Reduction of Structure Group of Principal Bundles over a Projective Manifold with Picard Number One

Indranil Biswas, Tomás L. Gómez, and Yogish I. Holla

1 Introduction

Let X be a connected projective manifold with $\text{Pic}(X) \cong \mathbb{Z}$. Let G be a connected reductive algebraic group over \mathbb{C}. A principal G-bundle will be called split if it admits a reduction of structure group to a maximal torus of G. This corresponds to the usual definition of a split vector bundle as a direct sum of line bundles.

Let B be a Borel subgroup of G and $\rho : G \to G'$ an injective homomorphism to a connected reductive algebraic group over \mathbb{C}. In Theorem 2.7 we prove the following theorem.

Theorem 1.1. Let E be a principal G-bundle over X such that the principal G'-bundle $E(G') := (E \times G')/G$ obtained by extending the structure group using ρ is split. Then E admits a reduction of structure group to B. □

Furthermore, if X is Fano or it has trivial canonical bundle, then we have the following stronger consequence (Theorem 3.3).

Theorem 1.2. For a G-bundle E on X, if the G'-bundle $E(G')$ is split, then E itself is split. □

If W is a vector bundle on $\mathbb{C}P^n$, $n \geq 2$, such that the restriction $W_{|\mathbb{C}P^2}$ to a plane $\mathbb{C}P^2$ splits as a direct sum of line bundles, then W is already a direct sum of line bundles [12, page 42, Theorem 2.3.2]. This result is a consequence of a splitting criterion.

Received 4 October 2001. Revision received 5 December 2001.
of G. Horrocks. A corollary of Theorem 1.2 (Corollary 4.1) gives the following analog for G-bundles. If \(E \) is a principal G-bundle over \(\mathbb{CP}^n \) such that the restriction \(E_{|\mathbb{CP}^2} \) is split, then \(E \) itself is split. In Lemma 2.2, we show that any split G-bundle over \(X \) admits a reduction of structure group to a one-parameter subgroup of G.

A vector bundle \(W \) on \(\mathbb{CP}^n \) is trivial if there is a point \(p \) in \(\mathbb{CP}^n \) such that the restriction of \(W \) to any line passing through \(p \) is trivial [12, page 51, Theorem 3.2.1]. In Corollary 4.2, we prove that a principal G-bundle \(E \) over \(\mathbb{CP}^n \) is trivial if and only if there is a point \(p \) in \(\mathbb{CP}^n \) such that the restriction of \(E \) to every line \(\mathbb{CP}^1 \subset \mathbb{CP}^n \) passing through \(p \) is trivial.

2 Criterion for reduction to Borel subgroup

Let \(G \) be a connected reductive algebraic group over \(\mathbb{C} \). The center of \(G \) will be denoted by \(Z(G) \). Let \(B \subset G \) be a Borel subgroup and \(T \subset B \) a maximal torus of \(G \).

Let \(X \) be a connected smooth projective variety over \(\mathbb{C} \) of dimension \(d \). We will assume that the Picard group \(\text{Pic}(X) \) is isomorphic to \(\mathbb{Z} \).

Fix an ample line bundle \(\xi \) on \(X \). The degree of a torsionfree coherent sheaf \(F \) on \(X \) is

\[
\text{deg}(F) = \int_X c_1(F) c_1(\xi)^{d-1}. \tag{2.1}
\]

Note that if \(U \) is a Zariski open subset of \(X \) such that \(\text{codim}_X(X \setminus U) \geq 2 \), then \(\text{deg}(i_* i^* F) = \text{deg}(F) \), where \(i: U \hookrightarrow X \) is the inclusion map.

Given a group homomorphism \(h: H \to G \) and a principal \(H \)-bundle \(E_H \), the extension of structure group of \(E_H \) to \(G \) is the \(G \)-bundle defined as

\[
h_* E_H := \left(E_H \times G \right)/H = E_H(G), \tag{2.2}
\]

where the quotient is taken using the diagonal action. It may be noted that even in the case \(h \) is an embedding, it can happen that \(h_* E_H \) and \(h_* E_T \), are isomorphic but \(E_H \) and \(E_T \), are not isomorphic.

If \(H \) is a closed subgroup, \(h \) is the inclusion, and \(E \) a principal \(G \)-bundle over \(X \), then a reduction of the structure group of \(E \) to \(H \) is a principal \(H \)-bundle \(E_H \) together with an isomorphism \(h_* E_H \cong E \). Equivalently, it is defined by an algebraic section of the fiber bundle

\[
E/H \to X. \tag{2.3}
\]

The quotient \(E/H \) corresponds to the restriction to \(H \) of the action of \(G \) to \(E \). If \(S \) is the
subvariety of \(E/H \) defined by the image of such a section, then we recover \(E_H \) as the subset of \(E \) given by the inverse image of \(S \) for the natural projection

\[E \rightarrow E/H. \]

(2.4)

Note that if \(E_H \subset E \) is a reduction of the structure group of \(E \) to a subgroup \(H \), then for any \(g \in G \) the translation \(E_H g \) of \(E_H \) by \(g \) defines a reduction of the structure group of \(E \) to the conjugate \(g^{-1}Hg \) of \(H \).

A principal \(G \)-bundle \(E \) over \(X \) is called semistable if for every maximal parabolic subgroup \(P \subset G \) and for every reduction of structure group \(\sigma : U \rightarrow E/P \) over some Zariski open subset \(U \) with \(\text{codim}_C(X \setminus U) \geq 2 \), the inequality

\[\deg \sigma^*(T_{rel}) \geq 0 \]

(2.5)

is valid, where \(T_{rel} \) is the relative tangent bundle for the natural projection of \(E/P \mid U \) to \(U \). Since \(\text{Pic}(X) \cong \mathbb{Z} \), the semistability condition does not depend on the choice of the polarization \(L \).

The condition of semistability has the following equivalent reformulation [14, Lemma 2.1]. A principal \(G \)-bundle \(E \) over \(X \) is semistable if and only if for every parabolic subgroup \(P \subset G \) and every holomorphic reduction \(E_P \) of the structure group of \(E \) to \(P \) over some open subset \(U \subset X \) with \(\text{codim}_C(X \setminus U) \geq 2 \), and for every nontrivial character \(\theta : P \rightarrow \mathbb{C}^* \) which is dominant with respect to some Borel subgroup of \(G \) contained in \(P \), the inequality \(\deg(E_P(\theta)) \leq 0 \) is valid, where \(E_P(\theta) = E_P(C) \) is the line bundle \((E_P \times C)/P \) over \(U \) associated to \(E_P \) for the character \(\theta \) of \(P \).

From the definition, it follows that a \(\text{GL}(n,\mathbb{C}) \)-bundle is semistable if and only if the \(n \) vector bundle associated to it by the standard representation is semistable. We recall that a vector bundle \(E \) is called semistable if for any coherent subsheaf \(F \) of \(E \), with \(0 < \text{rank}(F) < \text{rank}(E) \), the inequality

\[\frac{\deg(F)}{\text{rank}(F)} \leq \frac{\deg(E)}{\text{rank}(E)} \]

(2.6)

is valid [10].

A vector bundle is called split if it is a direct sum of line bundles, and recall from the introduction that a principal \(G \)-bundle over \(X \) is defined to be split if it admits a reduction of structure group to the maximal torus \(T \).

Remark 2.1. It is easy to see that a \(\text{GL}(n,\mathbb{C}) \)-bundle is split if and only if the vector bundle associated to it by the standard representation of \(\text{GL}(n,\mathbb{C}) \) splits as a direct sum.
of line bundles. More generally, any extension of the structure group of a split bundle is always split.

A principal G-bundle E over X is said to admit a reduction of structure group to a one-parameter subgroup of the maximal torus T if there is a homomorphism

$$\gamma : \mathbb{C}^\ast \rightarrow T$$

(2.7)

and a principal C^\ast-bundle E_{C^\ast} over X such that the principal G-bundle obtained by extending the structure group of E_{C^\ast}, using the composition of γ with the inclusion of T in G, is isomorphic to E. Such a G-bundle is obviously split. The following lemma shows that the converse is true.

Lemma 2.2. Any principal T-bundle over X admits a reduction of the structure group to a one-parameter subgroup. \hfill \Box

Proof. Since T is isomorphic to a product of copies of C^\ast, there is a natural bijection between (isomorphism classes of) T-bundles and vector bundles of the form

$$\xi_1 \oplus \xi_2 \oplus \cdots \oplus \xi_r,$$

(2.8)

where $r = \dim T$ and ξ_i are line bundles. Since $\text{Pic}(X) \cong \mathbb{Z}$, it is generated by a fixed line bundle $O(1)$. So we have $\xi_i \cong O(n_i)$ for some $n_i \in \mathbb{Z}$. This means that there is a reduction of the structure group of any principal T-bundle to C^\ast, with the homomorphism $\gamma : C^\ast \rightarrow T$ determined by the numbers n_i. More precisely, γ is of the form $\lambda \mapsto (\lambda^{n_1}, \lambda^{n_2}, \ldots, \lambda^{n_r})$. This completes the proof of the lemma. \hfill \Box

Fix an injective homomorphism $\rho : G \rightarrow G'$ as in the introduction.

An important fact used in our arguments is that for any connected reductive group G, the center $Z(G)$ is always contained in T. In fact, $Z(G)$ is the intersection of all possible maximal tori of G.

Proposition 2.3. If the principal G'-bundle $E(G')$ is split, then the adjoint vector bundle $\text{ad}(E)$ is split. \hfill \Box

Proof. Take a faithful representation

$$\rho' : G' \rightarrow \text{GL}(V).$$

(2.9)

Let $T(V) := (E(G') \times V)/G'$ be the vector bundle associated to $E(G')$ for ρ'. Since $E(G')$ is the extension of T, the vector bundle $E(V)$ is also an extension of T for $\rho' \circ \rho$.

Since $\rho' \circ \rho$ is a faithful representation of G, and G is reductive, any irreducible G-module is a direct summand of $E(V)^{\otimes i} \otimes (E(V)^*)^{\otimes i'}$ for some $i, i' \geq 0$ [5, page 40, Proposition 3.1(a)]. In other words, any G-module is a direct summand of a finite sum of the type

$$\bigoplus_j \left(E(V)^{\otimes i_j} \otimes (E(V)^*)^{\otimes i'_j} \right).$$

(2.10)

In particular, the adjoint bundle $\text{ad}(E)$ is a direct summand of a direct sum of vector bundles of this type.

Since $E(G')$ is split, from Remark 2.1 we know that $E(V)$ is a direct sum of line bundles. Therefore, any $E(V)^{\otimes i} \otimes (E(V)^*)^{\otimes i'}$ is also a direct sum of line bundles.

We will show that a direct summand of a split vector bundle over a compact connected projective manifold is split. Let W be a split vector bundle and $W = W^1 \oplus W^2$ any decomposition into a direct sum of vector bundles. Let $W^i = \bigoplus_{j \in I^i} V^i_j$, $i = 1, 2$, be the decomposition into indecomposable vector bundles. The existence of such a decomposition is ensured by [2, page 315, Lemma 9]. Consequently, $(\bigoplus V^1_j) \oplus (\bigoplus V^2_j)$ is a decomposition of W into indecomposable vector bundles. A theorem of Atiyah [2, page 315, Theorem 3] says that any given vector bundle over a connected complex projective manifold can be uniquely decomposed as a direct sum of indecomposable vector bundles (unique up to reordering the summation). Now, since W decomposes as a direct sum of line bundles, it follows immediately that each V^i_j is a line bundle.

We have shown that $\text{ad}(E)$ is a direct summand of a split vector bundle. Consequently, $\text{ad}(E)$ is split. This completes the proof of the proposition. ■

Lemma 2.4. Let E be a semistable G-bundle over X such that the vector bundle $\text{ad}(E)$ is split. Then E admits a reduction of the structure group to $Z(G)$. In particular, E is split.

Proof. Since E is semistable hence $\text{ad}(E)$ is semistable.

Now, since $\text{Pic}(X) \cong \mathbb{Z}$, the semistability condition of $\text{ad}(E)$ ensures that $\text{ad}(E)$ is of the form

$$\text{ad}(E) \cong \zeta^{\otimes N},$$

(2.11)

where ζ is a line bundle over X and $N = \text{rank}(\text{ad}(E))$. Since $\text{Pic}(X) \cong \mathbb{Z}$ and the degree of $\text{ad}(E)$ is zero, it follows immediately that the line bundle ζ is trivial and hence $\text{ad}(E)$ is a trivial vector bundle. Since $\text{ad}(E)$ is isomorphic to the trivial vector bundle, any section of $\text{ad}(E)$ over X is a constant section. So if s_1 and s_2 are two sections of $\text{ad}(E)$ over X, then their bracket $[s_1, s_2]$ is also constant.
Consequently, \(\text{ad}(E) \) is trivial as a Lie algebra bundle. Let \(\text{Aut}(g) \) denote the group of Lie algebra automorphisms of \(g \). The triviality of \(\text{ad}(E) \) as a Lie algebra bundle implies that the principal bundle \(E(\text{Aut}(g)) \) associated to the adjoint representation \(G \to \text{Aut}(g) \) is trivial. The adjoint representation factors as follows:

\[
G \to G/Z \xrightarrow{j} \text{Aut}(g).
\]

(2.12)

The group \(G/Z \) is the connected component of the identity of \(\text{Aut}(g) \) and \(j \) is the inclusion, hence we have a short exact sequence of groups

\[
(c) \to G/Z \xrightarrow{j} \text{Aut}(g) \to F \to (c),
\]

(2.13)

where \(F \) is a discrete group. This gives an exact sequence of pointed sets (see [6, page 153, Section 5], [15, Proposition 11], or [11, page 122, Proposition III.4.5])

\[
H^0(X, F) \xrightarrow{j_*} H^1(X, G/Z) \xrightarrow{j^*} H^1(X, \text{Aut}(g)).
\]

(2.14)

This means that \((j_*)^{-1}(c) = \text{image}(\delta) \), where \(c \) is the point corresponding to the trivial bundle. Let \(E(G/Z) \) be the principal bundle associated to \(G \to G/Z \). It gives a point \([E(G/Z)] \) in \(H^1(X, G/Z) \), whose image under \(j \), is equal to \([E(\text{Aut}(g))] \). Since this principal bundle is trivial, by exactness we know that \([E(G/Z)] \) is in the image of \(\delta \). Recall that \(\delta(c) \) is defined as the point corresponding to the principal \(G/Z \)-bundle \(E' \) given by the Cartesian diagram

\[
\begin{array}{ccc}
E' & \to & X \times \text{Aut}(g) \\
\downarrow & & \downarrow \\
X & \xrightarrow{\sigma} & X \times F.
\end{array}
\]

(2.15)

Since \(F \) is discrete, \(\sigma \) has to be constant, and then, for any \(\sigma \), we have that \(\delta(\sigma) \) corresponds to the trivial bundle, so we conclude that \(E(G/Z) \) is trivial.

Now, consider the exact sequence of pointed sets

\[
H^1(X, Z) \xrightarrow{\iota_*} H^1(X, G) \to H^1(X, G/Z).
\]

(2.16)

Since the point \([E] \in H^1(X, G) \) maps to the trivial element \([E(G/Z)] \), there is a principal \(Z \)-bundle \(E_Z \) such that \(\iota_* E_Z \cong E \). In other words, \(E_Z \) is a reduction of structure group of \(E \) to \(Z \) and the proof is complete.

Now we are in a position to prove the main result of this section.
Proposition 2.5. Let \(E \) be a nonsemistable \(G \)-bundle such that the vector bundle \(\text{ad}(E) \) is split. Then \(E \) admits a reduction of the structure group to a Borel subgroup of \(G \). \(\square \)

Proof. A nonsemistable \(G \)-bundle \(F \) admits a canonical reduction of structure group [1, Theorem 1.1], [3], which for the case of vector bundles is the usual Harder-Narasimhan filtration [10]. Consider the adjoint vector bundle \(\text{ad}(F) \). Since \(F \) is not semistable, the vector bundle \(\text{ad}(F) \) is not semistable (if \(\text{ad}(F) \) is semistable, then \(F \) is semistable [13, Theorem 3.18]). Consider the Harder-Narasimhan filtration of \(\text{ad}(F) \). Since \(G \) is reductive, the Lie algebra \(g \) admits a nondegenerate symmetric bilinear form invariant under the adjoint action of \(G \). Such a form induces a nondegenerate symmetric bilinear form on \(\text{ad}(F) \). Since \(\text{ad}(F)^* \cong \text{ad}(F) \), the Harder-Narasimhan filtration is of the form

\[
\emptyset = W_{-1} \subset W_{-2} \subset \cdots \subset W_{-l} \subset W_{-l+1} \subset \cdots \subset W_0 \subset \cdots \subset W_{l-1} \subset W_l = \text{ad}(F),
\]

where \(W_i \) coincides with \(W_i^\perp \) with respect to the nondegenerate symmetric bilinear form. The canonical reduction \(F_P \subset F \) over a Zariski open subset \(U \) of \(X \) with \(\text{codim}_C(X \setminus U) \geq 2 \) is determined by the condition that the adjoint bundle \(\text{ad}(F_P) \) coincides with \(W_0 \). The open subset \(U \) is the one over which each \(W_i \) is a subbundle of \(\text{ad}(F) \). It turns out that \(W_{-1} \) coincides with the vector bundle \(E_P(n) \) associated to \(E_P \) for the adjoint action of \(P \) on the nilpotent radical \(n \) of the Lie algebra of \(P \).

Let \(E_L = (\psi_P)^* E_P \) be the extension of the structure group by \(\psi_P \). Its adjoint bundle \(E_L(l) \) will be denoted by \(\text{ad}(E_L) \). From the construction of canonical reduction it follows that \(\text{ad}(E_L) \) is semistable. In fact, \(\text{ad}(E_L) \) coincides with \(W_0/W_{-1} \), if \(W_0 \) is the Harder-Narasimhan filtration of \(\text{ad}(E) \). Therefore, the \(L \)-bundle \(E_L \) is semistable [13, Theorem 3.18].

Since \(\text{ad}(E) \) is a direct sum of line bundles, each quotient \(W_i/W_{i-1} \) is naturally a direct summand of \(\text{ad}(E) \), where \(W_i \) is the Harder-Narasimhan filtration of \(\text{ad}(E) \).
(This follows from the construction of Harder-Narasimhan filtration of a direct summand of line bundles.) Consequently, \(\text{ad}(E_L) \) is a direct summand of \(\text{ad}(E) \). We saw in the proof of Proposition 2.3 that a direct summand of a split vector bundle is again split. Therefore, \(\text{ad}(E_L) \) is a split vector bundle.

Since \(E_L \) is semistable and \(\text{ad}(E_L) \) is split, from Proposition 2.3 and Lemma 2.4 it follows that the \(L \)-bundle \(E_L \) admits a reduction of the structure group to its center hence to the maximal torus \(T(L) \) of \(L \).

Let \(E_{T(L)} \subset E_L \) be a \(T(L) \)-bundle giving a reduction of the structure group of \(E_L \) to \(T(L) \).

Let \(\Psi : E_P \to E_L \) denote the projection induced by the natural projection \(\psi_P \) of \(P \) to \(L \). The inverse image

\[
\Psi^{-1}(E_{T(L)}) \subset E_P
\]

(2.19)
defines a reduction of the structure group of the \(P \)-bundle \(E_P \) to the subgroup \(\psi_P^{-1}(T(L)) \subset P \). But \(\psi_P^{-1}(T(L)) \) lies in a Borel subgroup of \(G \) contained in \(P \). This completes the proof.

Remark 2.6. In the proof of Proposition 2.5, it is possible to directly prove that the bundle \(\text{ad}(E_L) \) is trivial from the description of the canonical filtration of the \(G \)-bundle \(E \) in terms of the canonical filtration of \(\text{ad}(E) \).

Combining all these results, we obtain Theorem 1.1 stated in the introduction.

Theorem 2.7. Let \(E \) be a principal \(G \)-bundle over \(X \) such that the principal \(G' \)-bundle \(E(G') := (E \times G)/G \) obtained by extending the structure group using \(\rho \) is split. Then \(E \) admits a reduction of structure group to \(B \).

Proof. By Proposition 2.3, \(\text{ad}(E) \) is split. If \(E \) is semistable, then by Lemma 2.4 it is split (in particular, it has a reduction to a Borel subgroup). If \(E \) is not semistable, then we apply Proposition 2.5.

Remark 2.8. It is not true in general that if \(\text{ad}(E) \) is split then \(E \) is split. Take two elements \(g_1, g_2 \in \text{SU}(2) \) such that \(g_1 g_2^{-1} g_2^{-1} g_1^{-1} = -I \). Let \(Y \) be a Riemann surface of genus two. Let \(\Gamma \) denote the free group generated by \(a_1, b_1, a_2, b_2 \). Take a standard presentation of the fundamental group \(\pi_1(Y) \) as the quotient of \(\Gamma \) by the normal subgroup generated by \(a_1 b_1 a_1^{-1} b_1^{-1} a_2 b_2 a_2^{-1} b_2^{-1} \). Consider the homomorphism

\[
\beta : \pi_1(Y) \to \text{SU}(2)
\]

(2.20)
defined by $\beta(a_i) = g_i$ and $\beta(b_i) = 1$, $i = 1, 2$. Since g_1 and g_2 do not commute, β defines an irreducible unitary representation. Therefore, the rank two vector bundle V on Y associated to this representation is stable. In particular, V is indecomposable. Since the vector bundle V is indecomposable, the principal $SL(2, \mathbb{C})$-bundle defined by V is not split. But the representation of $\pi_1(Y)$ on the Lie algebra $su(2)$ defined by β is reducible.

Indeed, as the joint action of $-1 \in SU(2)$ on the Lie algebra $su(2)$ is trivial, the joint action of g_1 and g_2 commutes. Therefore, the joint vector bundle $ad(V)$ defined by the sheaf of trace zero endomorphisms of V decomposes as a direct sum of line bundles.

In the next section we will see that an assumption on X ensures that E is split if E_1 is split.

3 Reduction to the maximal torus

We continue with the notation of Section 2.

Proposition 3.1. Assume that $H^1(X, \zeta) = 0$ for all line bundles ζ on X. Let E_B be a B-bundle. Then E_B admits a reduction of the structure group to T. □

Proof. Let $R_u(B)$ denote the unipotent radical of B. Consider the exact sequence of groups

$$[e] \to R_u(B) \to B \to T \to [e].$$

(3.1)

Let $s : T \to B$ be a splitting of this exact sequence. Let $E_T := \psi_*E_B$ be the principal T-bundle obtained by extending the structure group of E_B. Note that the principal B-bundle s_*E_T admits a reduction of the structure group to T. Consequently, it is enough to show that s_*E_T is isomorphic to E_B.

Taking the extension of the structure group of these two B-bundles, namely E_B and s_*E_T, by ψ, we get the same T-bundle E_T (here we use the fact that s is a splitting). Therefore, it suffices to show that if E_B and E_T' are two B-bundles with $\psi_*E_B \cong \psi_*E_T'$, then $E_B \cong E_T'$. For this we have to understand the isomorphism classes of B-bundles which under the extension of the structure group by ψ give E_T.

We observe that T acts on the unipotent radical $R_u(B)$ by conjugation via s. For any $t \in T$ the action of t on $R_u(B)$ will be denoted as $t(u) := tut^{-1}$, where $u \in R_u(B)$.

Since T is abelian, we can find a filtration of $R_u(B)$

$$R_u(B) = U_1 \supset U_2 \supset \cdots \supset U_k \supset U_{k+1} = [e]$$

(3.2)

such that U_{i+1} is normal in U_i, each U_i are invariant under the action of T and the quotients U_i/U_{i+1} are isomorphic to G_μ, the additive group \mathbb{C}.

Downloaded from www.oxfordjournals.org by guest on January 27, 2011
Now we define twisted cohomology sets $H^i(X, U_i(E_i))$ for each i with the property that for $i = 1$, the set $H^1(X, U_1(E_1))$ parametrizes all the isomorphism classes of B-bundles that extend to E via ψ.

Fix a cocycle (t_{ij}) for E with respect to an étale open cover $\mathcal{V} = \{V_i\}$. Let E_0 be a B-bundle with $\psi, E_0 \rightarrow \Gamma$, then (refining \mathcal{V} if necessary) a cocycle for E_0 is of the form

$$u_{ij}t_{ij} : V_i \times_X V_j \rightarrow B,$$

where (t_{ij}) defines the cocycle for E and $u_{ij} : V_i \times_X V_j \rightarrow R_0(B)$. The cocycle condition is $u_{ij}t_{ij}u_{jk}t_{kl} = u_{ik}t_{kl}$ on $V_i \times_X V_j \times_X V_k$.

Using the action of T on $R_0(B)$, we can rewrite the cocycle condition as

$$u_{ij}t_{ij}(u_{ik}) = u_{ik}$$

These $[u_{ij}]$ are collectively called a twisted cocycle, and two twisted cocycles $[u_{ij}]$ and $[v_{ij}]$ are equivalent if there are morphisms $s_i : V_i \rightarrow R_0(B)$ for each index i satisfying the condition

$$s_iu_{ij}t_{ij}(s_i^{-1}) = v_{ij}$$

for each pair i, j with $V_i \times_X V_j \neq \emptyset$. Recall the notation $t(u) := tut^{-1}$. The equivalence classes of twisted cocycles form the pointed set $H^1(X, R_0(B)(\mathcal{E}))$ (taken over all open covers) with distinguished element being the cocycle $[u_{ij}]$ with $u_{ij} = 1$ for all i and j. This pointed set is in bijective correspondence with the isomorphism classes of B-bundles that extend to E via ψ. Since the action of T on $R_0(B)$ preserves the filtration (3.2), this action induces actions of T on each U_m and U_{m}/U_{m+1}. Therefore, we can also define $H^1(X, U_m(E))$ and $H^1(X, U_m/U_{m+1}(E))$ for each m (see [4] or [7, Appendix] for more details). Note that by composing we get the morphisms of pointed sets

$$f : H^1(X, U_{m+1}(E)) \rightarrow H^1(X, U_m(E))$$

and $g : H^1(X, U_m(E)) \rightarrow H^1(X, U_{m}/U_{m+1}(E))$.

The proof of the proposition will be completed using the following lemma.

Lemma 3.2. The following sequence of pointed sets is exact:

$$H^1(X, U_{m+1}(E)) \rightarrow H^1(X, U_m(E)) \rightarrow H^1(X, U_m/U_{m+1}(E)).$$

Recall that this means that $\text{image}(f) = g^{-1}(1)$, where 1 is the distinguished point in $H^1(X, U_m/U_{m+1}(E))$.

□
Proof of Lemma 3.2. It is easy to see that the composite is the constant map to e. So, we only need to verify that $\text{image}(f) \supseteq g^{-1}(e)$.

Let $\{u_i\}$ be a twisted cocycle on an open cover $\mathcal{V} = \{V_i\}$ with values in U_m, such that $g(\{u_i\}) = e$. The element $g(\{u_i\})$ is represented by the cocycle $\{\eta_i\}$, where η_i is obtained by composing u_i with the projection morphism $U_m \to U_m/U_{m+1}$. Then there are morphisms $\pi_i : V_i \to U_m/U_{m+1}$ such that for each $V_i \times_X V_j$ (when nonempty) we have $\pi_i \pi_j^{-1}(\eta_i^* \pi_j^{-1}) = 1$.

Since U_m and U_m/U_{m+1} as schemes are just affine spaces and the morphisms between them are projection morphisms, we can lift each of the morphisms π_i to get morphisms $s_i : V_i \to U_m$. We fix such a lifting. We define a cocycle $\{v_{ij}\}$ by $v_{ij} = s_i u_i s_j (s_j^{-1})$. It can be checked that this defines a cocycle which takes values in U_{m+1} and has the property that $f(\{v_{ij}\}) = \{u_i\}$. This completes the proof of Lemma 3.2.

Continuing with the proof of Proposition 3.1, to show that $H^1(X, K_u(B)(E_1)) = \{e\}$ we will inductively prove that

$$H^1(X, U_m(E_1)) = \{e\}$$

(3.8)

for each m. In view of the Lemma 3.2, it is enough to verify that

$$H^1(X, U_m/U_{m+1}(E_1)) = \{e\}$$

(3.9)

for each m. Since U_m/U_{m+1} is isomorphic to G_m, we have $H^1(X, U_m/U_{m+1}(E_1)) \cong H^1(X, \xi_m)$, where ξ_m is the line bundle obtained as a fiber bundle associated to E_1 for the action of T on U_m/U_{m+1} (note that the action of T on U_m/U_{m+1} is linear). But by the assumption in the proposition we have $H^1(X, \xi) = \{0\}$ for any line bundle ξ on X.

This completes the proof of the proposition.

Let m be an integer such that the canonical bundle K_X is isomorphic to $E_m^\otimes m$, where E_0 is the ample generator of Pic(X). The Kodaira vanishing theorem [16, page 36, Corollary 2.32] says that $H^i(X, E_m^\otimes i) = \{0\}$ for $i > m$. On the other hand, Serre duality gives

$$H^1(X, E_0^\otimes 1) = H^{d-1}(X, E_0^{\otimes (m-1)})^*$$

(3.10)

So again by the Kodaira vanishing theorem, we have $H^1(X, E_0^\otimes i) = \{0\}$ for $i < 0$. Also, the assumption Pic(X) $\cong \mathbb{Z}$ ensures that $H^1(X, \mathcal{O}_X) = \{0\}$. Therefore, the assumption in Proposition 3.1, namely $H^1(X, \xi) = \{0\}$ for all line bundles ξ on X, is satisfied if $m \leq 0$, that is, if X is either Fano or it has trivial canonical bundle.

Therefore, Theorem 2.7, Proposition 3.1, and Lemma 2.2 combine together to give Theorem 1.2 stated in the introduction.
Theorem 3.3. Let X be a projective manifold with $\text{Pic}(X) \cong \mathbb{Z}$ and X is Fano or it has trivial canonical bundle. For a G-bundle E on X, if the G'-bundle ρ^*E splits, where ρ is a faithful representation, then E admits a reduction of structure group to a one-parameter subgroup of T. □

4 Principal bundles over a projective space

Let $\mathbb{C}P^n$ be the projective space of all lines in \mathbb{C}^{n+1}. We will assume that $n \geq 2$. By $\mathbb{C}P^2 \subset \mathbb{C}P^n$ we mean a plane in $\mathbb{C}P^n$.

Corollary 4.1. A principal G-bundle E over $\mathbb{C}P^n$ admits a reduction of the structure group to a one-parameter subgroup of the maximal torus T if and only if there is a $\mathbb{C}P^2$ in $\mathbb{C}P^n$ such that the restriction of E to $\mathbb{C}P^2$ admits a reduction of the structure group to T. □

Proof. Let E be a G-bundle over $\mathbb{C}P^n$ such that the restriction $E|_{\mathbb{C}P^2}$ to a plane $\mathbb{C}P^2$ admits a reduction of the structure group to T.

Set ρ to be a faithful representation of G in $\text{GL}(V)$. Let $I(V)$ denote the vector bundle over X associated to E for ρ.

Since $E(V)|_{\mathbb{C}P^2}$ admits a reduction of the structure group to T, the restriction $I(V)|_{\mathbb{C}P^2}$ of $I(V)$ to $\mathbb{C}P^2$ splits as a direct sum of line bundles. Now [12, page 42, Theorem 2.3.2] says that $I(V)$ splits. Finally, Theorem 3.3 says that E admits a reduction of the structure group to a one-parameter subgroup of T. This completes the proof. □

Corollary 4.2. A principal G-bundle E over $\mathbb{C}P^n$ is trivial if and only if there is a point p in $\mathbb{C}P^n$ such that the restriction of E to every line $\mathbb{C}P^1 \subset \mathbb{C}P^n$ in $\mathbb{C}P^1$ is trivial. □

Proof. As in Corollary 4.1, set ρ to be a faithful representation of G in $\text{GL}(V)$.

Let E be a principal G-bundle on $\mathbb{C}P^n$ such that the restriction of E to any line $\mathbb{C}P^1 \subset \mathbb{C}P^n$ in $\mathbb{C}P^1$ is trivial. Therefore, the restriction of $E(V)$ to any line in $\mathbb{C}P^1$ is trivial. Now, [12, page 51, Theorem 3.2.1] says that the vector bundle $E(V)$ is trivial.

Now, Theorem 3.3 says that E admits a reduction of the structure group to a one-parameter subgroup of T. Let

$$E_{C^*} \subset E \quad (4.1)$$

be a C^*-bundle which is a reduction of the structure group of E to a one-parameter subgroup of T.
Since the restriction of E to any line l in \mathbb{CP}^n is trivial, the restriction of E_{C^\ast} to l is trivial. If ξ is a C^\ast-bundle on \mathbb{CP}^n satisfying the condition that its restriction to some line is trivial, then the C^\ast-bundle ξ is itself trivial (C^\ast-bundles correspond to line bundles). Therefore, the C^\ast-bundle E_{C^\ast} is trivial. This completes the proof. ■

In [8], Grothendieck proved that for a reductive group G, any principal G-bundle over \mathbb{CP}^1 admits a reduction of the structure group to a maximal torus T. Although this is not stated there, his arguments in [8, part 3 and 4] actually give the following theorem.

Theorem 4.3. Let E be a principal G-bundle on X (recall that we are always assuming $\text{Pic}(X) \cong \mathbb{Z}$). Assume that

1. if L is any line bundle on X with $\deg(L) \geq 0$, then $h^0(X,L) > 0$;
2. the adjoint bundle $\text{ad}(E)$ is a direct sum of line bundles.

Then E admits a reduction of the structure group to the normalizer N of a maximal torus T. □

Proof. For the convenience of the reader, we will give the proof. Recall that an element $v \in g$ is regular semisimple (or just regular for short) if the centralizer of v is a Cartan subgroup. For any $v \in g$, let $\text{ad}(v)$ denote the adjoint action of v on the Lie algebra g. Consider the characteristic polynomial

$$\det(1 - \text{ad}(v)) = \sum_{i=0}^{\dim G} a_i(v) t^i.$$ \tag{4.2}

The element v is regular semisimple if and only if we have $a_{\text{rank}(G)}(v) \neq 0$ [9, page 192, (v)].

Let s be a global section of the adjoint bundle. If s is regular at a point $x_0 \in X$, then it is regular for all points $x \in X$. Indeed, the coefficients of the characteristic polynomial $\sum a_i(\text{ad}(s(x))) t^i$ are holomorphic functions on X, hence constant. Consequently, the assertion follows from the above criterion for regularity.

Now we will show that if $\text{ad}(E)$ has a section s with $s(x)$ regular, then the structure group of E admits a reduction to the normalizer N of a maximal torus T of G.

Let $h(x) \in \text{ad}(E)_x$ be the centralizer of $s(x)$. Since $s(x)$ is regular, $h(x)$ is a Cartan algebra. Note that G/N is the space of Cartan subalgebras of g, hence $h(x)$ gives an element of $E(G/N)_x$. Therefore, the section s gives a reduction of the structure group to N.

In view of the above observation, to prove the theorem, it is enough to find a section s of the adjoint bundle, with $s(x)$ regular at some point $x \in X$. Since G is reductive, the Lie algebra is a direct sum of the center and the semisimple part

$$g = z \oplus g' \oplus g''.$$ \tag{4.3}
We have $E(g) = E(\mathfrak{g}) \oplus E(g')$. If an element $a \in g'$ is regular in g', then it is also regular in g, so we can assume that \mathfrak{g} is trivial, that is, the group is semisimple.

By hypothesis, $\text{ad}(E)$ is a direct sum of line bundles L_i. Let

$$E_k = \bigoplus_{\deg L_i \geq k} L_i \subset \text{ad}(E).$$

(4.4)

Fix an isomorphism of \mathfrak{g} with the fiber of $\text{ad}(E)$ over $x \in X$, and let \mathfrak{g}_k be the fiber of E_k over x. It is easy to check that $[E_k, E_k] \subset E_{k+k'}$. In particular, g_1 is a subalgebra, and if $y \in g_1$, then $\text{ad}y$ is nilpotent. Since we are assuming that G is semisimple, using the Killing form, $\text{ad}(E)$ becomes an orthogonal bundle (i.e., the fibers are equipped with a nondegenerate symmetric bilinear form). For this orthogonal structure we have $(E_1)^\perp = E_0$. By [8, Lemme 4.2]

$$(g_1)^\perp = \mathfrak{g}_0 \supset \mathfrak{h},$$

(4.5)

where \mathfrak{h} is a maximal solvable algebra and \mathfrak{h} is a Cartan subalgebra. Since \mathfrak{h} has regular elements, it follows that there is a regular element $a \in \mathfrak{g}_0$. Now, E_0 is a direct sum of line bundles of nonnegative degree, hence by hypothesis there is a section s of $E_0 \subset \text{ad}(E)$ such that $s(x) = a$. This completes the proof of the theorem.

If we further assume that X is simply connected, then E admits a reduction to a maximal torus T. This is because the normalizer $N(T)$ of a maximal torus T contains the maximal torus as a finite index subgroup hence any $N(T)$-bundle gives rise to a finite cover of X and since X is simply connected, this cover is trivial hence giving a reduction of structure group to the maximal torus, and hence, by Lemma 2.2, to a one-parameter subgroup (compare with Theorem 3.3).

Acknowledgments

We wish to thank S. Ramanan for some useful discussions. T. Gómez was supported by a postdoctoral fellowship of Ministerio de Educación y Cultura (Spain).

References

Reduction of Structure Group of Principal Bundles

Indranil Biswas: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
E-mail address: indranil@math.tifr.res.in

Tomás L. Gómez: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
E-mail address: tomas@math.tifr.res.in

Yogish I. Holla: School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Bombay 400005, India
Current address: Max Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
E-mail address: yogi@math.tifr.res.in, holla@mpim-bonn.mpg.de