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with Picard Number One
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1 Introduction

Let X be a connected projective manifold with Pic(X) ∼= Z. LetG be a connected reductive

algebraic group over C. A principal G-bundle will be called split if it admits a reduction

of structure group to a maximal torus of G. This corresponds to the usual definition of

a split vector bundle as a direct sum of line bundles.

Let B be a Borel subgroup of G and ρ : G → G ′ an injective homomorphism to

a connected reductive algebraic group over C. In Theorem 2.7 we prove the following

theorem.

Theorem 1.1. Let E be a principal G-bundle over X such that the principal G ′-bundle

E(G ′) := (E × G ′)/G obtained by extending the structure group using ρ is split. Then E

admits a reduction of structure group to B. �

Furthermore, if X is Fano or it has trivial canonical bundle, then we have the

following stronger consequence (Theorem 3.3).

Theorem 1.2. For a G-bundle E on X, if the G ′-bundle E(G ′) is split, then E itself is

split. �

If W is a vector bundle on CP
n, n ≥ 2, such that the restriction W|CP2 to a

plane CP
2 splits as a direct sum of line bundles, then W is already a direct sum of line

bundles [12, page 42, Theorem 2.3.2]. This result is a consequence of a splitting criterion
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890 Indranil Biswas et al.

of G. Horrocks. A corollary of Theorem 1.2 (Corollary 4.1) gives the following analog for

G-bundles. If E is a principal G-bundle over CP
n such that the restriction E|CP2 is split,

then E itself is split. In Lemma 2.2, we show that any split G-bundle over X admits

a reduction of structure group to a one-parameter subgroup of G.

A vector bundle W on CP
n is trivial if there is a point p in CP

n such that the

restriction of W to any line passing through p is trivial [12, page 51, Theorem 3.2.1].

In Corollary 4.2, we prove that a principal G-bundle E over CP
n is trivial if and only if

there is a point p in CP
n such that the restriction of E to every line CP

1 ⊂ CP
n passing

through p is trivial.

2 Criterion for reduction to Borel subgroup

Let G be a connected reductive algebraic group over C. The center of G will be denoted

by Z(G). Let B ⊂ G be a Borel subgroup and T ⊂ B a maximal torus of G.

Let X be a connected smooth projective variety over C of dimension d. We will

assume that the Picard group Pic(X) is isomorphic to Z.

Fix an ample line bundle ξ on X. The degree of a torsionfree coherent sheaf F

on X is

deg(F) :=
∫
X

c1(F)c1(ξ)
d−1. (2.1)

Note that ifU is a Zariski open subset of X such that codimC(X\U) ≥ 2, then deg(i∗i∗F) =

deg(F), where i : U ↪→ X is the inclusion map.

Given a group homomorphism h : H → G and a principal H-bundle EH, the

extension of structure group of EH to G is the G-bundle defined as

h∗EH :=
(
EH ×G

)
/H = EH(G), (2.2)

where the quotient is taken using the diagonal action. It may be noted that even in the

case h is an embedding, it can happen that h∗EH and h∗E ′
H are isomorphic but EH and

E ′
H are not isomorphic.

If H is a closed subgroup, h is the inclusion, and E a principal G-bundle over X,

then a reduction of the structure group of E to H is a principal H-bundle EH together

with an isomorphism h∗EH ∼= E. Equivalently, it is defined by an algebraic section of the

fiber bundle

E/H −→ X. (2.3)

The quotient E/H corresponds to the restriction to H of the action of G to E. If S is the
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Reduction of Structure Group of Principal Bundles 891

subvariety of E/H defined by the image of such a section, then we recover EH as the

subset of E given by the inverse image of S for the natural projection

E −→ E/H. (2.4)

Note that if EH ⊂ E is a reduction of the structure group of E to a subgroup H, then for

any g ∈ G the translation EHg of EH by g defines a reduction of the structure group of E

to the conjugate g−1Hg of H.

A principalG-bundle E over X is called semistable if for every maximal parabolic

subgroup P ⊂ G and for every reduction of structure group σ : U → E/P over some Zariski

open subset U with codimC(X \ U) ≥ 2, the inequality

degσ∗(Trel
) ≥ 0 (2.5)

is valid, where Trel is the relative tangent bundle for the natural projection of E/P|U to

U. Since Pic(X) ∼= Z, the semistability condition does not depend on the choice of the

polarization ξ.

The condition of semistability has the following equivalent reformulation

[14, Lemma 2.1]. A principal G-bundle E over X is semistable if and only if for every

parabolic subgroup P ⊂ G and every holomorphic reduction EP of the structure group

of E to P over some open subset U ⊆ X with codimC(X \ U) ≥ 2, and for every nontriv-

ial character θ : P → C
∗ which is dominant with respect to some Borel subgroup of G

contained in P, the inequality deg(EP(θ)) ≤ 0 is valid, where EP(θ) = EP(C) is the line

bundle (EP × C)/P over U associated to EP for the character θ of P.

From the definition, it follows that a GL(n,C)-bundle is semistable if and only if

the rank n vector bundle associated to it by the standard representation is semistable.

We recall that a vector bundle E is called semistable if for any coherent subsheaf F of E,

with 0 < rank(F) < rank(E), the inequality

deg(F)
rank(F)

≤ deg(E)
rank(E)

(2.6)

is valid [10].

A vector bundle is called split if it is a direct sum of line bundles, and recall

from the introduction that a principal G-bundle over X is defined to be split if it admits

a reduction of structure group to the maximal torus T .

Remark 2.1. It is easy to see that a GL(n,C)-bundle is split if and only if the vector

bundle associated to it by the standard representation of GL(n,C) splits as a direct sum
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892 Indranil Biswas et al.

of line bundles. More generally, any extension of the structure group of a split bundle

is always split.

A principal G-bundle E over X is said to admit a reduction of structure group to

a one-parameter subgroup of the maximal torus T if there is a homomorphism

γ : C∗ −→ T (2.7)

and a principal C
∗-bundle EC∗ over X such that the principal G-bundle obtained by

extending the structure group of EC∗ , using the composition of γ with the inclusion of T

in G, is isomorphic to E. Such a G-bundle is obviously split. The following lemma shows

that the converse is true.

Lemma 2.2. Any principal T-bundle over X admits a reduction of the structure group to

a one-parameter subgroup. �

Proof. Since T is isomorphic to a product of copies of C
∗, there is a natural bijection

between (isomorphism classes of) T-bundles and vector bundles of the form

ζ1 ⊕ ζ2 ⊕ · · · ⊕ ζr, (2.8)

where r = dim T and ζi are line bundles. Since Pic(X) ∼= Z, it is generated by a fixed

line bundle O(1). So we have ζi ∼= O(ni) for some ni ∈ Z. This means that there is

a reduction of the structure group of any principal T-bundle to C
∗, with the homo-

morphism γ : C∗ → T determined by the numbers ni. More precisely, γ is of the form

λ 
→ (λn1 , . . . , λni , . . . , λnr). This completes the proof of the lemma. �

Fix an injective homomorphism ρ : G → G ′ as in the introduction.

An important fact used in our arguments is that for any connected reductive

group G, the center Z(G) is always contained in T . In fact, Z(G) is the intersection of all

possible maximal tori of G.

Proposition 2.3. If the principal G ′-bundle E(G ′) is split, then the adjoint vector bundle

ad(E) is split. �

Proof. Take a faithful representation

ρ ′ : G ′ −→ GL(V). (2.9)

Let E(V) := (E(G ′)× V)/G ′ be the vector bundle associated to E(G ′) for ρ ′. Since E(G ′) is

the extension of E, the vector bundle E(V) is also an extension of E for ρ ′ ◦ ρ.
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Reduction of Structure Group of Principal Bundles 893

Since ρ ′ ◦ ρ is a faithful representation of G, and G is reductive, any irreducible

G-module is a direct summand of E(V)⊗i
⊗
(E(V)∗)⊗i

′
for some i, i ′ ≥ 0 [5, page 40,

Proposition 3.1(a)]. In other words, any G-module is a direct summand of a finite sum

of the type

⊕
j

(
E(V)⊗ij ⊗ (

E(V)∗
)⊗i ′j). (2.10)

In particular, the adjoint bundle ad(E) is a direct summand of a direct sum of vector

bundles of this type.

Since E(G ′) is split, from Remark 2.1 we know that E(V) is a direct sum of line

bundles. Therefore, any E(V)⊗i
⊗
(E(V)∗)⊗i

′
is also a direct sum of line bundles.

We will show that a direct summand of a split vector bundle over a compact

connected projective manifold is split. LetW be a split vector bundle andW =W1
⊕

W2

any decomposition into a direct sum of vector bundles. Let Wi =
⊕
j∈Ii V

i
j , i = 1, 2,

be the decomposition into indecomposable vector bundles. The existence of such

a decomposition is ensured by [2, page 315, Lemma 9]. Consequently, (
⊕
j V
1
j )

⊕
(
⊕
j V
2
j )

is a decomposition of W into indecomposable vector bundles. A theorem of Atiyah

[2, page 315, Theorem 3] says that any given vector bundle over a connected complex

projective manifold can be uniquely decomposed as a direct sum of indecomposable

vector bundles (unique up to reordering the summation). Now, since W decomposes as

a direct sum of line bundles, it follows immediately that each Vij is a line bundle.

We have shown that ad(E) is a direct summand of a split vector bundle. Conse-

quently, ad(E) is split. This completes the proof of the proposition. �

Lemma 2.4. Let E be a semistable G-bundle over X such that the vector bundle ad(E) is

split. Then E admits a reduction of the structure group to Z(G). In particular, E is split.

�

Proof. Since E is semistable hence ad(E) is semistable.

Now, since Pic(X) ∼= Z, the semistability condition of ad(E) ensures that ad(E) is

of the form

ad(E) ∼= ζ⊕N, (2.11)

where ζ is a line bundle over X and N = rank(ad(E)). Since Pic(X) ∼= Z and the degree of

ad(E) is zero, it follows immediately that the line bundle ζ is trivial and hence ad(E) is

a trivial vector bundle. Since ad(E) is isomorphic to the trivial vector bundle, any section

of ad(E) over X is a constant section. So if s1 and s2 are two sections of ad(E) over X,

then their bracket [s2, s2] is also constant.
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894 Indranil Biswas et al.

Consequently, ad(E) is trivial as a Lie algebra bundle. Let Aut(g) denote the group

of Lie algebra automorphisms of g. The triviality of ad(E) as a Lie algebra bundle implies

that the principal bundle E(Aut(g)) associated to the adjoint representation G → Aut(g)

is trivial. The adjoint representation factors is as follows:

G −→ G/Z
j−−→ Aut(g). (2.12)

The groupG/Z is the connected component of the identity of Aut(g) and j is the inclusion,

hence we have a short exact sequence of groups

{e} −→ G/Z
j−−→ Aut(g) −→ F −→ {e}, (2.13)

where F is a discrete group. This gives an exact sequence of pointed sets (see [6, page 153,

Section 5], [15, Proposition 11], or [11, page 122, Proposition III.4.5])

H0(X, F)
δ−−→ H1(X,G/Z)

j∗−−→ H1
(
X,Aut(g)

)
. (2.14)

This means that (j∗)−1(e) = image(δ), where e is the point corresponding to the trivial

bundle. Let E(G/Z) be the principal bundle associated to G → G/Z. It gives a point

[E(G/Z)] in H1(X,G/Z), whose image under j∗ is equal to [E(Aut(g))]. Since this principal

bundle is trivial, by exactness we know that [E(G/Z)] is in the image of δ. Recall that

δ(σ) is defined as the point corresponding to the principal G/Z-bundle E ′ given by the

Cartesian diagram

E ′ X× Aut(g)

X
σ

X× F.

(2.15)

Since F is discrete,σhas to be constant, and then, for anyσ, we have that δ(σ) corresponds

to the trivial bundle, so we conclude that E(G/Z) is trivial.

Now, consider the exact sequence of pointed sets

H1(X,Z)
i∗−−→ H1(X,G) −→ H1(X,G/Z). (2.16)

Since the point [E] ∈ H1(X,G) maps to the trivial element [E(G/Z)], there is a principal

Z-bundle EZ such that i∗EZ ∼= E. In other words, EZ is a reduction of structure group of E

to Z and the proof is complete. �

Now we are in a position to prove the main result of this section.
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Reduction of Structure Group of Principal Bundles 895

Proposition 2.5. Let E be a nonsemistable G-bundle such that the vector bundle ad(E)

is split. Then E admits a reduction of the structure group to a Borel subgroup of G. �

Proof. A nonsemistable G-bundle F admits a canonical reduction of structure group

[1, Theorem1.1], [3],which for the case of vector bundles is the usualHarder-Narasimhan

filtration [10]. Consider the adjoint vector bundle ad(F). Since F is not semistable, the

vector bundle ad(F) is not semistable (if ad(F) is semistable, then F is semistable

[13, Theorem 3.18]). Consider the Harder-Narasimhan filtration of ad(F). Since G is

reductive, the Lie algebra g admits a nondegenerate symmetric bilinear form invariant

under the adjoint action of G. Such a form induces a nondegenerate symmetric bilinear

form on ad(F). Since ad(F)∗ ∼= ad(F), the Harder-Narasimhan filtration is of the form

0 =W−l ⊂ W−l+1 ⊂ · · · ⊂ W−1 ⊂ W0 ⊂ W1 ⊂ · · · ⊂ Wl−1 ⊂ Wl = ad(F), (2.17)

where W−i coincides with W⊥
i with respect to the nondegenerate symmetric bilinear

form. The canonical reduction FP ⊂ F over a Zariski open subset U of X with

codimC(X \ U) ≥ 2 is determined by the condition that the adjoint bundle ad(FP)

coincides with W0. The open subset U is the one over which each Wi is a subbundle

of ad(F). It turns out that W−1 coincides with the vector bundle EP(n) associated to EP

for the adjoint action of P on the nilpotent radical n of the Lie algebra of P.

Let EP ⊂ E denote the canonical reduction of E to a proper parabolic subgroup P

of G over a Zariski open subset U of X with codimC(X \ U) ≥ 2.

Since ad(E) is a direct sum of line bundles, each term in the Harder-Narasimhan

filtration of the adjoint bundle ad(E) is a subbundle of ad(E). Therefore, the open subsetU

coincides with X.

Consider the exact sequence

{e} −→ Ru(P) −→ P
ψP−−−→ L −→ {e}, (2.18)

where Ru(P) is the unipotent radical of P and L is the Levi factor. The Lie algebra of L

will be denoted by l.

Let EL = (ψP)∗EP be the extension of the structure group by ψP. Its adjoint

bundle EL(l) will be denoted by ad(EL). From the construction of canonical reduction

it follows that ad(EL) is semistable. In fact, ad(EL) coincides with W0/W−1, if {Wi}

is the Harder-Narasimhan filtration of ad(E). Therefore, the L-bundle EL is semistable

[13, Theorem 3.18].

Since ad(E) is a direct sum of line bundles, each quotient Wi/Wi−1 is naturally

a direct summand of ad(E), where {Wi} is the Harder-Narasimhan filtration of ad(E).
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896 Indranil Biswas et al.

(This follows from the construction of Harder-Narasimhan filtration of a direct sum-

mand of line bundles.) Consequently, ad(EL) is a direct summand of ad(E). We saw in

the proof of Proposition 2.3 that a direct summand of a split vector bundle is again split.

Therefore, ad(EL) is a split vector bundle.

Since EL is semistable and ad(EL) is split, from Proposition 2.3 and Lemma 2.4

it follows that the L-bundle EL admits a reduction of the structure group to its center

hence to the maximal torus T(L) of L.

Let ET (L) ⊂ EL be a T(L)-bundle giving a reduction of the structure group of EL

to T(L).

Let ψ : EP → EL denote the projection induced by the natural projection ψP of P

to L. The inverse image

ψ
−1(

ET (L)
) ⊂ EP (2.19)

defines a reduction of the structure group of the P-bundle EP to the subgroupψ−1P (T(L)) ⊂
P. But ψ−1P (T(L)) lies in a Borel subgroup of G contained in P. This completes the proof.

�

Remark 2.6. In the proof of Proposition 2.5, it is possible to directly prove that the bun-

dle ad(EL) is trivial from the description of the canonical filtration of the G-bundle E in

terms of the canonical filtration of ad(E).

Combining all these results, we obtain Theorem 1.1 stated in the introduction.

Theorem 2.7. Let E be a principal G-bundle over X such that the principal G ′-bundle

E(G ′) := (E × G ′)/G obtained by extending the structure group using ρ is split. Then E

admits a reduction of structure group to B. �

Proof. By Proposition 2.3, ad(E) is split. If E is semistable, then by Lemma 2.4 it is split

(in particular, it has a reduction to a Borel subgroup). If E is not semistable, then we

apply Proposition 2.5. �

Remark 2.8. It is not true in general that if ad(E) is split thenE is split. Take two elements

g1, g2 ∈ SU(2) such that g1g2g−11 g−12 = −1. Let Y be a Riemann surface of genus two. Let Γ

denote the free group generated by a1, b1, a2, b2. Take a standard presentation of the

fundamental group π1(Y) as the quotient of Γ by the normal subgroup generated by

a1b1a
−1
1 b−11 a2b2a

−1
2 b−12 . Consider the homomorphism

β : π1(Y) −→ SU(2) (2.20)
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Reduction of Structure Group of Principal Bundles 897

defined by β(ai) = gi and β(bi) = 1, i = 1, 2. Since g1 and g2 do not commute, β defines

an irreducible unitary representation. Therefore, the rank two vector bundle V on Y

associated to this representation is stable. In particular, V is indecomposable. Since the

vector bundle V is indecomposable, the principal SL(2,C)-bundle defined by V is not

split. But the representation of π1(Y) on the Lie algebra su(2) defined by β is reducible.

Indeed, as the adjoint action of −1 ∈ SU(2) on the Lie algebra su(2) is trivial, the adjoint

actions of g1 and g2 commute. Therefore, the adjoint vector bundle ad(V) defined by the

sheaf of trace zero endomorphisms of V decomposes as a direct sum of line bundles.

In the next section we will see that an assumption on X ensures that E is split

if E1 is split.

3 Reduction to the maximal torus

We continue with the notation of Section 2.

Proposition 3.1. Assume that H1(X, ζ) = 0 for all line bundles ζ on X. Let EB be

a B-bundle. Then EB admits a reduction of the structure group to T . �

Proof. Let Ru(B) denote the unipotent radical ofB. Consider the exact sequence of groups

{e} −→ Ru(B) −→ B
ψ−−→ T −→ {e}. (3.1)

Let s : T → B be a splitting of this exact sequence. Let ET := ψ∗EB be the principal

T-bundle obtained by extending the structure group of EB. Note that the principal B-

bundle s∗ET admits a reduction of the structure group to T . Consequently, it is enough

to show that s∗ET is isomorphic to EB.

Taking the extension of the structure group of these two B-bundles, namely EB

and s∗ET , by ψ, we get the same T-bundle ET (here we use the fact that s is a splitting).

Therefore, it suffices to show that if EB and E ′
B are two B-bundles with ψ∗EB ∼= ψ∗E ′

B,

then EB
∼= E ′

B. For this we have to understand the isomorphism classes of B-bundles

which under the extension of the structure group by ψ give ET .

We observe that T acts on the unipotent radical Ru(B) by conjugation via s.

For any t ∈ T the action of t on Ru(B) will be denoted as t(u) := tut−1, where u ∈ Ru(B).

Since T is abelian, we can find a filtration of Ru(B)

Ru(B) = U1 ⊃ U2 ⊃ · · · ⊃ Uk ⊃ Uk+1 = {e} (3.2)

such that Uj+1 is normal in Uj, each Uj are invariant under the action of T and the

quotients Uj/Uj+1 are isomorphic to Ga, the additive group C.
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898 Indranil Biswas et al.

Now we define twisted cohomology sets H1(X,Ui(ET )) for each i with the prop-

erty that for i = 1, the set H1(X,U1(ET )) parametrizes all the isomorphism classes of

B-bundles that extend to ET via ψ.

Fix a cocycle {tij} for ET with respect to an étale open cover V = {Vi}. Let EB be

a B-bundle with ψ∗EB ∼= ET , then (refining V if necessary) a cocycle for EB is of the form

uijtij : Vi ×X Vj −→ B, (3.3)

where {tij} defines the cocycle for ET and uij : Vi×X Vj → Ru(B). The cocycle condition is

uijtijujktjk = uiktik on Vi ×X Vj ×X Vk.

Using the action of T on Ru(B), we can rewrite the cocycle condition as

uijtij(ujk) = uik. (3.4)

These {uij} are collectively called a twisted cocycle, and two twisted cocycles {uij} and

{vij} are equivalent if there are morphisms si : Vi → Ru(B) for each index i satisfying the

condition

siuijtij
(
s−1j

)
= vij (3.5)

for each pair i, j with Vi ×X Vj �= ∅. Recall the notation t(u) := tut−1. The equiva-

lence classes of twisted cocycles form the pointed set H1(X, Ru(B)(ET )) (taken over all

open covers) with distinguished element being the cocycle {uij} with uij = 1 for all i

and j. This pointed set is in bijective correspondence with the isomorphism classes of

B-bundles that extend to ET via ψ. Since the action of T on Ru(B) preserves the filtra-

tion (3.2), this action induces actions of T on each Um and Um/Um+1. Therefore, we can

also define H1(X,Um(ET )) and H1(X,Um/Um+1(ET )) for each m (see [4] or [7, Appendix]

for more details). Note that by composing we get the morphisms of pointed sets

f : H1
(
X,Um+1

(
ET

)) −→ H1
(
X,Um

(
ET

))
(3.6)

and g : H1(X,Um(ET ))→ H1(X,Um/Um+1(ET )).

The proof of the proposition will be completed using the following lemma.

Lemma 3.2. The following sequence of pointed sets is exact:

H1
(
X,Um+1

(
ET

)) f−−→ H1
(
X,Um

(
ET

)) g−−→ H1
(
X,Um/Um+1

(
ET

))
. (3.7)

�

Recall that this means that image(f) = g−1(e), where e is the distinguished point

in H1(X,Um/Um+1(ET )).
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Reduction of Structure Group of Principal Bundles 899

Proof of Lemma 3.2. It is easy to see that the composite is the constant map to e. So, we

only need to verify that image(f) ⊃ g−1(e).

Let {uij} be a twisted cocycle on an open cover V = {Vi} with values in Um, such

that g([{uij}]) = e. The element g([{uij}]) is represented by the cocycle {uij}, where uij is

obtained by composing uij with the projection morphism Um 
→ Um/Um+1. Then there

are morphisms si : Vi → Um/Um+1 such that for each Vi×XVj (when nonempty) we have

siuijtij((sj)
−1) = 1.

Since Um and Um/Um+1 as schemes are just affine spaces and the morphisms

between them are projectionmorphisms, we can lift each of themorphisms si to get mor-

phisms si : Vi → Um. We fix such a lifting. We define a cocycle {vij} by vij = siuijtij(s
−1
j ).

It can be checked that this defines a cocycle which takes values in Um+1 and has the

property that f([{vij}]) = [{uij}]. This completes the proof of Lemma 3.2. �

Continuing with the proof of Proposition 3.1, to show thatH1(X, Ru(B)(ET )) = {e}

we will inductively prove that

H1
(
X,Um

(
ET

))
= {e} (3.8)

for each m. In view of the Lemma 3.2, it is enough to verify that

H1
(
X,Um/Um+1

(
ET

))
= {e} (3.9)

for each m. Since Um/Um+1 is isomorphic to Ga we have H1(X,Um/Um+1(ET )) ∼=

H1(X, ζm), where ζm is the line bundle obtained as a fiber bundle associated to ET for

the action of T on Um/Um+1 (note that the action of T on Um/Um+1 is linear). But by

the assumption in the proposition we have H1(X, ζ) = 0 for any line bundle ζ on X.

This completes the proof of the proposition. �

Let m be an integer such that the canonical bundle KX is isomorphic to ξ⊗m
0 ,

where ξ0 is the ample generator of Pic(X). The Kodaira vanishing theorem, [16, page 36,

Corollary 2.32], says thatH1(X, ξ⊗i
0 ) = 0 for i > m. On the other hand, Serre duality gives

H1
(
X, ξ⊗i

0

)
= Hd−1

(
X, ξ

⊗(m−i)
0

)∗
. (3.10)

So again by the Kodaira vanishing theorem, we have H1(X, ξ⊗i
0 ) = 0 for i < 0. Also, the

assumption Pic(X) ∼= Z ensures that H1(X,OX) = 0. Therefore, the assumption in

Proposition 3.1, namely H1(X, ζ) = 0 for all line bundles ζ on X, is satisfied if m ≤ 0,

that is, if X is either Fano or it has trivial canonical bundle.

Therefore, Theorem 2.7, Proposition 3.1, andLemma 2.2 combine together to give

Theorem 1.2 stated in the introduction.
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Theorem 3.3. Let X be a projective manifold with Pic(X) ∼= Z and X is Fano or it has

trivial canonical bundle. For a G-bundle E on X, if the G ′-bundle ρ∗E splits, where ρ

is a faithful representation, then E admits a reduction of structure group to a one-

parameter subgroup of T . �

In the final section we will give some applications for CP
n.

4 Principal bundles over a projective space

Let CP
n be the projective space of all lines in C

n+1. We will assume that n ≥ 2. By CP
2 ⊂

CP
n we mean a plane in CP

n.

Corollary 4.1. AprincipalG-bundleE overCP
n admits a reduction of the structure group

to a one-parameter subgroup of the maximal torus T if and only if there is a CP
2 in CP

n

such that the restriction of E to CP
2 admits a reduction of the structure group to T . �

Proof. Let E be aG-bundle over CP
n such that the restriction E|CP2 to a plane CP

2 admits

a reduction of the structure group to T .

Set ρ to be a faithful representation of G in GL(V). Let E(V) denote the vector

bundle over X associated to E for ρ.

Since E(V)|CP2 admits a reduction of the structure group to T , the restriction

E(V)|CP2 of E(V) to CP
2 splits as a direct sum of line bundles. Now [12, page 42, Theorem

2.3.2] says that E(V) splits. Finally, Theorem 3.3 says that E admits a reduction of the

structure group to a one-parameter subgroup of T . This completes the proof. �

Corollary 4.2. A principal G-bundle E over CP
n is trivial if and only if there is a point p

in CP
n such that the restriction of E to every line CP

1 ⊂ CP
n in Cp is trivial. �

Proof. As in Corollary 4.1, set ρ to be a faithful representation of G in GL(V).

Let E be a principal G-bundle on CP
n such that the restriction of E to any line

CP
1 ⊂ CP

n in Cp is trivial. Therefore, the restriction of E(V) to any line in Cp is trivial.

Now, [12, page 51, Theorem 3.2.1] says that the vector bundle E(V) is trivial.

Now, Theorem 3.3 says that E admits a reduction of the structure group to a

one-parameter subgroup of T . Let

EC∗ ⊂ E (4.1)

be a C
∗-bundle which is a reduction of the structure group of E to a one-parameter

subgroup of T .
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Since the restriction of E to any line l in Cp is trivial, the restriction of EC∗ to l is

trivial. If ζ is aC
∗-bundle onCP

n satisfying the condition that its restriction to some line

is trivial, then the C
∗-bundle ζ is itself trivial (C∗-bundles correspond to line bundles).

Therefore, the C
∗-bundle EC∗ is trivial. This completes the proof. �

In [8], Grothendieck proved that for a reductive group G, any principal G-bundle

over CP
1 admits a reduction of the structure group to a maximal torus T . Although this

is not stated there, his arguments in [8, part 3 and 4] actually give the following theorem.

Theorem 4.3. Let E be a principal G-bundle on X (recall that we are always assuming

Pic(X) ∼= Z). Assume that

(1) if L is any line bundle on X with deg(L) ≥ 0, then h0(X, L) > 0;

(2) the adjoint bundle ad(E) is a direct sum of line bundles.

Then E admits a reduction of the structure group to the normalizer N of a maxi-

mal torus T . �

Proof. For the convenience of the reader, we will give the proof. Recall that an element

v ∈ g is regular semisimple (or just regular for short) if the centralizer of v is a Cartan
subgroup. For any v ∈ g, let ad(v) denote the adjoint action of v on the Lie algebra g.

Consider the characteristic polynomial

det
(
t− ad(v)

)
=

dimG∑
i=0

ai(v)t
i. (4.2)

The element v is regular semisimple if and only ifwehavearank(G) (v) �= 0 [9, page 192, (v)].

Let s be a global section of the adjoint bundle. If s is regular at a point x0 ∈ X,

then it is regular for all points x ∈ X. Indeed, the coefficients of the characteristic poly-

nomial
∑

ai(ad s(x))ti are holomorphic functions on X, hence constant. Consequently,

the assertion follows from the above criterion for regularity.

Nowwewill show that if ad(E)has a section swith s(x) regular, then the structure

group of E admits a reduction to the normalizer N of a maximal torus T of G.

Let h(x) ∈ ad(E)x be the centralizer of s(x). Since s(x) is regular, h(x) is a Cartan

algebra. Note that G/N is the space of Cartan subalgebras of g, hence h(x) gives an

element of E(G/N)x. Therefore, the section s gives a reduction of the structure group toN.

In view of the above observation, to prove the theorem, it is enough to find a sec-

tion s of the adjoint bundle, with s(x) regular at some point x ∈ X. Since G is reductive,

the Lie algebra is a direct sum of the center and the semisimple part

g = z⊕ g ′. (4.3)

 by guest on January 27, 2011
im

rn.oxfordjournals.org
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


902 Indranil Biswas et al.

We have E(g) = E(z) ⊕ E(g ′). If an element a ∈ g ′ is regular in g ′, then it is also regular

in g, so we can assume that z is trivial, that is, the group is semisimple.

By hypothesis, ad(E) is a direct sum of line bundles Li. Let

Ek =
⊕

degLi≥k
Li ⊂ ad(E). (4.4)

Fix an isomorphism of g with the fiber of ad(E) over x ∈ X, and let gk be the fiber

of Ek over x. It is easy to check that [Ek, Ek ′ ] ⊂ Ek+k ′ . In particular, g1 is a subalge-

bra, and if Y ∈ g1, then adY is nilpotent. Since we are assuming that G is semisimple,

using the Killing form, ad(E) becomes an orthogonal bundle (i.e., the fibers are equipped

with a nondegenerate symmetric bilinear form). For this orthogonal structure we have

(E1)
⊥ = E0. By [8, Lemme 4.2]

(
g1

)⊥
= g0 ⊃ R ⊃ h, (4.5)

whereR is a maximal solvable algebra and h is a Cartan subalgebra. Since h has regular

elements, it follows that there is a regular element a ∈ g0. Now, E0 is a direct sum of line

bundles of nonnegative degree, hence by hypothesis there is a section s of E0 ⊂ ad(E)

such that s(x) = a. This completes the proof of the theorem. �

If we further assume that X is simply connected, then E admits a reduction to

a maximal torus T . This is because the normalizer N(T) of a maximal torus T contains

the maximal torus as a finite index subgroup hence anyN(T)-bundle gives rise to a finite

cover of X and since X is simply connected, this cover is trivial hence giving a reduction

of structure group to the maximal torus, and hence, by Lemma 2.2, to a one-parameter

subgroup (compare with Theorem 3.3).
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