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Classification of isolated complete intersection singularities
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Abstract. In this article we prove that an isolated complete intersection singularity (V,0) is
characterized by a module of finite length A(V) (cf. §1 for definition) associated to it. The
proof uses the theory of finitely determined map germs and generalises the corresponding
result by Yau and Mather [4], for hypersurfaces.

Keywords. Intersection singularity; finite length; map germs.

Statement of the results

We use the following notation.
(C™0):Germ at the origin of C™.

On:Ring of germs of holomorphic functions on (C™,0).
M,:Maximal ideal of @,,.
Q,,:0,-module of Kihler differentials of order 1

©,,:C-derivations of 0,, (tangent sheaf of (C™, 0)).

In [1] Le and Ramanujam had proved that the moduli algebra determines the
topological type of an isolated hyper surface singularity. In [4] Mather and Yau
proved that an isolated hyper surface singularity is characterized by its dimension
and the moduli algebra.

Here we prove the analogous result for an isolated complete intersection singularity,
i.e. an isolated complete intersection singularity, (V, 0), is characterized by its dimension
and the @p-module Ext} (Qy, 0)).

After this work was c{one, the paper [5] was brought to my notice, in which a
different method is used to give a classification of singularities of isolated type, this
includes the case considered in this paper. However the present method, which follows
that of Yau and Mather, involves explicit computations (see§4) and may be of
independent interest in dealing with certain related problems.

Remark. Our method can be extended to yield the stronger result that if (V,0) is any
analytic germ with no smooth curve contained in the singular locus, then the
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isomorphism class of the module A(V') defined by the exact sequence (#) [not in.general
equal to Extg (Qy,0))] characterises the analytic isomorphism type of V. This result
is also contained in [5].

Let f:(C™,0)—(C* 0) be a holomorphic map-germ. Let ©(f) be the pull-back of
the sheaf of germs of holomorphic vector fields at the origin of (C*,0) i.e. ©(f) =
O @40, 0. 0f:0,,—O(f) be the derivative map. V =(fy,..., fi) be the analytic
space defined by f =0. Set

A(V)=Ext} (Qy,0y)
J(V) = Ann@VExtéy(Qy, @V)‘

A presentation for (¥, 0) = (C™, 0) is a choice of generators for I(V), the ideal defining
(V,0) in (C™,0). This is equivalent to giving a map germ f:(C™,0)—(C*, 0) for some
k such that {f =0} =(¥,0) in (C",0). Let (W,0)=V(g,...g,) be the analytic space
defined by g = 0. Assume that (¥, 0) and (W, 0) are the isolated complete intersection
singularities of dimension n, and @, and 0y, the corresponding analytic local rings.
Then we prove the following:

Main Theorem. Suppose there exists a C-algebra isomorphism h: Oy [J(V)— Oy [T (W)
such that A(V) ~ h* A(W) i.e. there exists an abelian group isomorphismyr: A(V)— A(W)
such that y(a,m)= h(a)-y(m) for all meA(V) and V ae0Oy/J(V). Then Oy Oy as
C-algebras.

Notice that for any presentation of (V,0) as an isolated complete intersection
singularity germ (V,0) =V (f, ... f;) in (C™,0), we have an exact sequence,

0= f*( M) O(f) + 0f (@)= O(f) > A(V) 0. @

Observe that ©(f) is a free @,-module with basis 1®(9/0t;). Hence A(V) can be
considered as an @, ,-module. The following lemmas are standard.

Lemma 1. If (V,0) is a complete intersection, then the minimal number of generators of

A(V) as an Oy-module, u(A(V)), equals the embedding codimension of V. Thus the
embedding dimension equals u(A(V)) + dim V.

Lemma 2. Let R and S be local rings which are quotients of O,,. Then any isomorphism
of C-algebras Q:R— S can be lifted to an automorphism of 0,, as a C-algebra.

COROLLARY 1

Let (V,0) and (W,0) be as in the main theorem. Then we can embed (V,0) and (W,0)
in (C"**,0) with n = dim(V,0) and k = H(A(V)), such that A(V) is isomorphic to A(W)
as 0, . ,-modules.

Proof. By the hypothesis of the theorem mu(A(V)) = u(A(W)) both have the same
embedding dimension by Lemma 1. By Lemma 2, the isomorphism, h: @, /J V)—-
Ow/J(W), can be lifted to an automorphism h: 0, ,,«> . By replacing (W, 0) by its

image i.e. I(W) by h (I(W)), we can assume that A(V) is actually isomorphic to A( w)
as an 0, , module.
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2. The Group o and a theorem of Mather

In this section we recall some definitions and a theorem from [2].
Elements of X are pairs (h, H) of holomorphic automorphisms h:(C"*¥ 0)—
(C"**%,0) and H:(C"*%,0)— (C"*2*,0), such that the following diagram commutes:

(C" + k’ 0) i (C” + Zk’ 0) T (Cn +k’ O)
h H h
(C" +k’ 0) —'—-»(C" + zk’ 0) ——l’——>(0:" + k’ 0)

Here i and =n are i(zy,...,Z,+1 ) =(2y,- s Zp4%:0,...,0) and 7w(zy,..., 2,4 00) =
(4552, 11)- We define

F ={f(C"**0)—(C*,0)/f is holomorphic}.

We define an action of ¥ on & as follows. Let (h, He X" and fe#, then there exist
a unique ge& such that graph g = H(graph f). We set (h, H):f=g.

Lemma 3. If f and g define n-dimensional spaces (V,0) and (W, 0) then they are in the
same A -orbit if and only if (V,0) and (W,0) are biholomorphically equivalent.

Proof. Let(h, HieX besuchthat(h,H) f =g.Thenh™*(W)=h"'ei~!(graphg)=i !
(H™*(graph g))=i"" (graph f)= V. Henceh: (C"**,0)—(C*,0) provides a biholo-
morphic equivalences between (V,0) and (W, 0).

Conversely suppose h:(C"**0)—(C"**,0) is a biholomorphic map such that
h(V)=W. Then we define H: (C"*2%,0)—(C"*2%,0) as H(z,w) = (h(z), U~ *(z), w),
where UeGL(k,0,.,) is such that f = U(geh), for zeC"** and weC*. Then clearly
(h, Hex". Also,

H(graph f) = H(z, f(2)) = (h(2), U™ (2) f (2)) = (h(2), g° h(2))
= (h(2), g(h(2)) = graphyg.

Hence (h, H) - f =g¢.

Let X", be the subgroup of X~ consisting of all (h, H)e" such that its r-jet at 0,
is the same as the r-jet of the identity. #™® = o o/",. Then @ is a Lie group. Let
" be the r-jet of elements of #. Then 2" will act on #* by (h, H)"-f® = ((h, H)-f).

An element fe# is said to be r-determined relative to X if for any ge# with
gPeX®-fO, gex - f. An element of & is said to be finitely determined relative to X"
if it is r-determined for some reN. In this situation we have

Theorem 1. ([2], Theorem 3.5): fe & is finitely determined if and only if ©(f)/8f @)+
SH*RYO(S) is of finite C-dimension.

Now by (#), the function, f defining the isolated complete intersection singularity
is finitely determined, because Ext}gy(QV, 0y) has finite length, where V is defined by
{f=0}.
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3. Reduction to a special case

From now on we fix coordinates t,,...,1, on (C0). Let V=V (f,,..., f;) be as in
the main theorem.

Lemma 4. Let fi=3 a;;f; 1<i, j<k, be another set of generators for the ideal I(V).
Let p;=1Q@dt;€0, 1) @y and p;=1®dt,e0,,, ®yve, Y be the free basis for the
corresponding O, . ,-modules. Then we have the following commutative diagram:

Oy @Oy ®f‘@k9k)1 U

ur Oy ® (O @y, )

Here the vertical isomorphism is given by 1® p;—f; and the horizontal isomorphism
is given by 1® p;—f; and U is defined by

U(p) = Z AiiPj

Proof. The commutativity of the diagram follows from the definition of those maps
and a simple diagram chasing.
Now notice that

B(f)= Hom@n” (U @20, %> U +1) and

®(g) = Hommn_”‘ (011 +k ®g‘0k Qk’ (On+k)'

Hence we have the following

COROLLARY 2

U induces an isomorphism U:O(f)—O(f"), which induces the identity on A(V)=
Extgy(ﬂ,,, 0y).

Lemma 5. Let (V,0) and (W,0) in (C"**,0) be as in Corollary 1. Then any given
presentation g=(g,,...,g;) of (W,0)<(C"**0) we can choose a presentation f =
(f15---5 i) of (V,0) = (C"** 0) such that the isomorphism A(V)S A(W) of Corollary 1
can be lifted to an isomorphism O(f)— ©(g) such that

Proof. By Nakayama’s lemma we can get a lift U:0(f)— O(g), of A(V)— A(W). Let
U = (a;;) be an invertible k x k matrix with entries in 0, , such that U* = {J. Here {J
is thought of as a matrix with respect to the basis of ©(f) and ©(g) given by (9/0t,)of
and (6/0t;)og respectively. Then by, Corollary 2, if we change the generators of I(V)
by fi=X a;f;, then urhe(r ')~ ©(f) is an isomorphism in inducing identity on
A(V). Hence if we replace f by f’, the isomorphism O(f")—>O(g) has the required
property.
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4. Some local analytic computations

In this section we prove Proposition 6, which is the main technical step in the proof
of the main theorem. From now on, we fix the presentations f, g for (¥,0); (W, 0)

I

basis vectors for © () and ©{y) respectively. Then under the identification of O f)
and O(g) with €%, , given by the basis «, and «;, the following equality

IO, )+ RIS ) - Cl®, ) + 9" (0,)g) (%)

obtained from (#) of §1 takes the following explicit form {once we fix coordinates
Zireen Zneg ORI 0)): The LLHLS. (left-hand side) of () is generated by the vectors

(Of, 0000 40,0, 700 1k Similarly the RUHLS, (right-hand side) is generated
by ((Ag/fz), .. Ty ) and

(g 0.0, 00,00 T iin 4 k
Pk
In this situation we have the following:
PROPOSITION 6
A, @, ) + 1 BIO()) - g, Oy ) 4 g™ RN y).
Proof. Since the proofs are identical we prove only one inclusion,

LHS.« RHS.
Step 1. 2f(Wy 11Oy 1 i) € CYtIR, 40,1 0) + " (DL)IONG)

Proof. Notice that clement of ¢f(4R, , 6, , ) are generated by

of Ay
z,( f‘.. "“). L <ij<n+k

i’z} ““nZJ

Since by () (A 10z (E /02 ))e (O, )+ g (M) O(y) and Sy is €, , linear, we
have

- ﬂf‘ “‘f" ) ; ")y
“y [1" '-.-,;w ‘(g(ln" ..k(")".k““*”‘ o (-U‘l‘ )(‘9(“)
Y “1

Step 2. [HIMIO(f) < Cgl M, 1, O, 40 + g (W),

Proof. Here f*(M) 1) is generated by (£,,0...0) .. 0,0, f) | £ i<k So we have
to prove that all these k* ¢lements belong to the R.H.S. Again since the argument is

T e R S N o A A S o
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identical, we prove that (f},0,...,0)eR.H.S. By (%) (f1,0...0)€d¢(®, .,) + g*(,)O(g)
ie. (f1,0...0) = v + dg(n) for some veg*(M,)O(g) and 7€0O,,.

Key Lemma. neM, ., 0, ;.

Proof. Suppose 5(0) 0. Then we can choose a coordinate system z, ... JZn+p in CYE
such that  =(9/0z,). Then the above equation will become

0
(fl,(),...,O)=v+6g($l—)

ie. by Lemma 5, we have the following equations;

:
(1) fy=a0g; + a9, + -+ fPlg, + 2
1

d
) 0=aPg, +aPyg, + -+ aP'g, + %
1

(»+)

)
(k) 0=aPg, +aPg, + - + aflg, + 5?
1

aPe, .

Also by (¥) (0f)0z;))edg (0,0 + g*(W)O(g). Looking at the first component (co-
efficients of ¢, = ¢}) of 0 f (6/0z;), we obtain

of, _ eedg, .
2z, =b,g, +"'+bkgk+i[§,1 7z, ¢ (#4x)
DEFINITION

For any he0,,,, let (), denote the vth-order homogeneous component of h with
respect to the coordinate system chosen above. Let o(R) be the order of . Let deg,, (h),
be the degree of (h), as a polynomial in z;. Let m =Min, ¢ ;. {o( fi),0(g;)}. Then by
the assumption that k is the embedding codimension for both (V, 0) and (W, 0), we
have m > 2. Notice that

fm-1=@m-1=""=(g)m—1 =0.
Claim (i). (0g,/0z,)m-, =0 ie. deg,, (g)w=0for r=1,... k.
Proof. By (r) of (x), (09,/02,),—, = O hence deg, (9,), = 0.
Claim (ii). deg,, (f1),.=0.

Proof. For it is enough to check that deg;, (0f1/0z)),,—, =0, for every j, because m =2
But then by looking at (+++) we find that
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0 0
) o orgidus + -+ g+ D22,
a m—1 azi m=1

Zj
0
- 2({;—) &0

Now since deg, (9,), =0, we have deg,, (69/0z),,~ , =0 and hence deg,, (0f1/0z))n—1 =
0. Hence deg;, (f;)n» =0. Now we prove the following assertions by induction on v.
The argument above yields the case v=0, to begin the induction.

Assertion (i),. deg;, (g1 )m+vs---»d€€z, (Gi)m+v < V. 1€. none of these homogeneous
polynomials contain monomials of degree bigger than v, in z,.

Assertion (ii),. deg,, (fi)m+y <V-
Proof of (i),. We assume (i), and (i), for all u <v. i.e. deg;, (gdm+,> d€8;, (f1)m+p S H

for all u<v. Let D* = (0%/0z%). Then o(D*g;) = m and o(D*f,) > m for every u<v. We
prove that deg, (D’g;), =0. Now apply D" to both sides of (1) of (x),

0
DYy =D'(@g,) + -+ D(ag) + D' 5.
Since '
=3 oo
has order >m, we have
99, 0
0=(D"f)p-1=| D*"=— =—(D"g,),,.
D" f)m-1 ( azl)m—l 321( 90m

Hence
degz; (Dvgl)m = 0 i'e'a degn (gl)nH-v < V.

Similarly by applying D’ to both sides of the other equations of () and comparing
the (m — 1) th order terms on both sides we obtain

M % a v
0=D (azl) (D gi)m’

m-1 02

Hence deg,, (D'g;) =0 i.e. deg,, (g)m+, < v. We deduce that deg,, D*(091/0z)m-1 =0.

Proof of (ii),. Apply D" to the equation (x*x),

vafl_ 0 v v v, v agl
D 2 _5zj(D f1)=D"byg,) + -+ D*bigy) + DY, 2z, &

Notice that o (D*(b;g;)) = m. So again by comparing the terms of order m — 1, we get

(7). (2 ().
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— //‘t r_a_g_l v—r
—(ZZ\,)D 52 2 é)
— v r?ﬂl_ v=rg,
-Zz(r><” azi>m_1D £0)

Since deg,, D"(dg,/0z;) = 0, for every r < v, we conclude that deg,, ((0/0z)D’f)m—1=0.
Hence deg,,(f1)m+, < v. This proves (ii),. Since we have already checked the induction
hypothesis for v =0, we get, deg, (g;)m+, <V for all v.

Now since m > 2, every monomial of g; is of order >2 in the variables z,,...,2,.,,.
Hence g,(z,,0,...,0)=0 and (3g,/0z) (z;,0,...,0)=0 for every i and j. Hence the
Jacobian matrix (dg,/dz;) is identically zero along the z,-axis, which implies that
Z;-axis is contained in the singular locus of {g = 0}. This contradicts the assumption
that g defines an isolated singularity. This contracdiction was due to the assusnption
that 7(0) # 0. Hence 7(0) =0 ie. neM,,,0O, ;.

5. Proof of the Main Theorem

We fix presentations {f =0} and {g =0} for (V,0) and (W,0) as in Lemma 5. Then
by Theorem 1, f and g are finitely determined. By Lemma 3 f and g are biholo-
morphically equivalent if and only if they are in the same 4 -orbit. But to prove f
and g are in the same J"-orbit it is enough to prove f® and g® are in the same
A P-orbit, for every . Now fix an' IeN. Note that # can be given a global coordinate
system so that it has the structure of a complex affine space. In his paper [2]. Mather
defines a projection, 7': M, ., O(h)— T, F®, for any he#. Here T,wF " is the
tangent space to F© at the l-jet h® of h. In our context, if we identify T, F® with
Z 1 (using the affine structure), and © (h) with O ., using the basis (9/dt,) h, then for
any 7= (0y,...,m)eM, ., Oh) (= M, ., 0%, ), n'(n) = n®. We may think of # as an
element of ##©® has a natural structure as an 0, « module; note that 7’ is then
O, +y-linear. Mather also proves the following:

Theorem 2. ([2], Proposition 7.4).
T (A0 hO) = ' (Oh (M, 11O, 1)) + h* (IM,) O (k).

Here Ty(l) ' ®-h® denotes the tangent space to the Space to the A P-orbit of K® at
the point e F®,

Note that by Theorem 2, T,()o#"Ph® is an 0, , ~submodule of T Y and it is
generated as a module by the elements of the form (z/0h,/0zy),...,z; (Oh/0z)™ and
(h;,0...0)%,...,(0,0,...,h)». We denote these generators by

p1(h),...,px(h), where N = k? + (n + k)2
If f®# g%, then consider the complex line L joining f® and g®. Define
Lo = {hOeL/n'(0n(IM, , 8, .,,) + h*(W)O(R))
=70 (M 410, +4) + X (MYO(/))}
= {h‘”eL/Zl“,,m(X(”-h‘”) = Tf (1)(9((1).;,(1))}_
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Then L, has the following properties:

(1) g"eL, by Proposition 6.
@) heL, hO0=(1-0)fD+1tg" then pih)=(1-0p,(f)+1tpi(g). Hence
T,,m(f“"h“’) c Tfu)()i’(”'f“)).
B3) {p1(/)---,on(N)} and {p,(9),...,px(g)} generate the same 0, ,-submodule in
F Y hence for all but a finite set of teC, {(1 —t)p,(f) + tp;(g)} will generate the same
submodule.
(4) By (2) and (3), L, is connected, since L, is C with at most finitely many points
deleted.

Now we prove that L, is contained in a single orbit of &#"®. For this we need the
following theorem,

Theorem 3 ([3], Lemma 3.1). Let a: G x U—U be a C* action of a Lie group G on
a C* manifold U, V < U a connected submanifold of U. Then V is contained in a single
orbit of o if and only if

i) TVcTGw
(i) dim T,Gw is independent of veV.

In our context we take G =4, U=,V = L, and check the conditions (i) and
(ii) of Theorem 3. Notice that T, L, is generated by (f— g)¥, for any h¥eL,. By
Proposition 6, f— ged f(M, +1O,+) +f*(M)O(f). Hence

(/= 9)"en'(0f My +1Op+i) +/*MIO(S))
=1 (Oh(M, 41O, 1) + H*DYO(h))

= Th(n‘%/(‘)'hm.
Hence
n“)LO [t ’I;l(z)f(l)'hm Vh(”ELO‘

Since Tyt -hP = Tp o ®- O, dim Tyt is independent of h®eL,. Hence
(i) and (ii) are satisfied, and so L, is contained in a single orbit of 2. In particular
fWex®-g" Hence feX -g. This completes the proof of the main theorem.
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