig. 20. Chalazal portion of ovule enlarged showing conducting strand, $\times 129$. Fig. 21. A portion of funiculus enlarged showing thickening in funicular strand, $\times 296$. Fig. 22. L.S. young nucellus showing primary archesporial cell, $\times 270$. Fig. 23. Primary parietal cell and megasporangium, $\times 270$. Fig. 24. Anticlinal division in primary parietal cell, $\times 270$. Fig. 25. Two parietal cells and megasporangium, $\times 270$. Fig. 26. Megasporangium in diakinesis, $\times 485$. Fig. 27. Megasporangium in metaphase, $\times 450$. Fig. 28. Oblique division in megasporangium, $\times 485$. Fig. 29. Formation of dyad, $\times 485$. Fig. 30. Linear tetrad, $\times 485$. Fig. 31. T-shaped tetrad, $\times 485$. Fig. 32. Uninucleate embryo sac, $\times 450$. Fig. 33. Formation of two-nucleate embryo sac, $\times 450$. Fig. 34. Two nucleate embryo sac, $\times 450$. Fig. 35. Two binucleate embryo sacs lying side by side, $\times 450$. Fig. 36. Formation of four-nucleate embryo sac, $\times 450$. Fig. 37. Four-nucleate embryo sac, $\times 450$. Fig. 38. Mature embryo sac showing synergids with filiform apparatus, egg, secondary nucleus and antipodal cells, $\times 679$. Fig. 39. Double fertilisation, $\times 301$.

of which the micropylar is larger than the chalazal (Fig. 40). The nuclei in both these chambers divide again (Fig. 41). At this stage the cytoplasm in the lower chamber is very dense and later it completely disorganises. Free nuclear divisions occur rapidly in the micropylar chamber (Fig. 42) and the nuclei become parietally placed by the formation of a central vacuole. After wall formation sets in, further growth is centripetal and a massive cellular endosperm is produced. A Helobial type of endosperm has also been reported in other species of *Chlorophytum* (Stenar, 1949). In the mature seed its cells become densely filled with starch grains (Fig. 57).


EMBRYO

Stages in the development of the embryo are shown in Figs. 43-55. The mature embryo is elongated and monocotyledonous, with a terminal cotyledon, lateral stem tip and the root covered by a root cap (Fig. 55).

SEED COAT

During the development of the seed, the inner integument gets completely crushed. The external wall of the epidermal layer of the outer integument gets gradually thickened (Fig. 56), while the inner layers become more or less compressed by the developing endosperm. Finally only the epidermal layer persists; its cells become filled with dense contents which take up a deep stain (Figs. 55, 57).

Our sincere thanks are due to Prof. P. Maheshwari for valuable suggestions and Prof. L. N. Rao for kind encouragement.

FIGS. 40-57.

Figs. 40-42. Early stages in development of endosperm according to *Heliotrop* type, $\times 291$; $\times 291$; $\times 215$. Figs. 43-54. Stages in development of embryo, $\times 291$. Fig. 55. L.S. mature seed, $\times 30$. *Cot.*, cotyledon; *End.*, endosperm; *Epi.*, epidermis; *R.c.*, root cap; *S.t.*, stem tip. Figs. 56, 57. Stages in development of seed coat, $\times 270$; $\times 450$. *End.*, endosperm; *Epi.*, epidermis; *I.i.*, inner integument; *O.i.*, outer integument

SUMMARY

The wall of the young anther is made up of four layers of cells. The tapetal cells are binucleate and are of the glandular type. A stomium is organised at the line of dehiscence. The microspores are arranged in an isobilateral manner. The mature pollen grain is two-celled.

Septal nectaries are present on the ovary wall. The ovules are anatropous and bitegmic, and the micropyle is formed by the inner integument. A conducting strand consisting of a biseriate row of cells is seen at the chalazal end of the ovule and this connects the base of the embryo sac with the funicular strand.

The development of the embryo sac follows the Polygonum type. Double fertilisation is observed.

The endosperm is Helobial and its cells are full of starch.

The mature embryo is monocotyledonous. Only epidermal layer of the outer integument persists in the mature seed.

LITERATURE CITED

Engler, A. and Prantl, K. .. *Die Natürlichen pflanzen familien*, 1888, 2 (4), 32-35, Leipzig.
Eunus, A. M. .. "Contributions to the embryology of the Liliaceae, 1," *J. Indian Bot. Soc.*, 1950, 29, 68-78.
Gamble, J. S. .. *The Flora of the Presidency of Madras*, 1925, London.
Maheshwari, P. .. "The Angiosperm Embryo Sac," *Bot. Rev.*, 1948, 16, 1-56.
Stenar, H. .. "Zur Kenntnis der Embryologie und der Raphiden-zellen bei *Bowiea volubilis* Harvey und anderen Liliaceen," *Acta Horti Bergiani*, 1949, 15, 45-63.