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Abstract. We construct a holomorphic Hermitian line bundle over the moduli space of
stable triples of the form(E1, E2, φ), whereE1 andE2 are holomorphic vector bundles
over a fixed compact Riemann surfaceX, andφ : E2 −→ E1 is a holomorphic vector
bundle homomorphism. The curvature of the Chern connection of this holomorphic
Hermitian line bundle is computed. The curvature is shown to coincide with a constant
scalar multiple of the natural K̈ahler form on the moduli space. The construction is
based on a result of Quillen on the determinant line bundle over the space of Dolbeault
operators on a fixedC∞ Hermitian vector bundle over a compact Riemann surface.
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1. Introduction

Moduli spaces of stable vector bundles over a compact Riemann surface are now very
extensively studied objects. We recall that a fundamental work of Quillen [Q], implies that
the determinant line bundle over such a moduli space has a natural Hermitian metric, such
that the curvature of its Chern connection coincides with a constant scalar multiple of the
natural K̈ahler form on the moduli space.

In recent years there has been a lot of interest in vector bundles with some additional
structure, generally called augmented bundles. Examples of augmented bundles arek-pairs
(i.e., bundles withk distinguished holomorphic sections), Higgs bundles, coherent systems
etc. Holomorphic triples are other such augmented objects which have been considered
recently, [G] and [BG]. Aholomorphic tripleconsists of a pair of holomorphic vector
bundlesE1 andE2, together with a holomorphic vector bundle homomorphismφ : E2 −→
E1. Such triples form a fairly general class of augmented bundles, in the sense that Higgs
bundles and coherent systems can be thought of as specialized triples. See [BDGW] for a
general survey of augmented bundles over a Riemann surface.

There is a notion of stability for holomorphic triples, which arises from the study of
certain differential equations called thecoupled vortex equations. These equations were
studied by Garćıa-Prada in [G], and they were related to the stability of triples by a work of
Bradlow and Garćıa-Prada in [BG]. The stability of a holomorphic triple onX depends on
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aparameter α. Bradlow and Garćıa-Pradaconstruct amoduli spaceNα of α-stable triples
over acompact Riemann surfaceX, which turnsout to beaquasi-projectivevariety. They
also construct anatural Kähler metric on thismoduli spaceNα. It should beremarked that
although Higgs bundles are specialized triples, the stability of a Higgs bundle is not the
same as that of the associated triple, see ([BDGW], §1.5). (A similar remark is also valid
for coherent systems.)

In this paper, we construct a natural holomorphic line bundle L, equipped with aHer-
mitian structure, over the above mentioned moduli space Nα of triples. We compute the
curvatureof theChern connection of thisholomorphic Hermitian linebundle. It isproved
here that this curvature coincides with a constant scalar multiple of the natural Kähler
form on Nα. In particular, this proves that the Kähler class on Nα is rational. Our con-
struction is based on a result of Quillen [Q] on determinants of ∂-operators over vector
bundles over a Riemann surface and also on the existence of a special metric on astable
tripleestablished in [BG].

Here is a brief outline of the contents of the paper. In §2, we recall the basic notions
about holomorphic triples, their stability, and their moduli spaces. In §3, we construct a
natural holomorphic line bundle L on the moduli space of stable triples, and show that it
hasacertainuniversal property for familiesof triples. Section4dealswith theconstruction
of a natural Hermitian metric on the above line bundle L, and in this section we prove
the main result of the paper (Theorem 4.1), which asserts that the first Chern form of the
Hermitian holomorphic line bundle L is a constant scalar multiple of the natural Kähler
form on themoduli space.

2. Triples and their moduli

In this section we review the basic notions about holomorphic triples, their stability and
their moduli spaces. Wealso recall theconstructionof theKähler structureon thesemoduli
spaces.Theproofsof thestatementsinthissectioncanbefoundin[G], [BG] and[BDGW].

2a Stable triples

Let X be acompact Riemann surfaceof genusg. If E is avector bundleover X, wedenote
the rank of E by rank(E), its degree by deg(E), and its slope by µ(E); by definition,
µ(E) = deg(E)/rank(E).

DEFINITION 2.1

A triple T = (E1, E2, φ) consists of two holomorphic vector bundles E1 and E2 over
X, together with a homomorphism φ : E2 −→ E1 of holomorphic vector bundles. A
morphismf : T ′ −→ T from atripleT ′ = (E′

1, E
′
2, φ

′) toanother tripleT = (E1, E2, φ)

is apair f = (f1, f2) consisting of vector bundle homomorphisms f1 : E′
1 −→ E1 and

f2 : E′
2 −→ E2 such that the following diagram commutes:

E′
2 E2

E′
1 E1

φ′ φ

f1

f2
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If both f1 and f2 are vector bundle isomorphisms, we say that f =(f1, f2) is an iso-
morphism of triples.

DEFINITION 2.2

A tripleT = (E1, E2, φ) issaid to be thezero triple, denoted by T = 0, if E1 = E2 = 0.
We say that T ′ = (E′

1, E
′
2, φ

′) is a subtriple of T = (E1, E2, φ) if each E′
i , i = 1, 2, is

a sub-bundle of Ei such that φ(E′
2) ⊆ E′

1, with φ′ being the restriction of φ to E′
2. We

say that a sub-triple T ′ = (E′
1, E

′
2, φ

′) of T = (E1, E2, φ) is proper unless T ′ = 0, or
T ′ = T (i.e., E′

1 = E1, E′
2 = E2 and φ′ = φ).

DEFINITION 2.3

Let α be areal number, and let T = (E1, E2, φ) be atriple. We define the α-degree and
theα-slopeof T by

degα(T ) := deg(E1 ⊕ E2) + α · rank(E2)

and

µα(T ) := degα(T )

rank(E1 ⊕ E2)

respectively. Wesay that a tripleT isα-stable (respectively, α-semistable) if

µα(T ′) < µα(T ) (respectively, µα(T ′) ≤ µα(T ))

for every proper subtripleT ′ of T .

Remark 2.4. We note that if T = (E1, E2, φ) is α-stable, and both E1 and E2 are non-
zero, then thehomomorphism φ must benon-zero.

2b Moduli spaces

DEFINITION 2.5

If T = (E1, E2, φ) is a triple, wecall thesequence

(rank(E1), rank(E2), deg(E1), deg(E2))

as the typeof T .

Fix (r1, r2, d1, d2) ∈ N
2 ×Z

2. Let α be apositiverational number. Defineτ to beequal
to µα(T ) for any tripleT of type (r1, r2, d1, d2), i.e.,

τ = d1 + d2 + αr2

r1 + r2
,

andlet τ ′ = τ−α.Fix twoC∞ complex vector bundlesE1 andE2 onX withrank(Ei) = ri
anddeg(Ei)=di , wherei =1, 2. Fix Hermitianmetricshi onEi (i =1, 2) and aHermitian
metric µ on X. Let ω be the Kähler form of (X, µ), and assume, without any loss of
generality, that thevolumeof X with respect to themetric µ is 1, i.e.,

∫
X

ω = 1.
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Let Ai be the space of holomorphic structures onEi (i = 1, 2), which is an affine space
for A0,1(End(Ei)). Consider the Cartesian product

A = A1 × A2 × C∞(Hom(E2, E1)).

ThenA is a complex affine space modelled after the direct sum

A0,1(End(E1)) ⊕ A0,1(End(E2)) ⊕ C∞(Hom(E2, E1)).

Let B be the subset ofA given by

B = {(D1, D2, φ) ∈ A | D1 ◦ φ = φ ◦ D2} .

It is evidently a closed analytic subset ofA. For each pointD = (D1, D2, φ) ∈ B, we
have a holomorphic tripleTD = (E1,D1, E2,D2, φ) of type (r1, r2, d1, d2), whereEi,Di

is the holomorphic vector bundle defined by the holomorphic structureDi onEi . Let Bs
α

denote the subset ofB consisting of allD such that the associated holomorphic tripleTD is
α-stable. From the openness of the stability condition it follows thatBs

α is an open subset
of B.

Let Gi andGC
i denote the unitary and complex gauge groups, respectively, ofEi (i =

1, 2), and letG = G1 × G2 andGC = GC
1 × GC

2 . Then there is a holomorphic right action
of GC onA given by

(D1, D2, φ) · (g1, g2) = (g−1
1 ◦ D1 ◦ g1, g

−1
2 ◦ D2 ◦ g2, g

−1
1 ◦ φ ◦ g2).

This action leavesBs
α invariant. EmbedC∗ in GC using the homomorphism defined by

λ 7→ (λ·IdE1, λ·IdE2). ThenC
∗ acts trivially onA, and the induced action ofG C = GC/C

∗

on Bs
α is free ([BG], Corollary 3.12). The quotientMs

α = Bs
α/G C

is the moduli space of
α-stable triples of type(r1, r2, d1, d2). It is known thatMs

α has a natural structure of a quasi-
projective variety ([BG], Theorem 6.1). LetNα be the set of non-singular points ofMs

α, and
let Cα := π−1(Nα), whereπ : Bs

α −→ Ms
α is the canonical projection. ThenNα is a non-

singular quasi-projective variety of dimension 1+ r2d1 − r1d2 + (r2
1 + r2

2 − r1r2)(g − 1),
provided it is non-empty, whereg is the genus ofX ([BG], Theorem 6.1). Moreover, any
triple D = (D1, D2, φ) ∈ Bs

α with φ either surjective or injective, actually lies insideCα

([BG], Proposition 6.3). It is easy to see thatCα is a locally closedG C
-invariant complex

analytic subset ofA. Indeed, it can be shown that the canonical projectionπ : Cα −→ Nα

is a holomorphic principal bundle with structure groupG C
, and consequentlyCα is a locally

closed complex submanifold ofA.

2c Kähler metric on the moduli space

Recall that we have fixed a Hermitian metrichi in Ei (i = 1, 2) and a Hermitian metricµ
of unit volume on the Riemann surfaceX, whose K̈ahler form is denoted byω. Further,
we had defined

τ = d1 + d2 + αr2

r1 + r2

andτ ′ = τ − α.
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There is a natural K̈ahler metric onA which can be described as follows. Recall thatA
is the Cartesian product

A = A1 × A2 × C∞(Hom(E2, E1)).

The holomorphic tangent bundle ofAi is canonically trivial withA0,1(End(Ei)) as the
fiber. Thus, to construct a K̈ahler metric onAi , it is enough to give a Hermitian inner
product on the vector spaceA0,1(End(Ei)). Since bothX andEi carry Hermitian metrics,
there is a natural choice for the inner product onA0,1(End(Ei)), namely theL2 inner
product. In other words,Ai becomes a K̈ahler manifold in a natural way. Similarly, the
L2 inner product onC∞(Hom(E2, E1)) makes it a K̈ahler manifold. Thus each factor of
A carries a natural K̈ahler metric. The product of these Kähler metrics makesA a Kähler
manifold.

Recall thatG = G1×G2 is the product of the unitary gauge groups ofE1 andE2. Embed
U(1) in G via the homomorphismλ 7→ (λ · IdE1, λ · IdE2). ThenU(1) acts trivially onA,
and hence we get an induced action ofG := G/U(1) onA. This action leaves invariant the
complex submanifoldCα of A. We thus get an induced action ofG onCα. The restriction
of the Kähler metric onA toCα makesCα a Kähler manifold. The action ofG onCα clearly
preserves the K̈ahler metric. Hence it preserves the associated symplectic structure onCα.
In other words, the action ofG on Cα is a symplectic action. It is in fact a Hamiltonian
action; we will explicitly describe a moment map for it.

LetEnd(Ei, hi) be the real vector bundle overX given by the skew-Hermitian endomor-
phisms of the Hermitian vector bundleEi . Then, the Lie algebrag of G is canonically iso-
morphic to the Lie subalgebra of the direct sumC∞(End(E1, h1))

⊕
C∞(End(E2, h2))

consisting of pairs of the form(f1, f2), wherefi ∈ C∞(End(Ei, hi)) (i = 1, 2), satisfy-
ing the condition∫

X

(tr(f1) + tr(f2)) ω = 0 .

Let

3 : Ap(End(Ei, hi)) −→ Ap−2(End(Ei, hi))

denote the adjoint of the operator

L = e(ω) : Ap−2(End(Ei, hi)) −→ Ap(End(Ei, hi)),

which is the exterior multiplication by the K̈ahler formω of (X, µ). Define

8 : Cα −→ g

by

8(D1, D2, φ) = (3R(∇D1) − √−1φφ∗ + 2π
√−1τ, 3R(∇D2)

+ √−1φ∗φ + 2π
√−1τ ′).

Then8 is a moment map for the action ofG on Cα ([BG], §6.3). (The moment map is a
differentiable map fromCα to the dual vector spaceg∗ of g; here we are identifyingg with
its dual using theL2 inner product.) Thus the action ofG onCα is Hamiltonian. It can be
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checked that the origin 0 ∈ g is aregular value of 8, and hence 8−1(0) is aclosed C∞
submanifold of Cα. Moreover, the action of G on 8−1(0) is proper and free. Finally, the
inclusion 8−1(0) ↪→ Cα induces adiffeomorphism

8−1(0)/G ∼= Cα/G C = Nα.

Now, thestandardprocedureof symplectic reduction ([K] , p. 273, Theorem5.11) provides
a Kähler metric on 8−1(0)/G and hence on Nα. The Kähler metric on Nα obtained this
way wil l becalled thenatural Kähler metric.

3. Thedeterminant bundle

In this section, we wil l define the determinant line bundle for a family of triples, and
construct a natural Hermitian holomorphic line bundle over the moduli space of α-stable
triples. Wewil l continuewith thenotation of thepreceding section.

3a Families of triples

Fix apositive rational number α.

DEFINITION 3.1

Let S be a complex manifold. A family TS of triples over X, parametrized by S, consists
of two holomorphic vector bundlesE1,S and E2,S over S × X, and ahomomorphism φS :
E2,S −→ E1,S of holomorphic vector bundlesover S ×X. Wesay that two familiesTS =
(E1,S, E2,S, φS) and T ′

S = (E′
1,S, E′

2,S, φ′
S) are equivalent if there exist a holomorphic

line bundle L over S and isomorphisms fi : Ei,S⊗p∗
SL −→ E′

i,S (i = 1, 2), where
pS : S × X −→ S is theobvious projection, such that thediagram

E2,S

⊗
p∗

SL E′
2,S

E1,S

⊗
p∗

SL E′
1,S

φS × Id φ′
S

f1

f2

commutes.

PROPOSITION 3.2

Let TS = (E1,S, E2,S, φS) and T ′
S = (E′

1,S, E′
2,S, φ′

S) be two families of α-stable triples
onX parametrized by acomplex manifoldS. Supposethat for each point s inS, thetriples
Ts and T ′

s areisomorphic, whereTs (respectively, T ′
s ) is therestriction of TS (respectively,

T ′
S) to Xs = {s} × X. Then TS and T ′

S areequivalent.

Proof. Let F denotethesheaf of homomorphismsfrom TS to T ′
S , i.e., for any open subset

U of S×X, thespaceof sections0(U, F) consistsof pairsof theformf = (f1, f2), where
for each i = 1, 2, the map fi : Ei,S |U −→ E′

i,S |U is avector bundle homomorphism
satisfying the condition f1 ◦ φS = φ′

S ◦ f2. Then F is acoherent OS×X-module, and
H 0(Xs, Fs) is a one-dimensional vector space for all s ∈ S ([BG], Corollary 3.12).
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Therefore, by a standard result on direct images,L = (pS)∗F is a locally free sheaf over
S of rank one, and the fibreLs of the line bundleL at any points ∈ S is canonically
isomorphic to Hom(Ts, T

′
s ), the space of global homomorphisms from the tripleTs over

Xs to T ′
s . From the definition of the line bundleL, we have an obvious homomorphism

fi : Ei,S⊗p∗
SL −→ Ei,S for eachi = 1, 2. These homomorphismsfi are actually

isomorphisms, for ifT andT ′ are twoα-stable triples of the same type(r1, r2, d1, d2), then
every non-zero homomorphism fromT toT ′ is in fact an isomorphism ([BG], Proposition
3.10). Clearly, the diagram

E2,S

⊗
p∗

SL E′
2,S

E1,S

⊗
p∗

SL E′
1,S

φS

⊗
Id φ′

S

f1

f2

commutes. Therefore,TS andT ′
S are equivalent. This completes the proof of the proposi-

tion.

3b Classifying map of a family

Let E1 andE2 be fixed C∞ complex vector bundles overX, as in §2. Fori = 1, 2, let
Ei = A × Ei = p∗

XEi be the vector bundle overA × X, obtained by pulling backEi

using the natural projectionpX : A × X −→ X; the spaceA was defined in §2b. Then
there is a natural holomorphic structure onEi . This holomorphic structure is determined
by the following two conditions: (a) for any pointD = (D1, D2, φ) ∈ A, the holomorphic
structure on the restriction ofEi to the submanifold{D}×X ⊂ A×X is given byDi ; and
(b) for any pointx ∈ X, the holomorphic structure on the restriction ofEi to the subset
A×{x} ⊂ A×X coincides with the natural trivialization of this vector bundle overA×x.

Consider the familyT = (E1, E2, 9) of C∞ triples parametrized byA, where9 :
E2 −→ E1 is the obviousC∞ homomorphism, i.e.,

9(D, e2) = (D, φ(e2)) for D = (D1, D2, φ) ∈ A and e2 ∈ E2.

Although9 is onlyC∞ onA, it follows from the definition ofB that the restriction of
9 to B is in fact holomorphic. RestrictT to Bs

α, and denote this restriction also byT . It
is a holomorphic family ofα-stable holomorphic triples overX parametrized byBs

α. We
wish to show that this familyT is a locally universal family onBs

α × X.
Indeed, letTS = (E1,S, E2,S, φS) be a family ofα-stable triples of type(r1, r2, d1, d2),

parametrized by a complex manifoldS. ThenS can be covered by open subsetsU such
thatEi,S |U×X is isomorphic, as aC∞ vector bundle, top∗

XEi onU ×X for eachi = 1, 2,
wherepX : U × X −→ X is the canonical projection. For each points ∈ U , the ∂-
operator acting on the holomorphic bundleEi,s defines a holomorphic structureDi,s in Ei .
Further, the homomorphismφs : E2,s −→ E1,s , which is the restriction ofφS to the subset
Xs = {s} × X ⊂ S × X, defines a homomorphismE2 −→ E1, which we again denote by
φs itself. In other words, for each points ∈ U , we get a pointDs = (D1,s , D2,s , φs) ∈ A.
The fact that the given homomorphismφs : E2,s −→ E1,s is holomorphic, ensures that
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Ds ∈ B whenever s ∈ U . Since each triple Ts is α-stable, we in fact get Ds ∈ Bs
α for all

s ∈ U . Clearly the resulting map fU : U −→ Bs
α is aholomorphic map. Moreover, for

each s ∈ U , we have Ts
∼= ((fU × Id)∗(T ))s . Thus, by Proposition 3.2, the two families

of triples, namely (fU × Id)∗(T ) and TS |U , are equivalent. This shows that the family T
on Bs

α × X has the local universal property.
In thesetup of theaboveparagraph, it isclear that if U ′ isanother open subset of S such

that Ei,S |U ′×X isC∞ isomorphic top∗
XEi (i = 1, 2) onU ′×X, wherepX : U ′×X −→ X

is the obvious projection, then the corresponding map fU ′ : U ′ −→ Bs
α has the property

that π ◦ fU = π ◦ fU ′ on U ∩ U ′, whereπ : Bs
α −→ Ms

α is thecanonical projection. We
thusget awell-defined holomorphic map hS : S −→ Ms

α such that therestriction of hS to
any open set U ⊂ S, asabove, equalsπ ◦ fU . If weview Ms

α asthespaceof isomorphism
classes of α-stable triples of type (r1, r2, d1, d2), then the image of s ∈ S under hS is
precisely the isomorphism class of the triple Ts = TS |Xs . We call hS : S −→ Ms

α the
classifying map for the family TS .

3c Determinant linebundle for a family

Tobeginwith, let usrecall thedeterminant linebundlefor afamily of usual vector bundles.
Fix apoint x0 on theRiemann surfaceX. Let S beaconnected complex manifold, and let
ES be afamily of vector bundlesover X parametrizedby S, i.e.,ES is aholomorphicvector
bundleover S × X. Let Det(ES) −→ S bethedeterminant of thecohomology of ES , i.e.,

Det(ES) = det ((pS)∗ES)−1 ⊗ det (R1 (pS)∗ ES),

where pS : S × X −→ S is the projection onto the first factor, and det denotes the
determinant linebundlefor acoherent analytic sheaf; theconstruction of det can befound
in Chapter V, §6 of [K] . We wil l use the notation L−1 for the dual of a line bundle L.
The fiber of the holomorphic line bundle Det(ES) over any point s ∈ S is canonically
isomorphic to

top∧
(H 0(Xs, Es))

∗ ⊗
top∧

(H 1(Xs, Es)).

Definea linebundle2(ES) over S by

2 (ES) = Det(ES)r ⊗ det(Ex0)χ(Es),

where Ex0 is the restriction of ES to the slice Sx0 = S × {x0} ⊂ S × X, r = rank(ES),
and χ(Es) = dimH 0(Xs, Es) − dimH 1(Xs, Es) is theEuler characteristic of thevector
bundleEs −→ Xs for somes ∈ S. SinceS isconnected, thenumber χ(Es) isindependent
of s ∈ S. Wecall 2 (ES) thedeterminant linebundle for the family of vector bundlesES .

DEFINITION 3.3

Let TS = (E1,S, E2,S, φS) beaholomorphic family of tripleson X parametrized by S. We
define thedeterminant linebundleD(TS) of TS to be

D(TS) = 2
(
E1,S

)r2 ⊗2
(
E2,S

)r1 ,

where ri = rank(Ei,S), i = 1, 2.
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Remark3.4. The projection formula implies that

Det(ES⊗p∗
SL) = Det(ES)⊗L−χ(Es) ,

whereL is any line bundle overS andpS is the natural projection fromS × X to S.
From this it follows immediately that ifES −→ S × X is a family of vector bundles, then
2
(
ES ⊗ p∗

SL
)

is canonically isomorphic to2 (ES) for every holomorphic line bundleL
overS. Moreover, using the standard properties of the determinant of the cohomology, we
conclude that iff : S′ −→ S is a holomorphic map, then2 ((f × Id)∗ES) is isomorphic
to f ∗2 (ES). From these facts it follows that the same properties continue to hold for the
determinant of the triples. In other words, ifTS andT ′

S are equivalent families of triples,
thenD(TS) ∼= D(T ′

S). Similarly, if f : S′ −→ S is a morphism, thenD((f × Id)∗TS) is
isomorphic tof ∗D(TS).

3d Determinant bundle on the moduli space

Let T = (E1, E2, 9) be the family of canonical triples onB × X, as defined in §3b. Let
D = D(T ) denote the determinant line bundle of this family as in Definition 3.3. ThenD
is a holomorphic line bundle onB. Recall that, by definition,

D = 2 (E1)
r2 ⊗2 (E2)

r1 ,

where

2 (Ei ) = Det(Ei )
ri ⊗ det(Ei,x0)

χ(Ei).

The action of the complex gauge groupGC
i onB lifts to a right action on Det(Ei ) as follows.

If D = (D1, D2, φ) is a point inB, then the fibre of Det(Ei ) atD is canonically isomorphic
to the one-dimensional complex vector space

Vi,D =
top∧

(K∗
i,D)

⊗ top∧
(Ci,D) ,

whereKi,D is the kernel andCi,D the cokernel of the Dolbeault operatorDi : A0(Ei) −→
A0,1(Ei). If g ∈ GC

i , then the inducedC∞(X)-module isomorphismg : A0(Ei) −→
A0(Ei) carriesKi,D·g ontoKi,D. Therefore, we get a dual isomorphismg∗ : K∗

i,D −→
K∗

i,D·g. This, in turn, induces an isomorphism

top∧
g∗ :

top∧
(K∗

i,D) −→
top∧

(K∗
i,D·g)

of the top exterior powers. Similarly, the isomorphismg−1 : A0,1(Ei) −→ A0,1(Ei)

maps the subspace Im(Di) onto Im(Di · g), and hence it induces an isomorphismg−1 :
Ci,D −→ Ci,D·g. Let

top∧
g−1 :

top∧
(Ci,D) −→

top∧
(Ci,D·g)

be the isomorphism of top exterior powers defined by the isomorphismg−1. Now, the right
action

Det(Ei ) × GC
i −→ Det(Ei )
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of GC
i on Det(Ei ) is defined by

(α ⊗ v, g) 7−→
(

top∧
g∗
)

(α)
⊗(

top∧
g−1

)
(v) ,

where α (respectively, v) is a vector in the one-dimensional complex vector space∧top
(K∗

i,D) (respectively,
∧top

(Ci,D)) for someD ∈ B. Similarly there is anatural right
action

Ei,x0 × GC
i −→ Ei,x0

of thegroup GC
i on thevector spaceEi,x0 defined by

(e, g) 7−→ g−1(e) .

Consequently, weget an inducedactionof GC
i ondet(Ei,x0). Therefore, GC

i actson theline
bundle2 (Ei ) in anatural fashion.Under thisaction, thesubgroupC

∗ ⊂ GC
i actsonDet(Ei )

via the character λ 7→ λχ(Ei), and it acts on det(Ei,x0) via the character λ 7→ λ−ri . As a

result, theaction of C
∗ on 2 (Ei ) is trivial. Wethusget an induced action of G C

i = GC
i /C

∗

on 2 (Ei ), and hence an action of G C
1 × G C

2 on D. Now the canonical homomorphism

G C −→ G C
1 × G C

2 givesan action of G C
on D. In other words, D isaG C

-linearized line
bundleover B.

Restrict the line bundle D to Bs
α. Since the canonical projection π : Bs

α −→ Ms
α is

a holomorphic principal bundle with structure groupG C
, it follows immediately that the

linebundleD descendsto aholomorphic linebundleL over Ms
α, i.e., there isgiven aG C

-
equivariant isomorphism of π∗L with D. We have thus constructed anatural line bundle
L over Ms

α that weareseeking.

DEFINITION 3.5

We wil l call the above holomorphic line bundle L, on Ms
α, the determinant line bundle

over Ms
α.

Thedeterminant linebundleon Ms
α has the following universal property.

PROPOSITION 3.6

If TS = (E1,S, E2,S, φS) is afamily of α-stablepairsof type (r1, r2, d1, d2) parametrized
by a complex manifold S, then there is a canonical isomorphism D(TS) ∼= h∗

SL, where
hS : S −→ Ms

α is the classifying map for the family TS , and L is the determinant bundle
over Ms

α.

Proof. Let U be an open cover of S such that if U is amember of the collection U , then
the restriction Ei,S |U×X of Ei,S to U × X is isomorphic, as a C∞ vector bundle, to the
restriction of p∗

XEi to theopen subset U × X, for each i = 1, 2. Wehaveseen in §3b that
for every U ∈ U , there exists aholomorphic map fU : U −→ Bs

α such that the restricted
family TS |U isequivalent to (fU × Id)∗T onU ×X, whereT istheabovefamily of triples
on A × X. The map fU has the property that hS |U = π ◦ fU , where π : Bs

α −→ Ms
α,
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as before, is the canonical projection. Thus on each memberU of U , we have a chain of
isomorphisms

D(TS) ∼= D((fU × Id)∗T ) ∼= f ∗
UD(T ) ∼= f ∗

U(π∗L) ∼= h∗
SL ,

which is obtained using Remark 3.4 and the fact thatL is the descent ofD(T ) from Bs
α.

Therefore, for each memberU ∈ U , we get a canonical isomorphismγU on U from
D(TS) to h∗

SL. The canonical nature ofγU ensures that ifU andU ′ are two members of
U , thenγU andγU ′ have to coincide on the overlapU ∩ U ′. Consequently, the various
local isomorphismsγU glue together to give a canonical global isomorphism ofD(TS)

with h∗
SL overS. This completes the proof of the proposition. 2

The above proposition shows that to establish a local property ofD(TS) for an arbitrary
family of triplesTS , it is enough to prove forL.

4. Metric on the determinant bundle

In this section, we will construct a natural Hermitian metric on the determinant line bun-
dle L over the moduli spaceNα. The varietyNα, as before, is the smooth locus of the
quasi-projective varietyMs

α. SinceL is a holomorphic line bundle, this Hermitian metric
determines a canonical connection onL, which is usually known as the Chern connection.
We will also compute the curvature of this canonical connection.

4a Quillen metrics

Recall that we have a natural family of triplesT = (E1, E2, 9) over A × X. We had

defined the holomorphicG C
-line bundleD to be the determinant bundle for this family

(see Definition 3.3), i.e.,

D = 2 (E1)
r2 ⊗2 (E2)

r1 ,

where

2 (Ei ) = Det(Ei )
ri ⊗C det(Ei,x0)

χ(Ei) .

HereEi,x0 is the fibre ofEi at the pointx0 ∈ X, andri = rank(Ei).
For eachi = 1, 2, the determinant line bundle Det(Ei ) −→ A carries a natural Hermitian

metric, called theQuillen metric, which we recall briefly. A detailed description can be
found [Q]. The fibre of Det(Ei ) at any pointD = (D1, D2, φ) is canonically isomorphic
to the one-dimensional complex vector space

Vi,D =
top∧

(K∗
i,D)⊗

top∧
(Ci,D) ,

whereKi,D (respectively,Ci,D), as before, is the kernel (respectively, cokernel) of the
Dolbeault operatorDi : A0(Ei) −→ A0,1(Ei). Now the Hermitian metrics onX andEi

induce anL2 inner product onKi,D andCi,D, and hence an inner product onVi,D. We
denote thisL2 inner product onVi,D by λi,D. On the other hand, the LaplacianD∗

i Di :
A0(Ei) −→ A0(Ei) defines a zeta functionζi,D(s) = trace(D∗

i Di)
−s . The Quillen inner
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productρi,D onVi,D is defined to beρi,D = exp(−ζ ′
i,D(0)) · λi,D. It follows immediately

from the results of [Q] that the inner productρi,D varies smoothly asD varies inA, and
hence defines aC∞ Hermitian metricρi in Det(Ei ). Since Det(Ei ) is a holomorphic line
bundle, the metricρi determines a unique connection on Det(Ei ) compatible with both the
holomorphic and metric structures. Letc1(Det(Ei ), ρi) denote the first Chern form of this
canonical connection. Then, the main result of [Q] implies that

c1(Det(Ei ), ρi) = p∗
i �i , (4a.1)

where for eachi = 1, 2, pi : A −→ Ai is the projection defined by(D1, D2, φ) 7→ Di ,
and�i is the K̈ahler form onAi .

The Hermitian metric inEi defines a flat Hermitian metric in the trivial line bundle
det(Ei,x0)⊗COA. This flat metric in det(Ei,x0)⊗COA, together with the Quillen metricρi

in Det(Ei ) induces a Hermitian metricθi in 2 (Ei ). It follows immediately from eq. (4a.1)
that

c1(2 (Ei ) , θi) = ri · p∗
i �i , (4a.2)

whereri = rank(Ei).

4b A property of the inner product

Let V be a complex Hilbert space with inner product〈· , ·〉 : V × V −→ C, and let
N : V −→ R denote the norm square functionx 7→ 〈x, x〉. Let � ∈ A1,1(V ) denote the
Kähler form ofV with respect to the K̈ahler metric defined by the inner product〈· , ·〉.
Then one observes that

� = √−1∂∂N .

Let us check this fact with a simple computation.
Indeed, a differential formω on V is zero if and only if it vanishes on every finite-

dimensional subspace ofV . For, if ω is ap-form onV which vanishes on every finite-
dimensional subspace ofV , then for every pointx ∈V and for all tangent vectorsv1, . . . , vp

in V ∼= TxV , we have

ωx(v1, . . . , vp) = (i∗Wω)x(v1, . . . , vp) ,

whereW is the subspace ofV generated by{x, v1, . . . , vp}, andiW : W ↪→ V is the inclu-
sion map. The hypothesis onω implies thati∗Wω = ω|W = 0, henceωx(v1, . . . , vp) = 0.
Thereforeω is the zero form onV .

In view of the above fact, we can assume without loss of generality thatV is finite-
dimensional. Let{e1, . . . , en} be an orthonormal basis ofV , and{z1, . . . , zn} be the dual
basis ofV ∗. Then� = √−1

∑n
i=1 dzi ∧dz̄i , whereasN = ∑n

i=1 zi z̄i . Therefore, we have

√−1∂∂N = √−1
∑

i

dzi ∧ dz̄i = � ,

and this proves the assertion made at the beginning of this subsection.
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4c Metric onL

Recall thatD is the holomorphic line bundle overA defined by

D = 2 (E1)
r2 ⊗2 (E2)

r1 .

In §4a, we had constructed a natural metricθi in 2 (Ei ). Let ‖·‖ denote theL2 norm on
C∞(Hom(E2, E1)), and define aC∞ functionN : A −→ R by

N(D1, D2, φ) := ‖φ‖2, (D1, D2, φ) ∈ A .

Now define a Hermitian metricδ in D by

δ = exp(−2πr1r2N) · θ
r2
1 ⊗ θ

r1
2 , (4c.1)

whereθi is the Hermitian metric in2 (Ei ) constructed in §4a.
Recall that in subsection 2b, we defined the subsetBs

α ⊂ A consisting of all holomorphic
structures giving a stable triple. Now restrict the Hermitian holomorphic line bundle(D, δ)

to the locally closed complex submanifoldBs
α of A. From §2c, we have a commutative

diagram

Nα Nα

8−1(0) Cα

π0 π

i

Id

,

where the top arrow is the inclusion mapi of 8−1(0) in Bs
α, π the canonical projection

fromBs
α ontoNα, andπ0 the restriction ofπ to8−1(0). Here8 : Bs

α −→ g is the moment
map for the action ofG = (G1 × G2)/U(1), whereGi is the unitary gauge group ofEi ,

i = 1, 2. The mapπ is a principalG C
-bundle, andπ0 is a principalG-bundle.

It is clear that the metricδ in D is preserved under the action of the groupG. Since the
determinant bundleL −→ Nα is the descent ofD from Bs

α, theG-invariance of the metric
δ in D implies that it descends to aC∞ Hermitian metricλ in L, i.e., there exists a unique
metricλ in L such thatπ∗

0λ = i∗δ. We callλ thenatural metricin L.
Given that the line bundleD has a natural holomorphic structure, the Hermitian metricδ

on it defines a canonical (Chern) connection∇D onD. It is straight-forward to check that
this connection∇D descends from8−1(0) to a connection∇L onL, i.e.,π∗

0∇L = i∗∇D.
A similar argument can be found in Theorem 3.2 of [GS]. We claim that this descended
connection∇L on L is the canonical connection of the holomorphic line bundleL with
respect to the Hermitian metricλ onL. To see this, we need to check that∇L is

(a) Hermitian, i.e., it is compatible with the Hermitian metricλ onL; and
(b) holomorphic, i.e., its connection form with respect to any local holomorphic frame

of L is of bidegree(1, 0).

We get (a) easily from the fact that∇D is Hermitian with respect to the metricδ on D.
To check (b), lets be a holomorphic frame ofL on an open subsetU of Nα, i.e., s is a
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nowhere zero holomorphic section ofL on U . Let ω be the connection form of∇L with
respect to the frames. We are required to show thatω is of type(1, 0), i.e.,

ωp(Jpv) = √−1 · ωp(v) (4c.2)

for all p ∈ U andv ∈ TpNα, where TpNα is the real tangent space toNα at p, and
Jp : TpNα −→ TpNα is the almost complex structure on TpNα. Let D ∈ 8−1(0) be a
point lying overp, i.e.,π0(D) = p. One easily checks that

TD8−1(0) = TD

(G · D
)⊕ V ,

whereG · D is theG-orbit throughD, andV is the orthogonal complement of TD

(G · D
)

with respect to the Riemannian metric on8−1(0). Now, let t = π∗s be theG C
-invariant

holomorphic frame ofD on π−1(U) obtained by pulling backs via π . Let ω̃ be the
connection form of∇D with respect to the holomorphic framet of D. Then, the fact that
∇L is the descent of∇D from 8−1(0) immediately gives thatπ∗

0ω = i∗ω̃. From this
observation, and the fact thatπ0 is a submersion, to establish the relation (4c.2), it suffices
to check that the subspaceV of TD8−1(0) is invariant under the almost complex structure
JD : TDCα −→ TDCα. Let us verify this. Takew ∈ V andξ ∈ g. We need to check that

〈JDw , X(ξ)D〉 = 0 ,

whereX(ξ) is the fundamental vector field onCα defined by the Lie algebra elementξ .
But, from the definitions of the symplectic structure on a Kähler manifold and moment
map, we have

〈JDw , X(ξ)D〉 = �A(w, X(ξ)D) = d(8ξ )D = 0 ,

where�A is the K̈ahler form onA, and8ξ : Cα −→ R is the function defined by
8ξ(x) = B(8(x), ξ). HereB : g∗ × g −→ R is the canonical duality pairing. This
proves the assertion that∇L is the canonical connection on the holomorphic Hermitian
line bundleL.

We are now ready to compute the curvature of the determinant line bundleL equipped
with the natural Hermitian metricλ.

Theorem 4.1. The first Chern formc1(L, λ) of the determinant line bundleL on the
moduli spaceNα, with respect to the natural Hermitian metricλ in L is given by

c1(L, λ) = r1r2 · �Nα ,

where�Nα is the natural K̈ahler form ofNα.

Proof. Sinceπ0 : 8−1(0) −→ Nα is a submersion, to prove the theorem it suffices to
verify that

π∗
0 (c1(L, λ)) = r1r2 · π∗

0�Nα .

But, as we have observed above, the canonical connection∇L is the descent of∇D via π0,
hence we get

π∗
0c1(L, λ) = i∗c1(D, δ) .



Determinants of triples 381

From the defining property of symplectic reduction, we get

π∗
0�Nα = i∗�A ,

where�A is the K̈ahler form onA. Therefore to prove the theorem, it is enough to show
that

c1(D, δ) = r1r2 · �Nα onA .

So lets = s
r2
1 ⊗ s

r1
2 be a local holomorphic section ofD on an open setU ⊂ A, wheresi

is a holomorphic section of2 (Ei ) onU (i = 1, 2); then we have

c1(D, δ) = −1

2π
√−1

∂∂ logδ(s, s)

onU . On the other hand, from eq. (4c.1), we immediately get

−1

2π
√−1

logδ(s, s) = −1

2π
√−1

[ − 2πr1r2N + r2 logθ1(s1, s1)

+ r1 logθ2(s2, s2)] .

Therefore, using a combination of the observation in §4b that the norm square is a potential
for the Kähler form, and eq. (4a.2), we obtain

c1(D, δ) = −r1r2 · √−1∂∂N + r2 · c1(2 (E1) , θ1) + r1 · c1(2 (E2) , θ2)

= r1r2 · p∗
3�3 + r2r1 · p∗

1�1 + r1r2 · p∗
2�2 ,

where�i , i = 1, 2, is the K̈ahler form onAi , the form �3 is the K̈ahler form on
C∞(Hom(E2, E1)), andpj , j = 1, 2, 3, are the projections fromA to each of its three
factors. On the other hand,A carries the product K̈ahler structure coming fromA1, A2
andC∞(Hom(E2, E1)), hence the K̈ahler form onA is precisely

�A = p∗
1�1 + p∗

2�2 + p∗
3�3 .

Thus the Chern formc1(D, δ) coincides with�A on U . This completes the proof of the
theorem.

4d Concluding remarks

Let N be a moduli space of stable vector bundles over a compact connected hyperbolic
Riemann surfaceX. For any positive integerk, consider the space of holomorphic sections
of thekth tensor power of the determinant line bundle overN . As the Riemann surface
moves in a family, these vector spaces fit together to give a holomorphic vector bundle over
the Teichm̈uller space. Hitchin proved that this vector bundle has a natural projectively flat
connection [H]. One of the reasons for the existence of this connection is that the curvature
of the Chern connection on the determinant line bundle is a constant scalar multiple of
the natural K̈ahler form onN . Therefore, in view of Theorem 4.1, it would be interesting
to know whether the construction of Hitchin can be generalized to get a projectively flat
connection on the vector bundle constructed using the holomorphic sections of a tensor
power of the line bundleL overNα.
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Triples can defined in the more general context of parabolic vector bundles. Aparabolic
triple consisting of(E2∗, E1∗, φ∗) whereE1∗ andE2∗ are parabolic vector bundles, and
φ∗ : E2∗ −→ E1∗ is a homomorphism preserving the parabolic structures. The notion of
stability can be generalized analogously. Using the method of [BR], Theorem 4.1 can be
extended to the more general situation of parabolic stable triples with parabolic structure
on an-pointed Riemann surface. However, in view of [BR], such a generalization is now
quite straight-forward, and we leave the details.
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