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Abstract. Let H0 denote the kernel of the endomorphism, defined by z 7−→ (z/z)2, of
the real algebraic group given by the Weil restriction of C∗. Let X be a nondegenerate
anisotropic conic in P2

R. The principal C∗–bundle over the complexification XC, defined
by the ample generator of Pic(XC), gives a principal H0–bundle FH0 over X through
a reduction of structure group. Given any principal G–bundle EG over X, where G is
any connected reductive linear algebraic group defined over R, we prove that there is a
homomorphism ρ : H0 −→ G such that EG is isomorphic to the principal G–bundle
obtained by extending the structure group of FH0 using ρ.

The tautological line bundle over the real projective line P1
R, and the principal Z/2Z–

bundle P1
C −→ P1

R, together give a principal Gm × (Z/2Z)–bundle F on P1
R. Given any

principal G–bundle EG over P1
R, where G is any connected reductive linear algebraic

group defined over R, we prove that there is a homomorphism ρ : Gm × (Z/2Z) −→ G
such that EG is isomorphic to the principal G–bundle obtained by extending the structure
group of F using ρ.

1. Introduction

Let FC∗ denote the principal C∗–bundle over the complex projective line P1
C given by

the tautological line bundle OP1
C
(1). So FC∗ is the complement of the zero section in

the total space of OP1
C
(1). Let EGC be an algebraic principal GC–bundle over P1

C, where

GC is a connected reductive linear algebraic group defined over C. A theorem due to

Grothendieck says that there is a homomorphism

ρ : C∗ −→ GC

such that EGC is isomorphic to the principal GC–bundle obtained by extending the struc-

ture group of FC∗ using ρ [Gr, p. 122, Théorème 1.1]. Our aim here is to investigate the

corresponding set–up for the field of real numbers.

Let X be a geometrically irreducible smooth projective curve, defined over the field of

real numbers, satisfying the condition that

genus(X) := dimH1(X, OX) = 0 .

This condition implies that either X is isomorphic to P1
R, or it is isomorphic to the

nondegenerate anisotropic conic in P2
R defined by the polynomial x2 + y2 + z2 = 0 (see

[Ha, p. 106, Exercise 4.7(e)]). This conic clearly does not have any real points. Let XC

be the base change of X to C. So XC is isomorphic to P1
C.

2000 Mathematics Subject Classification. 14H60, 14L10, 14P99.
Key words and phrases. Principal bundle, real conic, reductive group.

1
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Let Tc denote the Weil restriction of the complex torus C∗ to the subfield R. Therefore,

Tc is a two–dimensional abelian reductive real linear algebraic group. The earlier defined

principal C∗–bundle FC∗ over XC = P1
C gives a principal Tc–bundle FTc over X. More

precisely, the Weil restriction of FC∗ is a principal Tc–bundle over the Weil restriction X̂

of XC, and FTc is the pull back of this principal Tc–bundle by the natural embedding of

X in X̂.

Let H0 be the kernel of the homomorphism Tc −→ Tc defined by z 7−→ (z/z)2.

Therefore, H0 fits in a short exact sequence of groups

e −→ Gm −→ H0 −→ Z/2Z −→ e ,

where Gm = R∗ is the multiplicative group, and the projection H0 −→ Z/2Z is defined

by z 7−→ z/z.

The above defined principal Tc–bundle FTc admits a reduction of structure group to the

subgroup H0 ⊂ Tc, and furthermore, any two reductions of structure group of FTc to H0

are isomorphic (see Lemma 4.6). Let

(1.1) FH0 ⊂ FTc

be a reduction of structure group to H0.

Our main result is the following (see Theorem 4.12):

Theorem 1.1. Let G be a connected reductive linear algebraic group defined over R. Let

EG be a principal G–bundle over a nondegenerate anisotropic conic X in P2
R. Then there

is a homomorphism

ρ : H0 −→ G

with the following property: The principal G–bundle EG is isomorphic to the one obtained

by extending the structure group of the principal H0–bundle FH0 in eqn. (1.1) using the

homomorphism ρ.

We will now describe the corresponding result for principal bundles over P1
R proved

here.

Let FGm denote the principal Gm–bundle over P1
R given by the tautological line bun-

dle OP1
R
(1). Let FZ2 denote the principal Z/2Z–bundle over P1

R defined by the natural

projection P1
C −→ P1

R. Therefore, the fiber product FGm ×X FZ2 over X is a principal

Gm × (Z/2Z)–bundle.

The following theorem is proved in Theorem 4.12.

Theorem 1.2. Let EG be a principal G–bundle over P1
R, where G is a connected reductive

linear algebraic group defined over R. Then there is a homomorphism

ρ : Gm × (Z/2Z) −→ G

such that the principal G–bundle EG is isomorphic to the one obtained by extending the

structure group of the principal Gm × (Z/2Z)–bundle FGm ×X FZ2 using ρ.
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If G is a compact real form, then there is no nontrivial homomorphism from Gm to G.

Therefore, in that case the homomorphism ρ in Theorem 1.1 and the homomorphism ρ

in Theorem 1.2 factor through Z/2Z.

2. Semistable principal bundles

Let X be a geometrically irreducible smooth projective curve defined over the field

of real numbers. Let G be a connected reductive linear algebraic group defined over R.

Since G is connected, it follows that G is actually geometrically connected. Indeed, the

connected component, containing the identity element, of the complexification of G is pre-

served by the Galois involution, thus showing that G is disconnected if its complexification

is so.

A principal G–bundle EG over X will be called semistable if for each proper parabolic

subgroup P ⊂ G, and for each reduction of structure group

(2.1) EP ⊂ EG

of EG to P , the following holds: for each anti–dominant character χ of P which is trivial

on the center of G, the line bundle EP (χ) on X associated to the principal P–bundle EP
for χ is of nonnegative degree. We recall that a character of P is called anti–dominant if

the associated line bundle on G/P is numerically effective.

The above definition is identical to the definition in [Ra] of semistable principal bundles

over a smooth complex projective curve; see [Ra, p. 131, Lemma 2.1] to compare the above

definition with Definition 1.1 in [Ra, p. 129].

Remark 2.1. A couple of remarks on the above definition:

(1) A principal G–bundle EG is semistable if and only if for each reduction EP as in

eqn. (2.1), where P is a maximal proper parabolic subgroup of G, the inequality

degree(ad(EG)/ad(EP )) ≥ 0

holds, where ad(EG) and ad(EP ) are the adjoint vector bundles of EG and EP
respectively; see [Ra, p. 131, Lemma 2.1]. (The adjoint bundle of a principal

H–bundle EH is the vector bundle associated to EH for the adjoint action of H

on its own Lie algebra.)

(2) The group G may not have any proper parabolic subgroup. For example, if G

is a compact real form of a complex reductive group, then G does not have any

proper parabolic subgroup. In such a situation, the semistability condition is

automatically satisfied.

Let

(2.2) XC = X ×R C
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be the base change of X to the field C. Let

GC = G×R C

be the base change to C. Therefore, GC is a connected reductive linear algebraic group

defined over C.

Take a principal G–bundle EG over X. The base change to C

(2.3) EC
G := EG ×R C

is a principal GC–bundle over XC.

Lemma 2.2. The principal G–bundle EG over X is semistable if and only if the principal

GC–bundle EC
G over XC is semistable.

Proof. First assume EG is not semistable. Let P be a proper parabolic subgroup of G

with EP ⊂ EG a reduction as in eqn. (2.1), and let χ be an anti–dominant character of

P , such that

degree(EP (χ)) < 0 ,

where EP (χ) is the line bundle over X associated to the principal P–bundle EP for the

character χ. Let

EC
P := EP ×R C ⊂ EG ×R C

be the corresponding reduction of structure group of EC
G to the proper parabolic subgroup

PC := P ×R C of GC. Let χC be the character of PC given by χ. The line bundle over XC

associated to the principal PC–bundle EC
P for the character χC will be denoted by EC

P (χC).

Since

degree(EC
P (χC)) = degree(EP (χ)) ,

the pair (EC
P , χC) violates the semistability condition for EC

G. In other words, EC
G is not

semistable.

To prove the converse, assume that EC
G is not semistable. Let

(2.4) EQ ⊂ EC
G

be the Harder–Narasimhan reduction of EC
G; here Q ⊂ GC is some proper parabolic

subgroup determined uniquely by EC
G up to an inner automorphism. Once a subgroup Q in

the conjugacy class is fixed, the Harder–Narasimhan reduction EQ is uniquely determined

(see [AAB, p. 694, Theorem 1] for Harder–Narasimhan reduction).

The adjoint bundle ad(EQ) ⊂ ad(EC
G) is one of the terms in the Harder–Narasimhan

filtration of ad(EC
G). More precisely, ad(EQ) is the term in the Harder–Narasimhan fil-

tration of ad(EC
G) whose quotient by the previous term is of degree zero (see [AAB, p.

702, Lemma 6]). The Harder–Narasimhan filtration of ad(EC
G) is the base change to C

of the Harder–Narasimhan filtration of ad(EG); this follows immediately from [La, p. 97,

Proposition 3]. In particular, ad(EQ) is the base change to C of a subbundle of ad(EG).
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Therefore, Q can be taken to be the base change to C of some parabolic subgroup of

G. Once Q is the base change to C of a parabolic subgroup P ⊂ G, using the above

mentioned fact that ad(EQ) is the base change to C of a subbundle of ad(EG) it follows

that EQ is the base change to C of a reduction of structure group

(2.5) EP ⊂ EG

of the principal G–bundle EG to the subgroup P .

Let g (respectively, p) be the Lie algebra of G (respectively, P ). Let χ be the character

of P defined by the one–dimensional P–module det g/p =
∧top

g/p; the action of P is

given by the adjoint action of P on g. We have

degree(EP (χ)) = degree(ad(EG)/ad(EP )) = degree(ad(EC
G)/ad(EQ)) < 0 .

The last inequality follows from the fact that the subbundle ad(EQ) ⊂ ad(EG) is the

term in the Harder–Narasimhan filtration of ad(EG) whose quotient by the previous term

in the filtration has degree zero. Consequently, EG is not semistable. This completes the

proof of the lemma. �

A principal GC–bundle FGC overXC is semistable if and only if the adjoint vector bundle

ad(FGC) is semistable [AAB, p. 698, Lemma 3]. Therefore, Lemma 2.2 has the following

corollary.

Corollary 2.3. A principal G–bundle EG over X is semistable if and only if the adjoint

vector bundle ad(EG) is semistable.

For a parabolic subgroup P of G, its Levi quotient will be denoted by L(P ). So L(P )

is the quotient of P by its unipotent radical.

Take a principal G–bundle EG over X. Assume that EG is not semistable. The re-

duction EP ⊂ EG in eqn. (2.5), which is obtained from EQ, evidently satisfies all the

conditions of a Harder–Narasimhan reduction. Therefore, we have the following corollary:

Corollary 2.4. Let EG be a principal G–bundle over X which is not semistable. Then

there is a proper parabolic subgroup P ⊂ G and a reduction of structure group EP ⊂ EG
to P satisfying the following two conditions:

(1) The principal L(P )–bundle obtained by extending the structure group of EP , using

the projection of P to its Levi quotient L(P ), is semistable.

(2) For any nontrivial character χ of P which is trivial on the center of G, and which

can be expressed as a nonnegative integral combination of simple roots, the line

bundle EP (χ) over X, associated to the principal P–bundle EP for the character

χ of P , has degree strictly greater than zero.

The subgroup P is unique up to an inner automorphism, and the subbundle ad(EP ) ⊂
ad(EG) is canonical (it does not depend on the choice of P ). Once P is fixed in the

conjugacy class, the reduction EP is uniquely determined.
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Proof. Since the reduction EQ in eqn. (2.4) satisfies the two conditions in Corollary 2.4

(see [AAB, p. 712, Theorem 6]), we conclude that Corollary 2.4 holds. �

The reduction EP in Corollary 2.4 will be called a Harder–Narasimhan reduction of EG.

See [AAB, p. 694, Theorem 1] for an equivalent formulation of the Harder–Narasimhan

reduction.

3. Reduction to torus over a nondegenerate conic

Let X be a geometrically irreducible smooth projective curve of genus zero defined over

R. As mentioned in Section 1, either X is isomorphic to P1
R or it is isomorphic to the

anisotropic conic in P2
R defined by the homogeneous polynomial x2 + y2 + z2. As before,

let G be a connected reductive linear algebraic group defined over R.

Proposition 3.1. Let EG be a semistable principal G–bundle over X. Then EG admits

a reduction of structure group to a maximal torus of G.

Proof. Let EC
G := EG ×R C be the principal GC–bundle over XC given by EG (see eqn.

(2.3)). From Lemma 2.2 it follows that EC
G is semistable. Therefore, the adjoint vector

bundle ad(EC
G) is semistable [AAB, p. 698, Lemma 3].

Since GC is reductive, its Lie algebra gC as a GC–module is self–dual. Therefore, the

vector bundle ad(EC
G) is self–dual. In particular, we have

degree(ad(EC
G)) = 0 .

The complexification XC is isomorphic to P1
C. Any algebraic vector bundle over P1

C
decomposes into a direct sum of line bundles [Gr, p. 122, Théorème 1.1]. Since ad(EC

G)

is semistable of degree zero, this implies that ad(EC
G) is a trivial vector bundle.

Set

(3.1) g0 := H0(XC, ad(EC
G)) .

The Lie algebra structure of the fibers of ad(EC
G) induce a Lie algebra structure on g0.

This Lie algebra is isomorphic to the Lie algebra gC of GC because ad(EC
G) is a trivial

vector bundle with fibers isomorphic to gC.

Let σ be the self–map of XC given by the action of the nontrivial element in Gal(C/R).

Therefore, σ is an anti–holomorphic involution of XC. Let

(3.2) σ̃ : ad(EC
G) −→ σ∗ad(EC

G)

be the holomorphic isomorphism of vector bundles given by the action of the nontrivial

element in Gal(C/R). Here ad(EC
G) is the smooth vector bundle over XC whose fiber over

any point x ∈ XC is identified, as a real vector space, with the fiber ad(EC
G)x, while this
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identification is conjugate linear. The vector bundle σ∗ad(EC
G) has a natural holomorphic

structure. We note that the composition

ad(EC
G)

eσ−→ σ∗ad(EC
G)

σ∗eσ−→ σ∗(σ∗ad(EC
G)) = ad(EC

G)

is the identity automorphism of ad(EC
G).

We have a conjugate linear involution

(3.3) σ0 : g0 = H0(XC, ad(EC
G)) −→ g0

defined by α 7−→ σ̃(α), where g0 is defined in eqn. (3.1) and σ̃ is the isomorphism in

eqn. (3.2). Note that using the natural R–linear identification of ad(EC
G) with ad(EC

G),

the image σ̃(α) is a smooth section of ad(EC
G); this section is evidently holomorphic.

It is easy to see that σ0 preserves the Lie algebra structure of g0. The real Lie algebra

given by the fixed point set

(3.4) (g0)σ
0 ⊂ g0

is isomorphic to the Lie algebra g of G. Since σ0 is a conjugate linear involution of g0,

the complexification (g0)σ
0 ⊗

R C is identified with g0. In particular, the subset (g0)σ
0

is

Zariski dense in g0.

An element of g0 is called semisimple if its adjoint action on g0 is completely reducible.

A semisimple element of g0 is called regular if its centralizer is a Cartan subalgebra of

g0. The set of regular semisimple elements in g0 is a Zariski open dense subset (see [Hu2,

p. 28, Theorem 2.5]). We noted above that (g0)σ
0

in eqn. (3.4) is Zariski dense in g0.

Therefore, (g0)σ
0

contains some regular semisimple elements of g0. Fix an element

(3.5) ω ∈ (g0)σ
0

which is a regular semisimple element of g0.

Since ad(EC
G) is the complexification of the adjoint vector bundle ad(EG), we have a

canonical identification

(g0)σ
0 −→ H0(X, ad(EG)) .

Let

(3.6) ωa ∈ H0(X, ad(EG))

be the section corresponding to ω in eqn. (3.5). On the other hand, the two Lie algebras

(g0)σ
0

and g (the Lie algebra of G) are identified up to an inner conjugation. Therefore,

ω gives a conjugacy class in g. Fix an element of the Lie algebra

(3.7) ωc ∈ g

in the conjugacy class given by ω. Let

(3.8) Tω ⊂ G

be the centralizer of ωc for the adjoint action. Using the fact that the element ω ∈ g0

is regular semisimple it follows that Tω is a maximal torus of G. More precisely, the
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subgroup of a complex reductive group G′ generated by the one parameter subgroup of it

defined by a fixed regular semisimple element of the Lie algebra of G′, together with the

connected component, containing the identity element, of the center of G′, is a maximal

torus of G′. Since the centralizer of maximal torus T ′ in G′ is T ′ itself [Hu1, p. 140,

Corollary A], we conclude that Tω is a maximal torus of G.

We recall that the adjoint vector bundle ad(EG) is a quotient of EG × g. Let

q : EG × g −→ ad(EG)

be the quotient map. Let

p1 : EG × g −→ EG

be the projection to the first factor.

Finally, consider the projection

ETω := p1((EG × {ωc}) ∩ q−1(ωa(X)) ⊂ EG ,

where ωa : X −→ ad(EG) is the section in eqn. (3.6), and ωc is the element in eqn.

(3.7). It is straight–forward to check that ETω is a reduction of structure group of the

principal G–bundle EG to the subgroup Tω in eqn. (3.8). This completes the proof of the

proposition. �

Let P be a parabolic subgroup of a connected reductive linear algebraic group G defined

over R. Consider the short exact sequence of groups

(3.9) e −→ Ru(P ) −→ P −→ L(P ) −→ e ,

where Ru(P ) is the unipotent radical of P , and L(P ) is the Levi quotient of P . As a

special case of a result of Mostow, this exact sequence is right split (see [Bo, p. 158,

§ 11.22]). In other words, P is a semidirect product Ru(P ) o L(P ) of the unipotent

radical Ru(P ) and the Levi quotient L(P ). Hence there is a subgroup of P that projects

isomorphically onto L(P ). The result of Mostow also says that any two such subgroups of

P are conjugate [Bo, p. 158, § 11.22]. Fix a subgroup of P that projects isomorphically

onto L(P ). This subgroup will also be denoted by L(P ); this subgroup of P will be called

the Levi subgroup of P .

Proposition 3.2. Let EP be a principal P–bundle over the curve X of genus zero that

satisfies the following condition: There is a principal G–bundle over X whose Harder–

Narasimhan reduction, described in Corollary 2.4, is EP . Then EP admits a reduction of

structure group to the Levi subgroup L(P ) ⊂ P .

Proof. Let Ad(EP ) := EP ×P P denote the adjoint bundle of EP . We recall that Ad(EP )

is the fiber bundle over X associated to the principal P–bundle EP for the adjoint action

of P on itself. Therefore, Ad(EP ) is a quotient of EP × P , and it is a group–scheme over

X. The Lie algebra bundle for Ad(EP ) is the adjoint vector bundle ad(EP ).
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Let

(3.10) EP (Ru(P )) := EP ×P Ru(P ) ⊂ EP ×P P =: Ad(EP )

be the subgroup–scheme over X given by the P invariant subgroup Ru(P ) ⊂ P . We note

that EP (Ru(P )) is associated to the principal P–bundle EP for the adjoint action of P

on Ru(P ).

The group–scheme Ad(EP ) has a natural action on the principal P–bundle EP . Indeed,

the map

(EP × P )× EP −→ P

defined by ((z , p) , zp′) 7−→ zpp′, where z ∈ EP and p, p′ ∈ P , descends to a map

((EP × P )/P )× EP = Ad(EP )× EP −→ P

giving the action of Ad(EP ) on EP . This action of Ad(EP ) on EP clearly commutes with

the right action of P on EP .

The above action of Ad(EP ) on EP gives an action of Ad(EP ) on any fiber bundle over

X associated to EP . To see this induced action, let Y be a variety on which P acts on

the left, and let

EP (Y ) := EP ×P Y

be the fiber bundle over X associated to EP for its action on Y . Then the map

Ad(EP )× (EP × Y ) −→ EP × Y

defined by (g , (z , y)) 7−→ (gz , y) descends to an action of Ad(EP ) on the quotient space

EP (Y ) of EP × Y .

Consider the quotient space

EP (P/L(P )) := EP/L(P )

which is a fiber bundle over X with P/L(P ) as the fiber; here L(P ) is the Levi sub-

group of P . We note that EP (P/L(P )) is the fiber bundle associated to EP for the left–

translation action of P on P/L(P ). Restricting the action of Ad(EG) on EP (P/L(P )) to

the subgroup–scheme EP (Ru(P )) (defined in eqn. (3.10)) we get an action of EP (Ru(P ))

on EP (P/L(P )). Using the fact that the subgroup L(P ) of P projects isomorphically

onto the quotient P/Ru(P ) (see eqn. (3.9)) it follows that EP (P/L(P )) is a torsor for

the group–scheme EP (Ru(P )). In other words, the group–scheme EP (Ru(P )) acts freely

transitively on the fiber bundle EP (P/L(P )).

Isomorphism classes of torsors for EP (Ru(P )) are parametrized by H1(X, EP (Ru(P ))).

Since EP is Zariski locally trivial, we may use Zariski topology. Let

(3.11) θ ∈ H1(X, EP (Ru(P )))

be the element corresponding to the above torsor EP (P/L(P )).

The Lie algebra of the unipotent radical Ru(P ) of P will be denoted by Rn(p). So

Rn(p) is the nilpotent radical of the Lie algebra of P . We note that the adjoint action P
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on its own Lie algebra leaves the subalgebra Rn(p) invariant, just as the adjoint action of

P on itself leaves the subgroup Ru(P ) invariant. Let EP (Rn(p)) be the vector bundle over

X associated to the principal P–bundle EP for the P–module Rn(p). Since the adjoint

action of P on Rn(p) preserves its Lie algebra structure, it follows that EP (Rn(p)) is a

bundle of Lie algebras over X. The Lie algebra bundle for the group–scheme EP (Ru(P ))

is evidently identified with EP (Rn(p)).

Let

(3.12) 0 = E−`−1 ⊂ E−` ⊂ E−`+1 ⊂ · · · ⊂ E−2 ⊂ E−1 = EP (Rn(p))

be the Harder–Narasimhan filtration of the vector bundle. We know that

(3.13) [E−j , E−1] ⊂ E−j−1

for all j ∈ [1 , `]; see [AAB, p. 699, (2)]. From eqn. (3.13) we conclude the following:

• Each E−j is a bundle of ideals in the Lie algebra bundle EP (Rn(p)).

• For each j ∈ [1 , `], the quotient Lie algebra bundle E−j/E−j−1 is abelian.

Given a unipotent linear algebraic group U , if its Lie algebra u is abelian, then the

exponential map

exp : u −→ U

is an isomorphism of algebraic groups. Hence the filtration in eqn. (3.12) gives a filtration

of normal subgroup-schemes of EP (Ru(P ))

(3.14) eX = G−`−1 ⊂ G−` ⊂ G−`+1 ⊂ · · · ⊂ G−2 ⊂ G−1 = EP (Ru(P ))

such that

(3.15) G−j/G−j−1 = E−j/E−j−1

as group–schemes for all j ∈ [1 , `]; here eX is the group–scheme over X for the trivial

group.

For each j ∈ [1 , `], the quotient E−j/E−j−1 is a semistable vector bundle over X of

positive degree. (We recall that ad(EP ) is the term in the Harder–Narasimhan filtration of

ad(EG) whose quotient by the previous term is of degree zero.) Since (E−j/E−j−1)
∗ ⊗

KX

is a semistable vector bundle of negative degree, where KX is the canonical line bundle

of X (its degree is −2), using Serre duality we have

H1(X, E−j/E−j−1) = H0(X, (E−j/E−j−1)
∗ ⊗KX)∗ = 0 .

Therefore, using eqn. (3.15) we have H1(X, G−j/G−j−1) = 0 for all j ∈ [1 , `]. Now

using the filtration in eqn. (3.14) it follows that

H1(X, EP (Ru(P ))) = 0 .

To prove this note that since H1(X, G−j/G−j−1) = 0, in order to show that

H1(X, G−j) = 0
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it suffices to prove that H1(X, G−j−1) = 0. In particular, the element θ in eqn. (3.11)

vanishes. Hence EP (P/L(P )) = EP/L(P ) is a trivial EP (Ru(P ))–torsor. In particular,

the fiber bundle EP/L(P ) over X admits a section.

Any section σ : X −→ EP/L(P ) of the fiber bundle EP/L(P ) gives a reduction of

structure group of EP to L(P ). Indeed, the inverse image of the subvariety σ(X) ⊂
EP/L(P ) for the quotient map EP −→ EP/L(P ) is a reduction of structure group of EP
to L(P ). This completes the proof of the proposition. �

Proposition 3.1 and Proposition 3.2 together have the following corollary.

Corollary 3.3. Let EG be a principal G–bundle over the curve X of genus zero, where

G is a connected reductive linear algebraic group over R. Then EG admits a reduction of

structure group to a maximal torus of G.

Proof. If EG is semistable, then it follows from Proposition 3.1.

Now assume that EG is not semistable. Let EP be the Harder–Narasimhan reduction

of EG (see Corollary 2.4). From Proposition 3.2 we know that EP admits a reduction

of structure group EL(P ) ⊂ EP to the Levi subgroup L(P ) of P . Hence EG admits a

reduction of structure group to L(P ). The principal L(P )–bundle obtained by extending

the structure group of EP using the projection of P to L(P ) = P/Ru(P ) is semistable

(see Corollary 2.4). Since the principal L(P )–bundle EL(P ) is identified with this principal

L(P )–bundle obtained by extending the structure group of EP , we conclude that EL(P )

is semistable.

Therefore, using Proposition 3.1 we now conclude that the principal G–bundle EG
admits a reduction of structure group to a maximal torus of the Levi subgroup L(P ). A

maximal torus of L(P ) is also a maximal torus of G. This completes the proof of the

corollary. �

Consider the base change XC in eqn. (2.2) of X to C. Therefore, XC is isomorphic to

P1
C.

Definition 3.4. The natural projection

f : XC −→ X

defines a principal Z/2Z–bundle over X. This principal Z/2Z–bundle over X will be

denoted by FZ2 .

We note that FZ2 is a nontrivial principal Z/2Z–bundle over X. To see this observe

that XC is irreducible.

Lemma 3.5. Let Γ be a finite group and EΓ a principal Γ–bundle over the real projective

curve X of genus zero. Then there is a homomorphism

ρ : Z/2Z −→ Γ
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such that the principal Γ–bundle EΓ is isomorphic to the one obtained by extending the

structure group of the principal Z/2Z–bundle FZ2 in Definition 3.4 using ρ.

Proof. Consider the short exact sequence of étale fundamental groups

e −→ π1(XC, x) −→ π1(X, x) −→ Gal(C/R) = Z/2Z −→ e ,

where x is a point of XC (see [Mu, p. 153, Theorem (8.1.1)]). Using it and the fact that

π1(XC, x) = e it follows that π1(X, x) = Z/2Z. We noted earlier that the principal

Z/2Z–bundle FZ2 over X in Definition 3.4 is nontrivial. Therefore, all principal bundles

over X with a finite group as the structure group are obtained from FZ2 by extension of

structure group. This completes the proof of the lemma. �

4. Reduction of a torus bundle over a conic

Let Ts = Gm be the split torus of dimension one defined over R. The anisotropic torus

of dimension one defined over R will be denoted by Ta (see [Bo, p. 121, § 8.16]). So the

base change of Ta to C is isomorphic to C∗, and the action of the nontrivial element of

Gal(C/R) = Z/2Z on C∗ is the involution defined by

(4.1) z 7−→ 1/z .

Let Tc denote the Weil restriction of the complex torus C∗ to the subfield of real

numbers. Therefore, Tc is a quotient of Ts×Ta by Z/2Z. It can be shown that Tc 6= Ts×Ta.
To prove this we note that any torus T ′ has a unique maximal anisotropic subtorus T ′

a

and a unique maximal split subtorus T ′
d; the two subgroups T ′

a and T ′
d generate T ′, while

T ′
a

⋂
T ′
d is a finite group [Bo, p. 121, Proposition]. In the case of T ′ = Tc, we have

T ′
a

⋂
T ′
d = Z/2Z. Hence Tc 6= Ts × Ta.

The following lemma is well known (see [PR, p. 76, line 8] for proof):

Lemma 4.1. Let T be an algebraic torus defined over R. Then T is isomorphic to the

Cartesian product (Ts)
n1 × (Ta)

n2 × (Tc)
n3 for some nonnegative integers n1, n2 and n3.

As in Section 3, we will denote by X a geometrically irreducible smooth projective

curve of genus zero defined over R. We will construct a nontrivial principal Ta–bundle

over X.

Let

(4.2) h0 : Z/2Z −→ Ta

be the injective homomorphism whose image is {±1}. Let FTa be the principal Ta–bundle

over X obtained by extending the structure group of the principal Z/2Z–bundle FZ2 using

the homomorphism h0 in eqn. (4.2); see Definition 3.4 for FZ2 .

Proposition 4.2. The above defined principal Ta–bundle FTa over the genus zero curve

X is nontrivial. Any nontrivial principal Ta–bundle over X is isomorphic to FTa.
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Proof. Take any principal Ta–bundle ETa over X. Let

EC
Ta

:= ETa ×R C

be the base change to C. Therefore, EC
Ta

is a principal

(Ta)C := Ta ×R C = C∗

bundle over XC = X ×R C (see eqn. (2.2)). Let

(4.3) σ : XC −→ XC

be the action of the nontrivial element in Gal(C/R) = Z/2Z. Therefore, σ is an anti–

holomorphic involution of XC ∼= P1
C.

Let L denote the algebraic line bundle over XC defined by the principal C∗–bundle EC
Ta

.

The dual line bundle of L will be denoted by L
∗
. Let L∗ be the real analytic complex

line bundle over XC whose underlying real vector bundle of rank two is identified with

that of L
∗
, while the complex structure of the fibers of L∗ are conjugate to the complex

structure of the fibers of L. In other words, the identification of L
∗

with L∗ is fiberwise

conjugate linear. The pull back σ∗L∗ has a natural structure of a complex algebraic line

bundle over XC. Since L is given by the complexification of a principal Ta–bundle over

X, there is a holomorphic isomorphism of line bundles

(4.4) η : L −→ σ∗L∗

satisfying a condition which we will describe. Let

σ∗η∗ : σ∗L∗ −→ σ∗(σ∗L∗)∗ = L

be the holomorphic isomorphism given by η. The condition on η says that the composition

(4.5) σ∗η∗ ◦ η = IdL .

This condition follows from the fact that the Galois involution of the complexification

(Ta)C is the one in eqn. (4.1).

Conversely, any pair (L , η), where

• L is a holomorphic line bundle over XC, and

• η : L −→ σ∗L∗ is a holomorphic isomorphism of line bundles satisfying the

identity in eqn. (4.5),

define a principal Ta–bundle over X. Furthermore, isomorphisms between two principal

Ta–bundles over X are parametrized by isomorphisms between the corresponding pairs.

Take any pair (L , η) satisfying the above conditions. For a topological complex vector

bundle V over XC we have

degree(V
∗
) = degree(σ∗V ) = degree(V ) and degree(V

∗
) = −degree(V ) .

Hence degree(σ∗L∗) = −degree(L). Therefore, the existence of the isomorphism η :

L −→ σ∗L∗ implies that degree(L) = 0. Thus L is a trivial line bundle over XC ∼= P1
C.
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Fix a trivialization of L. This trivialization gives a trivialization of the dual line bundle

L
∗
, hence we also have a trivialization of σ∗L∗ . Using these trivializations of L and

σ∗L∗ , the isomorphism η corresponds to multiplication by some nonzero complex number

λ ∈ C∗. It is straight–forward to check that the isomorphism σ∗η∗ in eqn. (4.5) is given

by multiplication with 1/λ with respect to the trivializations. Therefore, from the given

condition that η satisfies the identity in eqn. (4.5) we conclude that λ ∈ R∗. By altering

trivialization we see that λ = ±1.

The case of λ = 1 corresponds to the trivial principal Ta–bundle over X. Therefore,

there is at most one nontrivial principal Ta–bundle over X up to an isomorphism.

Consider the short exact sequence of algebraic groups

(4.6) e −→ Z/2Z = ±1 ↪→ Ta
ψ−→ Ta −→ e ,

where ψ is defined by g 7−→ g2. Take any principal Ta–bundle ETa over X. Let E ′
Ta

be

the principal Ta–bundle over X obtained by extending the structure group of ETa using

the homomorphism ψ in eqn. (4.6).

From our earlier observation that ETa corresponds to either λ = 1 or λ = −1 it follows

immediately that E ′
Ta

corresponds to 1. Hence E ′
Ta

is a trivial principal Ta–bundle. Now

using the short exact sequence in eqn. (4.6) we conclude that isomorphism classes of

principal Ta–bundles over X are parametrized by isomorphism classes of principal Z/2Z–

bundles over X; a principal Z/2Z–bundle gives a principal Ta–bundle by extending the

structure group using the inclusion homomorphism in eqn. (4.6).

Since the principal Z/2Z–bundle FZ2 in Definition 3.4 is nontrivial, we conclude that

the principal Ta–bundle FTa over X given by it using the homomorphism h0 is nontrivial.

This completes the proof of the proposition. �

Remark 4.3. A couple of remarks on the proof of Proposition 4.2:

• Let L denote the trivial complex line bundle over XC equipped with a trivializa-

tion. So σ∗L∗ is equipped with an induced trivialization. As we saw in the proof

of Proposition 4.2, any isomorphism as in eqn. (4.4) satisfying the identity in

eqn. (4.5) corresponds to multiplication by some λ ∈ {±1} with respect to the

trivializations of L and σ∗L∗ . It is easy to see directly that the two pairs (OXC , 1)

and (OXC ,−1) are not isomorphic. Indeed, finding an isomorphism between them

would amount to finding a µ ∈ C∗ such that µ = −1/µ, which is impossible.

• It may also be pointed out that real algebraic line bundles over X are in natural

bijective correspondence with pairs of the form (ζ , β), where ζ is a holomorphic

line bundle over XC, and

β : ζ −→ σ∗ζ

is a holomorphic isomorphism of line bundles, such that the composition

ζ
β−→ σ∗ζ

σ∗β−→ σ∗(σ∗ζ) = ζ
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is the identity map of ζ.

Proposition 4.2 has the following corollary:

Corollary 4.4. Any principal Ta–bundle over X admits a reduction of structure group to

the subgroup {±1} ⊂ Ta.

Consider the split torus Ts = Gm. Principal Ts–bundles over X are in bijective corre-

spondence with the real algebraic line bundles over X. Given a principal Ts–bundle, the

corresponding line bundle is the one associated to it by the standard action of Gm on R.

Conversely, given a line bundle ξ over X, the complement of the zero section in the total

space of ξ is a principal Ts–bundle.

The following proposition is easy to prove (it follows from [BN, p. 1208, Theorem 1.1]

in the case of anisotropic conic, and it follows from [BN, p. 1210, Proposition 3.1] in the

case of projective line).

Proposition 4.5. Assume that X is isomorphic to a nondegenerate anisotropic conic

in P2
R. The group of line bundles over X is isomorphic to Z, and it is generated by the

tangent bundle TX.

The group of line bundles over P1
R is isomorphic to Z, and it is generated by the tauto-

logical line bundle OP1
R
(1).

We will now consider the principal Tc–bundles over X, where Tc is the two–dimensional

torus defined earlier (see Lemma 4.1). First observe that there is a short exact sequence

of algebraic groups

(4.7) e −→ Ts ↪→ Tc
φ−→ Ta −→ e ,

where the injective homomorphism is given by the inclusion of R∗ in C∗, and the projection

φ is defined by z 7−→ z/z. Consider the subgroup

(4.8) Z/2Z = {±1} ⊂ Ta .

Let

(4.9) H0 := φ−1(Z/2Z) ⊂ Tc

be the closed subgroup, where φ is the projection in eqn. (4.7). Therefore, from eqn.

(4.7) we have the exact sequence

(4.10) e −→ Ts ↪→ H0
φ−→ Z/2Z −→ e .

Lemma 4.6. Any principal Tc–bundle over the genus zero curve X admits a reduction of

structure group to the subgroup H0 defined in eqn. (4.9).

Let ETc be a principal Tc–bundle over X, and let E1
H0

⊂ ETc and E2
H0

⊂ ETc be

reductions of structure group of ETc to the subgroup H0. Then the two principal H0–

bundles E1
H0

and E2
H0

over X are isomorphic.
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Proof. Let ETc be a principal Tc–bundle over X. Let ETa be the principal Ta–bundle ob-

tained by extending the structure group of ETc using the projection φ in eqn. (4.7). From

Corollary 4.4 we know that ETa admits a reduction of structure group to the subgroup

Z/2Z in eqn. (4.8).

Let EZ/2Z ⊂ ETa be a reduction of structure group of ETa to Z/2Z. Now the inverse

image

q−1(EZ/2Z) ⊂ ETc ,

where q : ETc −→ ETa is the natural projection, is a reduction of structure group of ETc

to the subgroup H0 ⊂ Tc.

We will now show that any two reductions of structure group of ETc to H0 are isomor-

phic.

Let E1
H0

and E2
H0

be two reductions of structure group of ETc to H0. For i = 1, 2, let

Ei
Z/2Z be the principal Z/2Z–bundle over X obtained from Ei

H0
by extending the structure

group using the projection φ in eqn. (4.10). Therefore, Ei
Z/2Z is a reduction of structure

group of the earlier defined principal Ta–bundle ETa to the subgroup Z/2Z.

To prove that E1
H0

and E2
H0

are isomorphic it suffice to produce a real point t ∈ Ta
such that

(4.11) E2
Z/2Z = E1

Z/2Zt ⊂ ETa .

Indeed, a lift t̃ ∈ φ−1(t) ⊂ Tc of any t satisfying this condition, where φ is the projection

in eqn. (4.7), has the property that

E2
H0

= E1
H0
t̃ ⊂ ETc ,

which means that the automorphism of the principal Tc–bundle ETc defined by multipli-

cation with t̃ is an isomorphism of E2
H0

with E1
H0

. We note that the projection φ in eqn.

(4.7) is surjective on the real points; therefore, any real point t ∈ Ta can be lifted to a

real point of Tc.

The principal Ta–bundle obtained by extending the structure group of ETa using the

homomorphism ψ in eqn. (4.6) is trivial. Therefore, any reduction of structure group of

the principal Ta–bundle ETa to the subgroup Z/2Z is given by a morphism from X to the

quotient space Ta/(Z/2Z) ∼= Ta. We note that there are no nonconstant maps from the

irreducible projective variety X to the affine variety Ta/(Z/2Z).

Since both E1
Z/2Z and E2

Z/2Z are reductions of structure group of ETa to Z/2Z, there is

a real point t0 ∈ Ta/(Z/2Z) such that

z2t0 = z1 ,

where zi ∈ Ta/(Z/2Z), i = 1, 2, is the image of the constant function

X −→ Ta/(Z/2Z)

that gives the reduction Ei
Z/2Z. We note that the homomorphism ψ in eqn. (4.6) is

surjective on the real points. Therefore, there is a real point t ∈ Ta such that ψ(t) = t0.
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It is now straight–forward to check that this t satisfies the condition in eqn. (4.11). This

completes the proof of the lemma. �

Proposition 4.7. Let ETc be a principal Tc–bundle over the real projective line P1
R. Then

there is a principal Ts–bundle ETs over P1
R such that ETc is obtained from ETs by extending

the structure group using the inclusion homomorphism in eqn. (4.7).

Proof. Using Lemma 4.6 we know that there is a reduction of structure group

(4.12) EH0 ⊂ ETc

to the subgroup H0 defined in eqn. (4.9).

Let

(4.13) ϕ̃ : Tc −→ GL(2,R)

be the embedding defined by

a+
√
−1b 7−→

(
a −b
b a

)
.

Therefore, ϕ̃ corresponds to multiplication of C = R2 by C∗. The restriction of ϕ̃ to the

subgroup H0 ⊂ Tc will be denoted by ϕ.

Consider the adjoint action of H0 on the Lie algebra M(2,R) of GL(2,R) constructed

using ϕ. The H0–module M(2,R) decomposes into a direct sum of one–dimensional H0–

modules. Indeed, the four matrices(
1 0
0 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)
and

(
0 1
−1 0

)
generate the four one–dimensional H0–modules. The adjoint action of H0 on M(2,R)

factors through the quotient Z/2Z in eqn. (4.10) because the subgroup Ts ⊂ H0 acts

trivially on M(2,R). Therefore, for any one–dimensional submodule L of M(2,R), the

action of H0 on L
⊗

L is trivial.

Consider the action of H0 on R2 constructed using the homomorphism ϕ and the

standard representation of GL(2,R). Let V denote the vector bundle over P1
R associated

to the principal H0–bundle EH0 in eqn. (4.12) for this H0–module R2. The vector bundle

End(V ) is identified with the vector bundle associated to the principal H0–bundle EH0 for

the H0–module M(2,R). Since M(2,R) decomposes into a direct sum of one–dimensional

H0–modules of order two, it follows that the vector bundle End(V ) decomposes into a

direct sum of line bundles of order two. Now we conclude that End(V ) is a trivial vector

bundle because any line bundle over P1
R of order two is trivial (see Proposition 4.5).

Since End(V ) is a trivial vector bundle, using the second part of Proposition 4.5 it

follows that

V ∼= OP1
R
(`)⊕2

for some ` ∈ Z.
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Let FTs be the principal Ts–bundle over P1
R given by the tautological line bundle OP1

R
(1).

Let F `
H0

be the principal H0–bundle over P1
R obtained by extending the structure group

of FTs using the homomorphism

Ts −→ Ta ⊂ H0

defined by g 7−→ g` (see eqn. (4.10)). The proof of the proposition will be completed by

showing that the two principal H0–bundles EH0 and F `
H0

are isomorphic.

For that purpose, consider the short exact sequence of algebraic groups

(4.14) e −→ Z/2Z = {±1} −→ H0
ν−→ Ts −→ e ,

where ν is the norm map defined by z 7−→ zz. Both the principal H0–bundles EH0 and

F `
H0

have the property that the principal Ts–bundle obtained by extending the structure

group using the homomorphism ν in eqn. (4.14) coincides with the principal Ts–bundle

over P1
R given by the line bundle OP1

R
(2`). Therefore, to prove that EH0 and F `

H0
are iso-

morphic it suffices to show that for any principal Z/2Z–bundle E ′
Z/2Z over P1

R, the principal

H0–bundle E ′
H0

obtained by extending its structure group using the homomorphism in

eqn. (4.14) is trivial.

The inclusion Z/2Z ↪→ H0 in eqn. (4.14) factors through the subgroup Ts ⊂ H0 in

eqn. (4.10). Therefore, to prove that E ′
H0

is a trivial it is enough to show that that

the principal Ts–bundle E ′
Ts

obtained by extending the structure group of the principal

Z/2Z–bundle E ′
Z/2Z is trivial.

Any finite order line bundle over P1
R is trivial (see Proposition 4.5). In particular, the

order two line bundle given by the principal Ts–bundle E ′
Ts

is trivial. Hence the principal

H0–bundle E ′
H0

is trivial. This completes the proof of the proposition. �

Let X be a nondegenerate anisotropic conic in P2
R. Before classifying principal Tc–

bundles over X, we will construct a certain principal Tc–bundles over X.

Consider the ample generator of Pic(XC) (see eqn. (2.2)). This is the tautological line

bundle OP1
C
(1) over XC ∼= P1

C. Let E0
C∗ be the principal C∗–bundle over XC given by

this line bundle. The Weil restriction of E0
C∗ to the subfield R ⊂ C is a principal Tc–

bundle over the Weil restriction X̃ of XC. (Since Tc is the Weil restriction of C∗, it follows

immediately that the Weil restriction of E0
C∗ is a principal Tc–bundle.) This principal

Tc–bundle over X̃ will be denoted by E0
Tc

Definition 4.8. Let FTc be the principal Tc–bundle over X obtained by pulling back the

above principal Tc–bundle E0
Tc

over the Weil restriction X̃ using the canonical inclusion

map

(4.15) X ↪→ X̃ .

Fix a reduction of structure group

FH0 ⊂ FTc
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to the subgroup H0 of Tc. (From Lemma 4.6 we know that such a reduction of structure

group exists, and any two reductions are isomorphic.)

Proposition 4.9. Any real algebraic line bundle over the nondegenerate anisotropic conic

X is obtained by extending the structure group of the principal H0–bundle FH0 (see Defi-

nition 4.8) using some character of H0.

The principal Z/2Z–bundle over X obtained by extending the structure group of FH0

using the projection φ in eqn. (4.10) is isomorphic to the principal Z/2Z–bundle FZ2 in

Definition 3.4.

Proof. Let FGL(2,R) be the principal GL(2,R)–bundle over X obtained by extending the

structure group of the principal Tc–bundle FTc (see Definition 4.8) using the homomor-

phism ϕ̃ in eqn. (4.13). Let V denote the vector bundle of rank two over X associated to

FGL(2,R) for the standard representation of GL(2,R). Let

VC := V ⊗R C

be the vector bundle of rank two over the complexification XC obtained from V by chang-

ing the base field to C. From the construction of FTc it follows immediately that the

vector bundle VC is isomorphic to the direct sum ζ
⊕

σ∗ζ on XC, where ζ is the ample

generator of Pic(XC), and σ is the anti–holomorphic involution of XC given by the action

of the Galois group Gal(C/R) on the complexification XC.

Since degree(σ∗ζ) = degree(ζ), and Pic(XC) = Z, we conclude that

ζ ⊕ σ∗ζ = ζ ⊕ ζ = OP1
C
(1)⊕OP1

C
(1)

on XC = P1
C. Therefore,

(4.16) VC = OXC(1)⊕OXC(1)

on XC = P1
C.

We will show that the vector bundle V on X is indecomposable. To prove this, assume

that V decomposes as

(4.17) V = ξ1 ⊕ ξ2

into a direct sum of line bundles. We know that both ξ1 and ξ2 are tensor powers of the

tangent bundle TX (see Proposition 4.5). In particular, both degree(ξ1) and degree(ξ2)

are even integers. For i = 1, 2, let

(ξi)C := ξi ⊗R C

be the complex algebraic line bundle over XC given by ξi. The decomposition in eqn.

(4.17) gives a decomposition

VC = (ξ1)C ⊕ (ξ2)C .

Comparing this decomposition with the one in eqn. (4.16), and using the Atiyah–Krull–

Schmidt theorem on the uniqueness of the decomposition type of a vector bundle (see [At,
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p. 315, Theorem 3]), we conclude that

degree((ξi) = degree((ξi)C) = 1 .

This contradicts the earlier observation that the degree of ξi is even. Therefore, we now

conclude that the vector bundle V is indecomposable.

Since V is indecomposable, it can be shown that the principal GL(2,R)–bundle FGL(2,R)

does not admit any reduction of structure group to Ts = Gm. Indeed, any finite dimen-

sional Gm–module splits into a direct sum of one–dimensional modules, hence V will

decompose into a direct sum of line bundles if it is associated to a principal Ts–bundle.

Therefore, the principal H0–bundle FH0 does not admit any reduction of structure group

to the subgroup Ts ⊂ H0 in eqn. (4.10). This implies that the principal Z/2Z–bundle

FH0(Z/2Z) over X obtained by extending the structure group of FH0 using the projec-

tion in eqn. (4.10) is nontrivial. On the other hand, the principal Z/2Z–bundle FZ2 (see

Definition 3.4) is the unique nontrivial principal Z/2Z–bundle over X up to an isomor-

phism; this follows from Lemma 3.5. Therefore, the principal Z/2Z–bundle FH0(Z/2Z) is

isomorphic to FZ2 .

We will now show that all the line bundles over X are associated to FH0 . Since the

group of all line bundles over X is generated by the tangent bundle (see Proposition 4.5),

it suffices to show that the tangent bundle TX is associated to FH0 by some character of

H0.

Consider the character χ of H0 defined by g 7−→ det ϕ̃(g) ∈ Gm, where ϕ̃ is the

homomorphism defined in eqn. (4.13). This character coincides with the homomorphism

ν in eqn. (4.14). It is easy to see that the line bundle over X associated to FH0 for this

character χ has degree two. Therefore, this associated line bundle is isomorphic to TX.

This completes the proof of the proposition. �

Remark 4.10. The vector bundle VR in [BN, p. 1213] is isomorphic to the vector bundle

V ∗ in the proof of Proposition 4.9. This follows immediately from the classification of

vector bundles on X given in [BN, p. 1208, Theorem 1.1].

Proposition 4.11. Let ETc be a principal Tc–bundle over the nondegenerate anisotropic

conic X. Then there is a homomorphism

β : H0 −→ Tc

with the following property: The principal Tc–bundle over X obtained by extending the

structure group of the principal H0–bundle FH0 (see Definition 4.8) using β is isomorphic

to ETc.

Proof. Fix a reduction of structure group

EH0 ⊂ ETc
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to the subgroup H0 ⊂ Tc (see Lemma 4.6). To prove the proposition it suffices to

construct a homomorphism

(4.18) h : H0 −→ H0

such that the principal H0–bundle EH0 is isomorphic to the one obtained by extending

the structure group of the principal H0–bundle FH0 using the homomorphism h.

Let EZ/2Z be the principal Z/2Z–bundle over X obtained by extending the structure

group of EH0 using the projection φ in eqn. (4.10). We first assume that EZ/2Z is a trivial

principal Z/2Z–bundle. Then using the short exact sequence in eqn. (4.10) it follows that

EH0 admits a reduction of structure group to the subgroup Ts ⊂ H0. From the first part

of Proposition 4.9 it follows immediately that there is homomorphism h as in eqn. (4.18)

which factors through the subgroup Ts and satisfies the condition that EH0 is isomorphic

to the principal H0–bundle obtained by extending the structure group of FH0 using h.

Now assume that the above principal Z/2Z–bundle EZ/2Z is nontrivial. We note that FZ2

is the unique nontrivial principal Z/2Z–bundle on X (see Lemma 3.5), and furthermore,

FZ2 is the extension of structure group of FH0 by φ (see the second part of Proposition 4.9).

Therefore, using the exact sequence in eqn. (4.10) we conclude that the two principal H0–

bundles EH0 and FH0 differ by a principal Ts–bundle. This means that there is a principal

Ts–bundle E ′
Ts

over X such that the extension of structure group of the principal Ts×H0–

bundle E ′
Ts
×X FH0 over X using the multiplication homomorphism

Ts ×H0 −→ H0

is isomorphic to EH0 . Now the proof of the proposition is completed using the first part

of Proposition 4.9. �

Theorem 4.12. Let G be any connected reductive linear algebraic group defined over R.

Let EG be a principal G–bundle over a nondegenerate anisotropic conic X. Then there

is a homomorphism

ρ : H0 −→ G

such that EG is isomorphic to the principal G–bundle obtained by extending the structure

group of the principal H0–bundle FH0 using ρ (see Definition 4.8 for FH0).

Let FGm denote the principal Gm–bundle over P1
R corresponding to the tautological line

bundle OP1
R
(1). Let FGm ×X FZ2 be the principal Gm × (Z/2Z)–bundle over X given by

the fiber product (see Definition 3.4 for FZ2). Given any principal G–bundle EG over P1
R,

there is a homomorphism

ρ : Gm × (Z/2Z) −→ G

such that EG is isomorphic to the principal G–bundle obtained by extending the structure

group of the principal Gm × (Z/2Z)–bundle FGm ×X FZ2 using ρ.

Proof. In view of Corollary 3.3, we may assume that G is a torus.

In view of Lemma 4.1, it suffices to treat the three cases Ts, Ta and Tc.
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Using the second part of Proposition 4.5 and the first part of Proposition 4.9 it follows

that the theorem is valid for G = Ts. The second part of Proposition 4.9 implies that

the theorem is valid for G = Ta.

For the anisotropic conic X, from Proposition 4.11 it follows that the statement in

the theorem is valid for G = Tc. For P1
R, the case of Tc follows from Proposition 4.7

combined with the fact that the theorem is valid for Ts. This completes the proof of the

theorem. �
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