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Abstract. We construct a holomorphic Hermitian line bundle over the moduli space of
stable triples of the forndE,, E», ¢), whereE; andE, are holomorphic vector bundles
over a fixed compact Riemann surfa€eand¢ : E; —> E; is a holomorphic vector
bundle homomorphism. The curvature of the Chern connection of this holomorphic
Hermitian line bundle is computed. The curvature is shown to coincide with a constant
scalar multiple of the natural &ler form on the moduli space. The construction is
based on a result of Quillen on the determinant line bundle over the space of Dolbeault
operators on a fixed> Hermitian vector bundle over a compact Riemann surface.
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1. Introduction

Moduli spaces of stable vector bundles over a compact Riemann surface are now very
extensively studied objects. We recall that a fundamental work of Quillen [Q], implies that
the determinant line bundle over such a moduli space has a natural Hermitian metric, such
that the curvature of its Chern connection coincides with a constant scalar multiple of the
natural Kahler form on the moduli space.

In recent years there has been a lot of interest in vector bundles with some additional
structure, generally called augmented bundles. Examples of augmented bunkipaiese
(i.e., bundles with distinguished holomorphic sections), Higgs bundles, coherent systems
etc. Holomorphic triples are other such augmented objects which have been considered
recently, [G] and [BG]. Aholomorphic tripleconsists of a pair of holomorphic vector
bundlesE; andE2, together with a holomorphic vector bundle homomorphisnE, —

E1. Such triples form a fairly general class of augmented bundles, in the sense that Higgs
bundles and coherent systems can be thought of as specialized triples. See [BDGW] for a
general survey of augmented bundles over a Riemann surface.

There is a notion of stability for holomorphic triples, which arises from the study of
certain differential equations called theupled vortex equation§hese equations were
studied by Gana-Prada in [G], and they were related to the stability of triples by a work of
Bradlow and Garna-Prada in [BG]. The stability of a holomorphic triple &ndepends on
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aparametea. Bradlow and Garcia-Prac construt amodui spae N,, of a-stabk triples
over acompat Riemam surfae X, which turns out to be aquasi-projedve variety. They
also construt anaturd Kahle metric on thismodul spae N, . It shoul be remarkel that
althoudn Higgs bundles are specializé triples the stability of a Higgs bundle is not the
sane as that of the associaté triple, see ((BDGW], §1.5) (A similar remak is als valid
for coheremnsystems.)

In this pape, we construt a natura holomorphe line bundle £, equippel with aHer-
mitian structure over the above mentionel modul spae N, of triples We compue the
curvature of the Chemin connectia of thisholomorpht Hermitian line bundle It is proved
here tha this curvature coincides with a constamh scala multiple of the naturd Kahler
form on N,. In particula, this proves tha the Kahle class on N, is rational Our con-
struction is basel on a resut of Quillen [Q] on determinarg of 9-operatos over vector
bundles over a Riemam surfa@ and also on the existene of a specid metric on astable
triple establishd in [BG].

Here is a brief outline of the contens of the pape. In 82, we recal the bast notions
abou holomorphe triples, their stability, and their modul spacesin 83, we construt a
naturd holomorphe line bundle £ on the modul spae of stabek triples and show tha it
hasacertan universa propery for familiesof triples Sectio 4 deabkwith the construction
of a naturd Hermitian metric on the above line bundle £, and in this section we prove
the main resut of the pape (Theoren 4.1), which asses tha the first Chen form of the
Hermitian holomorphc line bundle £ is a constam scala multiple of the naturd Kahler
form on the modul space.

2. Triplesand their moduli

In this sectian we review the bast notiors abou holomorphc triples their stability and
their modul spacesWealsorecal the constructim of the Kahle structue onthee moduli
spacesTheproofsof thestatemerginthissection can befoundin[G], [BG] and[BDGW].

2a Stabektriples

Let X be acompat Riemam surfa@ of genisg. If E is avecta bundleover X, we denote
the rark of E by rark(E), its degree by deg(E), ard its slope by w(E); by definition,
1(E) = deg(E)/rark(E).

DEFINITION 2.1

A triple T = (E1, E2, ¢) consiss of two holomorphc vecta bundles E1 and E2 over
X, togethe with a homomorphim ¢ : E; —> E1 of holomorph¢ vecta bundles A
morphisn f : T’ — T fromatripleT’ = (E}, E5, ¢') toanothetripleT = (E1, E2, ¢)
is apair f = (f1, f2) consistilg of vecta bundle homomorphisra f1 : E; — Ej and
f2 1 E;, — E> sud tha the foll owing diagran commutes:

f1

Eill Eq

' ¢

E;

E>
f2
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If both f1 and f> are vecta bundle isomorphismswe say tha f = (f1, f2) isan iso-
morphisn of triples.

DEFINITION 2.2
AtripleT = (E1, E2, ¢) issadto bethe zeotriple, denotel by T = 0, if E1 = E2 = 0.
Wesey that T' = (E}, E,, ¢) isasubtripeof T = (E1, E2, ¢) if eah E/, i =1,2,is

asubbundie of E; sud tha ¢(E,) < Ej, with ¢’ being the restrictian of ¢ to E5. We
sa tha asub-tripe 7’ = (E}, E5, ¢') of T = (E1, E2, ¢) isprope unles 7’ = 0, or
T'"=T(i.e,E;=E1, E; = E;ard ¢’ = ¢).

DEFINITION 2.3

Let o be ared numbe, ard let T = (E1, E2, ¢) be atriple. We defire the «-degree and
the a-slope of T by

deg, (T) := deg(E1 @ E2) + « - rark(E»)
and

deg, (T)

wa(l) = o EL @ Ea)

respedtely. We say tha atriple T is «-stabk (respedtely, «-semistablgif
1a(T") < pa(T) (respedvely, pua(T') < 11a(T))
for every prope subtripe T’ of T.

Remak 2.4. We notethat if T = (E1, E», ¢) isa-stable and both £41 ard E» are non-
zerg then the homomorphim ¢ mug be non-zero.

2b Moduli spaces

DEFINITION 2.5

If T = (E1, E2, ¢) isatriple, we cal the sequence
(rark(E1), rark(Ez2), deg(E1), deg(E2))
asthetypeof T.

Fix (r1, r2, d1, do) € N? x Z2. Let « be aposiiverationd numbe. Define  to be equal
to 1y (T) for any triple T of type (r1, r2, d1, d2), i.€.,

. — d1+dy+ ar
rL+r2
andlett’ = r —a. Fixtwo C* compkx vecta bundles E1 ard E on X withrark(E;) = r;
arddeg(E;) =d;,wheri =1, 2. Fix Hermitian metrics 4; on E; (i =1, 2) ard aHermitian

metric u on X. Let o be the Kahle form of (X, u), and assumewithout any loss of
generaliy, tha the volume of X with respetto the metric u is1, i.e.,fX w=1.
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Let A; be the space of holomorphic structuresi)r(i = 1, 2), which is an affine space
for A%1(End(E;)). Consider the Cartesian product

A= A1 x Ap x C®°(Hom(E2, E1)).
ThenA is a complex affine space modelled after the direct sum
A% (End(Er)) @ A®H(End(E2)) ® C®°(Hom(Ez, E1)).
Let B be the subset ofl given by
B={(D1,D2,¢) € A | Dio¢=¢oDy}.

It is evidently a closed analytic subset.df For each pointD = (D1, D2, ¢) € B, we
have a holomorphic tripl€p = (E1p,, E2,p,, ) of type (r1, r2, d1, d2), whereE; p,
is the holomorphic vector bundle defined by the holomorphic struduren E;. Let 5
denote the subset #fconsisting of allD such that the associated holomorphic tripleis
a-stable. From the openness of the stability condition it follows Biais an open subset
of B.

LetG; andgl.c denote the unitary and complex gauge groups, respectively, 6f =
1,2), and letG = G1 x G» andG® = G x G5 . Then there is a holomorphic right action
of G© on A given by

(D1, D2, ¢) - (81, 82) = (gl_loDlogl,g{lo D3 o g2, g1_10¢0g2)-

This action leaves3$ invariant. Embed* in G using the homomorphism defined by
A+ (A-ldg,, A-ldg,). ThenC* actstrivially onA4, and the induced action Efc =g¢/c*

on 3; is free ([BG], Corollary 3.12). The quotiedt; = B§/§C is the moduli space of
a-stable triples of typéri, r2, d1, d2). Itis known thatV; has a natural structure of a quasi-
projective variety ([BG], Theorem 6.1). L&k, be the set of non-singular points#f, and
letC, := 7 ~1(N,), wherer : BS —> M is the canonical projection. TheW, is a non-
singular quasi-projective variety of dimensior-kod; — rid> + (r2 +r2 — r1r2) (g — 1),
provided it is non-empty, whergis the genus oX ([BG], Theorem 6.1). Moreover, any
triple D = (D1, D2, ¢) € B with ¢ either surjective or injective, actually lies insidg

([BG], Proposition 6.3). Itis easy to see tligtis a locally closedjc—invariant complex
analytic subset ofl. Indeed, it can be shown that the canonical projectiarC, —> N,

is a holomorphic principal bundle with structure gr@%, and consequentty, is alocally
closed complex submanifold of.

2c Kahler metric on the moduli space

Recall that we have fixed a Hermitian metkicin E; (i = 1, 2) and a Hermitian metrig
of unit volume on the Riemann surfage whose Kahler form is denoted by. Further,
we had defined

.= di1+dy+ arp
r1+r2

andt’ =7 —a.
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There is a natural Ehler metric on4 which can be described as follows. Recall tHat
is the Cartesian product

A= A1 x Ay x C®(Hom(E>, E1)).

The holomorphic tangent bundle &f; is canonically trivial withA%1(End(E;)) as the
fiber. Thus, to construct adhler metric on4;, it is enough to give a Hermitian inner
product on the vector spagé1(End(E;)). Since bothX andE; carry Hermitian metrics,
there is a natural choice for the inner product4hl(End(E;)), namely theL? inner
product. In other wordsd; becomes a Ehler manifold in a natural way. Similarly, the
L2 inner product orC>®(Hom(E>, E1)) makes it a Kahler manifold. Thus each factor of
A carries a natural Ehler metric. The product of theséKler metrics maked a Kahler
manifold.

Recall thaty = G1 x Go is the product of the unitary gauge groupsafandE2. Embed
U (1) in G via the homomorphism — (A -1dg,, A - 1dg,). ThenU (1) acts trivially onA,
and hence we get an induced actiogat= G/ U (1) on A. This action leaves invariant the
complex submanifold,, of .A. We thus get an induced action@fon C,. The restriction
of the Kahler metric on4 to C, make<, a Kahler manifold. The action @ on(, clearly
preserves the &hler metric. Hence it preserves the associated symplectic structdre on
In other words, the action @ on C, is a symplectic action. It is in fact a Hamiltonian
action; we will explicitly describe a moment map for it.

LetEnd(E;, h;) be the real vector bundle ov&rgiven by the skew-Hermitian endomor-
phisms of the Hermitian vector bundi. Then, the Lie algebrgof G is canonically iso-
morphic to the Lie subalgebra of the direct saiY (End(E1, h1)) P C°(End(E2, h2))
consisting of pairs of the forrafy, f2), wheref; € C*°(End(E;, h;)) (i = 1, 2), satisfy-
ing the condition

/x (tr(f)+tr(f2)w=0.

Let
A AP(End(E;, hi)) — AP~2(End(E;, h;))

denote the adjoint of the operator
L = e(w) : AP"2(End(E;, hi)) —> AP (End(E;, hi)),

which is the exterior multiplication by thedhler formw of (X, u). Define
d:Cy — 9

by

®(D1, D2, ¢) = (AR(Vp,) — V—1¢¢™ + 2n+/ =11, AR(Vp,)
+V=1¢p*p + 2n/—17).
Then® is a moment map for the action 6fonC, ([BG], §6.3). (The moment map is a

differentiable map frong,, to the dual vector spagg of g; here we are identifying with
its dual using the.2 inner product.) Thus the action GfonC, is Hamiltonian. It can be
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checkel tha the origin O € g is aregular value of ®, and hene ®~1(0) is aclosel C®
submanifotl of C,.. Moreover, the action of G on ®~1(0) is prope ard free. Finally, the
inclusion ®~1(0) — C, induces adiffeomorphism

®1(0)/G = Co /G = N,

Now, the standad procedue of symplecte reduction ([K], p. 273 Theoren 5.11) provides
aKahleg metric on ®-1(0)/G ard hene on N,. The Kahleg metric on N, obtaina this
way will be called the natural Kahler metric

3. Thedeterminant bundle

In this section we will defire the determinanline bundle for a family of triples and
construt a naturd Hermitian holomorphe line bundle over the modul spae of «-stable
triples We will continte with the notatian of the precediig section.

3a Families of triples
Fix aposiive rationd humbe «.

DEFINITION 3.1

Let S be acompkx manifold A family T of triples over X, parametrizd by S, consists
of two holomorpht vecta bundles E1 s ard E s over S x X, and ahomomorphis ¢ :
E» s —> E1 s of holomorpht vecta bundlesover S x X. We sgy tha two families Ts =
(Evs, Ez2;5, ¢s) and T{ = (E:/I.,S’ Eé’s, ¢5) are equivalen if there exist a holomorphic
line bundle L over S and isomorphisms f; : E; s®psL —> E;’S (i = 1,2), where
ps - S x X —> S isthe obvious projection sud that the diagram

f1
E1,5®p§L _ Ei,S

¢s x Id ’ ’(ﬁfg

E2,5®p§L _— Eé,S
f2

commutes.

PROPOSITICN 3.2

Let Ts = (E1s, E2.5, ¢s) and T, = (E’LS, Eé’s, @) be two families of a-stabk triples
on X parametrizel by acompkx manifold S. Supposthat for each point s in S, thetriples
T, and T, areisomorphi¢where T; (respectivelyT,) istherestriction of Ts (respectively
Tg)to X = {s} x X. Then Ty and T are equivalent.

Proof. Let F denotthe shed of homomorphismafrom T to T, i.e., for any open subset
U of S x X,thespaeof sectiorsI" (U, F) consissof pairsof theform f = (f1, f2), where
foreahi = 1,2, themap fi : Eisly — E;,S|U is avecta bundle homomorphism
satisfyirg the condition f1 o ¢s = ¢CS o f2. Then F is acohereh Ogx x-module and
HO(X,, F;) is aone-dimensionavecta spae for all s € S ([BG], Corollay 3.12).
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Therefore, by a standard result on direct imades; (ps).F is a locally free sheaf over
S of rank one, and the fibré, of the line bundleL at any points € S is canonically
isomorphic to Honi7y, T,), the space of global homomorphisms from the tripleover
X, to T]. From the definition of the line bundle, we have an obvious homomorphism
fi © Eis®psL —> E;s for eachi = 1,2. These homomorphismg are actually
isomorphisms, for i andT’ are twox-stable triples of the same typa, r», d1, d»), then
every non-zero homomorphism frdfnto 7' is in fact an isomorphism ([BG], Proposition
3.10). Clearly, the diagram

S
E15 Q@ piL Els
¢s @ Id ‘ ’¢_/g
Ers ®P§L E/z,s
f2

commutes. Therefords andT are equivalent. This completes the proof of the proposi-
tion.

3b Classifying map of a family

Let E7 and E» be fixed C° complex vector bundles ove¥, as in 82. Foi = 1, 2, let

& = A x E; = pyE; be the vector bundle oved x X, obtained by pulling bacl;

using the natural projectiopyx : A x X — X; the spaced was defined in §2b. Then

there is a natural holomorphic structure &n This holomorphic structure is determined

by the following two conditions: (a) for any poilt = (D1, D2, ¢) € A, the holomorphic

structure on the restriction éf to the submanifoldD} x X c A x X is given byD;; and

(b) for any pointx € X, the holomorphic structure on the restriction&fto the subset

Ax {x} ¢ Ax X coincides with the natural trivialization of this vector bundle a¥ex x.
Consider the familyI’ = (&1, &2, W) of C triples parametrized by, whereWw :

Eo —> &3 is the obviouC > homomorphism, i.e.,

W(D,e2) = (D, ¢p(e2)) for D =(D1,D2,¢) € A and ey € E>.

Although W is only C*° on A, it follows from the definition of3 that the restriction of
W to B is in fact holomorphic. Restric to 55, and denote this restriction also By It
is a holomorphic family ot:-stable holomorphic triples ovef parametrized bys;. We
wish to show that this famil{” is a locally universal family o8 x X.

Indeed, lel's = (E1.s5, E2.5, ¢s) be a family ofx-stable triples of typéri, r2, d1, d2),
parametrized by a complex manifafd ThenS can be covered by open subsétsuch
thatE; s|uxx is isomorphic, as &> vector bundle, tp} E; onU x X foreachi =1, 2,
wherepy : U x X — X is the canonical projection. For each poine U, the 8-
operator acting on the holomorphic bundlg, defines a holomorphic structuf®  in E;.
Further, the homomorphisg : E2 ; —> E1 5, Which is the restriction aps to the subset
X; = {s} x X C § x X, defines a homomorphisity, —> E1, which we again denote by
¢s itself. In other words, for each poisnte U, we get a poinDs = (D15, D2s, ¢5) € A.
The fact that the given homomorphispa : E2> s — E15 is holomorphic, ensures that
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D; € Bwherever s € U. Since eat triple 7 is x-stable wein fact get D, € B for all
s € U. Clearly theresultig map fy : U — B is aholomorphe map Moreover, for
eahs € U,wehave Ty = ((fu x |d)*(7)),. Thus by Propositio 3.2, the two families
of triples namey (fy x 1d)*(7) ard Ts|y, are equivalent This shows that the family 7
on BB; x X hasthelocd universa propery.

Inthe setp of the above paragraphitisclea that if U’ isanothe open subséof S such
that E; 5|y xx isC* isomorphtto p} E; (i = 1,2)onU’' x X,wherepy : U'x X — X
is the obvious projection then the correspondig map fy» : U’ — B hasthe property
thaw o fy =m o fyronU NU',wherr : B, — M isthe canonic&projection We
thus get awell-defined holomorphe map s : S —> M sud that therestrictian of 45 to
any opensed U C S, asabove, equabn o fy. If weview M] asthe spae of isomorphism
classs of «-stabk triples of type (r1, r2, d1, d2), then the image of s € S unde hg is
precisey the isomorphisn class of the triple 7, = Ts|x,. Wecal hs : § — M the
classifyirg map for the family T.

3c Determinan line bundie for a family

To beginwith, let usrecal thedeterminatline bundlefor afamily of usud vecta bundles.
Fix apoint xg on the Riemam surfa@ X . Let S be aconnectd compkx manifold, and let
E s be afamily of vecta bundlesover X parametrizdby S, i.e., Es is aholomorphe¢ vector
bundleover S x X. Let Det(Eg) — S bethe determinanhof the cohomolog of Eg, i.e.,

Det(Es) = det ((ps)«Es) ' ® det (R (ps), Es),

wher ps : § x X — S is the projection onto the first facta, and det denots the
determinanline bundle for acoherenanalytc sheaf the constructio of det can be found
in Chapte V, 86 of [K]. We will use the notation L~ for the dud of aline bundle L.
The fiber of the holomorphc line bundle Det(Es) over any point s € S is canonically
isomorpht to

top top
NEH X, )y © N\ HY (X, E).

Definealine bundle ® (Es) over S by
© (Es) = Det(Eg)" @ det(E*0)X(Es)

where E*0 isthe restrictian of Eg totheslice $*° = § x {xo} C S x X, r = rark(Ey),
and x (E;) = dim HO(X,, E,) — dim H1(X,, E,) isthe Euler characterist of the vector
bunde E;, — X forsonmes € S. Sinae S isconnectegthenumbe x (E;) isindependent
of s € S. Wecal ®© (Eg) thedeterminanline bundle for the family of vecta bundles E.

DEFINITION 3.3

Let Ts = (E1s, E2 5, ¢5) beaholomorphe family of tripleson X parametrizd by S. We
defire the determinamline bundle D(T) of T to be

D(Ts) = O (E15)” ®O (E25)"",

wherr; =rark(E; s),i =1, 2.
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Remark3.4. The projection formula implies that
Det(Es@psL) = Det(Es)@L * %),

where L is any line bundle ovef and pg is the natural projection fron§ x X to S.

From this it follows immediately that iEs —> S x X is a family of vector bundles, then

® (ES ® p§L) is canonically isomorphic t® (E) for every holomorphic line bundig
overS. Moreover, using the standard properties of the determinant of the cohomology, we
conclude that iff : S — S is a holomorphic map, the® (( f x Id)*Ey) is isomorphic

to f*® (Es). From these facts it follows that the same properties continue to hold for the
determinant of the triples. In other words Tif andT are equivalent families of triples,
thenD(Ts) = D(TY). Similarly, if f : " — S is a morphism, the®((f x 1d)*Ty) is
isomorphic tof*D(Ty).

3d Determinant bundle on the moduli space

Let7T = (&1, &2, W) be the family of canonical triples of x X, as defined in 83b. Let
D = D(T) denote the determinant line bundle of this family as in Definition 3.3. Then
is a holomorphic line bundle o. Recall that, by definition,

D=0 ()20 ()",
where
O (&) =Det(&)"® det(Ei’xO)X(Ei).

The action of the complex gauge gro@lﬁ onB lifts to a right action on D€t;) as follows.
If D = (D1, D2, ¢) is apointiniz, then the fibre of D&E;) at D is canonically isomorphic
to the one-dimensional complex vector space

top top

Vio = NKp)® /\(Ci.p).

wherek; p is the kernel and’; p the cokernel of the Dolbeault operatoy : AYE) —
A%L(E)). If g € GF, then the induced ™ (X)-module isomorphisng : A%(E;) —
A%E) carriesk; p.; onto K; p. Therefore, we get a dual isomorphigh : K;fD —

Kl.*D_g. This, in turn, induces an isomorphism

top top top
Ne* 1 N\NKip) — N &Kipy)

of the top exterior powers. Similarly, the isomorphigm! : A%Y(E;)) — A%L(E))
maps the subspace (B;) onto Im(D; - g), and hence it induces an isomorphigmt :
Cip — Cip.yg. Let

top top top

NAe™: A\Cip) — A(Ciny)

be the isomorphism of top exterior powers defined by the isomorpfiisiNow, the right
action

Det(&) x G& —> Det(&)
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of G© on Det(&;) is definel by

top top
(@®v,g)r— (/\ g*) @& (/\ g_l) W),

wher o (respedtely, v) is avecta in the one-dimensiorlacompkx vecta space
NP} ) (respedvely, \'P(C; p)) for some D e B. Similarly there is anaturd right
action

Ei,xo X glC — Ei,xo
of the grouwp gic on the vecta spae E; ., definel by
(e, 8) —> g_l(e).

Consequenyl weget aninduced action of gl.C ondet(E; xy). Therefore}giC acsontheline
bunde® (&;) inanaturdfashion Unde thisaction thesubgrop C* C g,.C acsonDet(&;)
viathe charactex — %9, and it acs on det(E; ,,) viathe characte — A~"i. As a

result theaction of C* on © (&;) istrivial. Wethus get an induced action of @C = gic/c*
on @ (&), ard hene an action of Ef x Cf on D. Now the canonick homomorphism
g¢ — Glc X ?20 givesan action of G on D. In other words D isaG -linearize line
bundle over 5.

Restrid the line bundle D to 5. Since the canonica projectin = : B, — M is

aholomorphc principd bundle with structue group?c, it follows immediatey that the

linebundle D descendto aholomorphe line bundle £ over M3, i.e., therisgiven a?c—
equvariart isomorphisn of 7*L£ with D. We have thus constructd anaturd line bundle
L over M} tha we are seeking.

DEFINITION 3.5

We will cal the above holomorphe line bundle £, on MZ, the determinan line bundle
over M3.

The determinanline bundle on M has the foll owing universa propery.

PROPOSITION 3.6

If Ts = (E1s, E2.5, ¢s) is afamily of «-stable pairs of type (r1, 2, d1, d2) parametrized
by a compkx manifold S, then there is a canonica isomorphisn D(Ts) = L, whee
hs : S — M isthe classifyirg map for the family 75, and £ is the determinat bundle
ove M;.

Prodf. Let U be an open cover of S sudh tha if U is amembe of the collection U4, then
the restrictin E; s|yxx of E; s to U x X isisomorphic as a C* vecta bundle to the
restrictian of p} E; to the open subseé U x X, foreahi = 1, 2. We have sea in 83b that
for every U € U, ther exists aholomorphe map fy : U — BS sud tha the restricted
family Ts|y isequvalertto (fy x 1d)*7 onU x X, where 7 istheabovefamily of triples
on A x X. Themap fy hasthe propery tha hs|y = 7 o fy, wherer : BS — M,
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as before, is the canonical projection. Thus on each mefilil/, we have a chain of
isomorphisms

D(Ts) = D((fy x 1d)*T) = fED(T) = fi(n*L) = Wil

which is obtained using Remark 3.4 and the fact thé the descent oP(7) from B5Z.
Therefore, for each membér € U, we get a canonical isomorphispy, on U from
D(Ts) to hcL. The canonical nature gfy ensures that it/ andU’ are two members of
U, thenyy andyy: have to coincide on the overldp N U’. Consequently, the various
local isomorphismg/y glue together to give a canonical global isomorphismDgéf’s)
with 2L overS. This completes the proof of the proposition. O

The above proposition shows that to establish a local propef®(D§) for an arbitrary
family of triples Ty, it is enough to prove fot.

4. Metric on the determinant bundle

In this section, we will construct a natural Hermitian metric on the determinant line bun-
dle £ over the moduli spac#/,. The varietyN,, as before, is the smooth locus of the
quasi-projective variety/;. SinceL is a holomorphic line bundle, this Hermitian metric
determines a canonical connection@®rwhich is usually known as the Chern connection.
We will also compute the curvature of this canonical connection.

4a Quillen metrics

Recall that we have a natural family of tripl€s = (&1, &2, V) over A x X. We had

defined the hoIomorphiEC-Iine bundleD to be the determinant bundle for this family
(see Definition 3.3), i.e.,

D=0 (£)?2®0 (&),
where
O (&) = Det(&;)  ®c det(E; o)X EV .

HereE; ., is the fibre ofE; at the pointyg € X, andr; = rank(E;).

Foreachi = 1, 2, the determinantline bundle Dét) —> A carries a natural Hermitian
metric, called theQuillen metri¢ which we recall briefly. A detailed description can be
found [Q]. The fibre of Ddf;) at any pointD = (D1, D2, ¢) is canonically isomorphic
to the one-dimensional complex vector space

top top

Vio = NK;p)® N\(Cip),

where K; p (respectively,C; p), as before, is the kernel (respectively, cokernel) of the
Dolbeault operatoD; : A°(E;) — A%L(E;). Now the Hermitian metrics oX andE;
induce anL? inner product orK; p andC; p, and hence an inner product &hp. We
denote thisl.2 inner product onv; p by A; p. On the other hand, the Laplacidj D; :
A%(E;) — AY(E;) defines a zeta function p(s) = traca D} D;)~*. The Quillen inner
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productp; p onV; p is defined to bey; p = exp(—gl/’D(O)) - i p- It follows immediately
from the results of [Q] that the inner prodygt, varies smoothly a® varies inA, and
hence defines &°° Hermitian metricp; in Det(&;). Since Dets;) is a holomorphic line
bundle, the metrip; determines a unique connection on @gt compatible with both the
holomorphic and metric structures. La{Det(&;), p;) denote the first Chern form of this
canonical connection. Then, the main result of [Q] implies that

c1(Det&)), pi) = pi Q2 , (4a.1)

where for eachh = 1, 2, p; : A —> A; is the projection defined b¢D1, D2, ¢) — D;,
and(; is the Kahler form onA;.

The Hermitian metric inE; defines a flat Hermitian metric in the trivial line bundle
det(E; «,)®cO 4. This flat metric in detE; ,,)@c O 4, together with the Quillen metrig;
in Det(&;) induces a Hermitian metrig; in © (&;). It follows immediately from eq. (4a.1)
that

c1(® (&), 0) =ri - piQu, (4a.2)

wherer; = rank(E;).

4b A property of the inner product

Let V be a complex Hilbert space with inner prodyet-) : V x V. — C, and let
N : V — R denote the norm square function— (x, x). LetQ € A-1(V) denote the
Kahler form of V with respect to the Khler metric defined by the inner produgt -).
Then one observes that

Q =+/—190N .

Let us check this fact with a simple computation.

Indeed, a differential fornm on V is zero if and only if it vanishes on every finite-
dimensional subspace of. For, if  is a p-form on V which vanishes on every finite-
dimensional subspace uf then for every point € V and foralltangentvectors, . .. , v,
invV =T,V, we have

wy(v1,...,Vp) = (i*wa))x(vls ceUp),
whereW is the subspace of generated byix, v, ... , v,}, andiy : W — Vistheinclu-
sion map. The hypothesis animplies thatiy, @ = w|w = 0, henceo, (v1, ... ,v,) = 0.

Thereforew is the zero form orv.

In view of the above fact, we can assume without loss of generalityVthiatfinite-
dimensional. Lefes, ... , ¢,} be an orthonormal basis f, and{z1, ... , z,} be the dual
basis ofv*. ThenQ = /=137, dz; AdZ;, whereasv = Y_"_, z;Z;. Therefore, we have

V—199N = \/—1Zdzi Adz =,

and this proves the assertion made at the beginning of this subsection.
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4c Metriconl

Recall thatD is the holomorphic line bundle ovet defined by
D=0 (£)?30 (&) .

In §4a, we had constructed a natural meffiin © (&;). Let ||-|| denote the.2 norm on
C®(Hom(E>, E1)), and define &> functionN : A — R by

N(D1, D2, ¢) i= ], (D1, D2, ¢) € A.
Now define a Hermitian metri€ in D by
8 = exp(—2rriraN) - 9{2 ® 9;1 , (4c.1)

whered; is the Hermitian metric ir® (&;) constructed in 84a.

Recallthatin subsection 2b, we defined the suB$et .4 consisting of all holomorphic
structures giving a stable triple. Now restrict the Hermitian holomorphic line bufijl&)
to the locally closed complex submanifol§ of .A. From §2c, we have a commutative
diagram

i
»-1(0) — Cu

no’ ’n,

Ny —> Ny

where the top arrow is the inclusion mapf ®~1(0) in B, = the canonical projection
from B85 ontoN,,, andrng the restriction ofr to ®~1(0). Hered : B — gisthe moment
map for the action off = (G1 x G»)/U (1), whereg; is the unitary gauge group df;,
i=1,2.Themaprisa principa@c—bundle, andr is a principaiG-bundle.

It is clear that the metrié in D is preserved under the action of the graiiBince the
determinant bundl€ — N, is the descent db from 53, theG-invariance of the metric
8 in D implies that it descends to@> Hermitian metrick in £, i.e., there exists a unique
metricA in £ such thatrja = i*5. We call thenatural metricin L.

Given that the line bundI® has a natural holomorphic structure, the Hermitian métric
on it defines a canonical (Chern) connectiop onD. It is straight-forward to check that
this connectiorVp descends frond—1(0) to a connectioV, on L, i.e.,myVe =i*Vp.

A similar argument can be found in Theorem 3.2 of [GS]. We claim that this descended
connectionV, on L is the canonical connection of the holomorphic line bundieith
respect to the Hermitian metricon £. To see this, we need to check that is

(a) Hermitian, i.e., it is compatible with the Hermitian metxion £; and
(b) holomorphic, i.e., its connection form with respect to any local holomorphic frame
of L is of bidegreg, 0).

We get (a) easily from the fact th&D is Hermitian with respect to the metrécon D.
To check (b), lets be a holomorphic frame of on an open subséf of N, i.e.,s is a
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nowhere zero holomorphic section 6fon U. Let w be the connection form o¥ » with
respect to the frame We are required to show thatis of type(1, 0), i.e.,

wp(Jpv) = V=1 w,(v) (4c.2)

forall p € U andv € T,N,, where T,N, is the real tangent space 1¢, at p, and
Jp : TyNy — T, N, is the almost complex structure on,¥,. Let D e & 1(0) be a
point lying overp, i.e.,mo(D) = p. One easily checks that

Tpd 20 =Tp(G-D)®V,

whereg - D is theG-orbit throughD, andV is the orthogonal complement of;1(G - D)

with respect to the Riemannian metric ®11(0). Now, letr = 7*s be the?c-invariant
holomorphic frame ofD on = ~1(U) obtained by pulling back via 7. Let & be the
connection form oV p with respect to the holomorphic framef D. Then, the fact that
V. is the descent o¥p from ®~1(0) immediately gives thatrjow = i*®. From this
observation, and the fact thag is a submersion, to establish the relation (4c.2), it suffices
to check that the subspaweof Tp ®~1(0) is invariant under the almost complex structure
Jp : TpCy —> TpC,. Let us verify this. Takev € V andé € g. We need to check that

(Jpw, X(&)p) =0,

whereX (&) is the fundamental vector field afy, defined by the Lie algebra element
But, from the definitions of the symplectic structure on @ahker manifold and moment
map, we have

(Jpw, X(&)p) = Qa(w, X(&)p) =d(®*)p =0,

where Q2 4 is the Kahler form onA, and®¢ : C, — R is the function defined by
®f(x) = B(®(x),£). HereB : g* x § — R is the canonical duality pairing. This
proves the assertion th&t: is the canonical connection on the holomorphic Hermitian
line bundleL.

We are now ready to compute the curvature of the determinant line bdretigipped
with the natural Hermitian metrik.

Theorem 4.1. The first Chern formr1(L, A) of the determinant line bundl€ on the
moduli spaceV,, with respect to the natural Hermitian metricin £ is given by

ci(L,2) =rir2- Qn,
whereQy, is the natural Kahler form ofN,.

Proof. Sinceng : ®1(0) — N, is a submersion, to prove the theorem it suffices to
verify that

75 (ci(L, A) = rirp - 152N, -

But, as we have observed above, the canonical connéegtiaa the descent 0¥ p via o,
hence we get

myer(L, &) =i*e1(D, 5) .
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From the defining property of symplectic reduction, we get
QN =i*Qu,

where 4 is the Kahler form onA. Therefore to prove the theorem, it is enough to show
that

c1(D,8) =rir2- Qn, ONA.

So lets = 5;? ® s5' be a local holomorphic section &f on an open se/ C A, wheres;
is a holomorphic section @ (&;) onU (i = 1, 2); then we have

-1 _
D,8) = — 93 logs(s,
(D 8) = 5 —=0010g5(s.5)

onU. On the other hand, from eq. (4c.1), we immediately get

logé(s,s) =
a1 0P = oS

[ — 27r1r2N + r2l0g61(s1, 51)

+ r1log6z(s2, s2)] .

Therefore, using a combination of the observation in 84b that the norm square is a potential
for the Kahler form, and eq. (4a.2), we obtain

c1(D,8) = —r1r2 - V—=100N +r2 - c1(© (1), 01) +r1 - c1(O (£2) , 62)

=r1r2- p3Q3+rory- piQ1+rir2 - p5Q2,

where Q;, i = 1,2, is the Kahler form onA;, the form Q3 is the Kahler form on
C*®(Hom(E>2, E1)), andp;, j = 1, 2, 3, are the projections from to each of its three
factors. On the other hand| carries the product &hler structure coming froms, A2
andC*®(Hom(E2, E1)), hence the hler form onA is precisely

Qu = piQu+ p53Q0 + p3Q3.

Thus the Chern form1(D, §) coincides with2 4 on U. This completes the proof of the
theorem.

4d Concluding remarks

Let N be a moduli space of stable vector bundles over a compact connected hyperbolic
Riemann surfac& . For any positive integer, consider the space of holomorphic sections

of the kth tensor power of the determinant line bundle akérAs the Riemann surface
moves in a family, these vector spaces fit together to give a holomorphic vector bundle over
the Teichniiller space. Hitchin proved that this vector bundle has a natural projectively flat
connection [H]. One of the reasons for the existence of this connection is that the curvature
of the Chern connection on the determinant line bundle is a constant scalar multiple of
the natural Khler form onN. Therefore, in view of Theorem 4.1, it would be interesting

to know whether the construction of Hitchin can be generalized to get a projectively flat
connection on the vector bundle constructed using the holomorphic sections of a tensor
power of the line bundl&€ over N,.
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Triples can defined in the more general context of parabolic vector bundpesaholic
triple consisting of(E2,, E1., ¢x) WhereE1, and Eo, are parabolic vector bundles, and
¢« : E2, —> E1, is @ homomorphism preserving the parabolic structures. The notion of
stability can be generalized analogously. Using the method of [BR], Theorem 4.1 can be
extended to the more general situation of parabolic stable triples with parabolic structure
on an-pointed Riemann surface. However, in view of [BR], such a generalization is now
quite straight-forward, and we leave the details.
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