Quantum Analogues of a Coherent Family of
Modules at Roots of Unity : As, By

R. Parthasarathy

To a given a coherent family of virtual representations of a complex
semisimple Lie algebra we associated in [P] a coherent family of virtual rep-
resentations of the corresponding quantum group at roots of unity [P, section
2]. This is recalled fairly explicitly in section 2 below. We also proposed a
conjecture there that under some hypotheses the members of the family in a
certain positive cone are actually modules (as opposed to a ‘virtual’ module
which is in general only a difference of two modules). We verify the validity
of this conjecture for Ay and By. But first we recall in some length the ideas
in [P] without detailed proofs.

1

Let g be a finite dimensional complex semisimple Lie algebra and let U
be its universal enveloping algebra. Lusztig considered a certain Clv,v™!]
algebra Uy, {A = Clv,v !} which is an A-form of the ‘quantum group’
Uy,{A" = C(v), the field of fractions of A}; the latter are some Hopf-
algebra deformations of U, defined by Drinfeld and Jimbo generalizing the
case of sl,.

Let A € C* and suppose that A is a primitive £ — th root of unity where
¢ ,(>3),is an odd positive integer (not divisible by 3 if G is a factor of g)

Let ¢y : A — C be the C-algebra homomorphism obtained by sending
v to A\. The algebras U, := Uy ®4 C, (scalar multiplication by v € A in
the first factor corresponds to scalar multiplication by ¢,(u) in the second
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factor) are called ‘quantum groups at roots of unity’; these are different from
those considered by Kac, Processi and De-Concini. The algebras U are also
Hopf algebras.

In [L1, Prop. 7.5 (a) and L2, 8.16] Lusztig defines a ‘Frobenius’ morphism
Y : Uy — U; 1 is a surjection and respects the Hopf-algebra structure.

2. Coherent family of virtual representations
of U, U)\

Let h be a Cartan subalgebra of g . Let A be the set of roots of g with
respect to h and AT a system of positive roots. Let S = {aq,az, -+, a,} be
the set of simple roots in A*. Let A C h"(= Homgc(h, C) ) be the integral
lattice defined by

velNe2va)/la,a) € Z,Vae A

where the pairing is induced by the Killing form in the usual way.

Definition. A family of virtual (not necessarily finite dimensional) rep-
resentations {m(v)},cp of U is called a coherent family if for every finite
dimensional module F' of U (in the Grothendieck group)

Tw)@F= % muF)r(v+p)
HEA(F)

where the summation is over the weights A(F) of F' and for u € A(F), m(u, F)
denotes the multiplicity of p as a weight of F'.

Remark: The Grothendieck group is formed in the usual way from any sub-
category of modules with finite composition series, stable under tensor prod-
ucts with finite dimensional modules. Depending upon the context, (see for
e.g, [BV, Definition 2.2]) one often assumes extra information about the co-
herent family, e.g, that m(v) has an infinitesimal character parametrized by
the orbit of v and also an irreducibility property for m(v), when v satisfies
positivity conditions.

Interesting examples of coherent families arise by considering Harish-
Chandra modules (generally infinite-dimensional) for a real form of g . Given
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any such irreducible Harish-Chandra module there is a coherent family it be-
longs to (see [Vo, Theorem 7.2.7]).

Finite dimensional representations of U have been quantized by Lusztig
at all Uy. Their ‘weights’ can be defined as elements of A (see [L1, 5.2]);
they admit a weight space decomposition (see [APW,9.12] and [A]). If F is
an irreducible finite dimensional module for U, its quantization F” for U, is
called a Weyl module; for pn € A, p is a weight of F” iff it is a weight of F
and then the multiplicity m(u, F') equals m(u, F). This allows us to define a
coherent family {7(v)},eca of virtual representations of Uy exactly as in the
case of U. We will assume throughout this article, without further mention,
that the Uy modules considered are all of type 1 [L1,4.6].

Let p=1% > o ( half the sum of the positive roots). Recall that X is a
acAt
primitive ¢-th root of 1. If v € A is dominant integral (i.e., 2(v, a)/(a, @) €

Zt Ya € AT), let F, denote the irreducible finite dimensional representation
of U with highest weight ». We have then a representation Uy — End (F))
of the quantum group U, on the corresponding Weyl module F). Recall that
if v = (£ —1)p, the Weyl module F(’zq)p is called the ‘Steinberg module’; it
is irreducible (see [AW,2.2] and [A]). We let St denote the Steinberg module.

If : U — End (V) is a representation of U, we define a representation
7:Uy — End (V) by @ = m o1 where ¢ : Uy — U is the Frobenius mor-
phism defined by Lusztig [L1, 7.5 and L2, 8.16].

Given any v € A, we can uniquely write v = v/ + v where i) v/, € A
and ii) 2(¢/', a)/(a, ) € {0,1,---,¢ — 1} for every simple root « in A™.

Given a coherent family {7(v)},ca of virtual representations of U we
proceed to construct a coherent family {7(v)},ea of virtual representations
of Uy such that for any " € A

T =7(v") ® St

where St is the Steinberg representation of U,.

For this we introduce some notation mainly following [V] and [H].



Let 01,09, -, 0, be the fundamental weights; i.e., 2(8;, o)/ (v, @j) = 65
(Kronecker delta) where S = {aq, @z, -+, oy} is the set of simple roots. Let
W be the Weyl group, W C Aut (h"), generated by the Coxeter generators
si(t = 1,---,n) defined by s;(v) = v — [2(v, )/ (i, ;)] For o € W, let
I, ={i|1<i<mn, los;) <l(o)}. Here ¢( ) denotes the length function
on W with respect to the Coxeter generators sq, s, -+, s,. Put §, = 25i

i€l,
and define ¢, = 0(d,). Let R be the ring of formal integral combinations
>yea My €. Since the action of W on A" leaves A stable, W obviously acts as
automorphisms of the ring R. We let R" denote the subring of invariants.
We now summarize some key observations of Hulsurkar in [H] which were

reinforced by Verma [V].
Proposition ([H], [V])

(i) For o € W, —€y4, + €, = 0p, where oy is the unique element of W of
mazimum length. If m > 2 and m,-- -, 7, are distinct elements of W,
then at least one of the elements —€r oo+ €ry, —€ryoo+€rsy "y —€r 100+
€rns —€rpoo T+ E€n 1S Singular. (v is non-singular < (v,a) # 0 for any
aceAs‘weWw=v=w=1").

(ii) For any v € A, there exist unique W-invariant elements x, ., (T €
W), e RY such that
el = Z Xv,r €7

TEW

(iit) For any v € A, there exist unique W -invariant elements n,, , (17 €

W), e RY such that
e’ x(St)= > m,. e

TeW

o = {X(St) if w=1

0 otherwise.

(Here x(St), which lies in R" denotes the character of the Steinberg repre-
sentation.) The statement (i) is the Main Lemma of [H]. For statement (ii)
see also [J, Satz 1].

For a pictorial representation of statement (iii) in the case of By and A,
see figures at the end of the next section.
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Indication of proof (following [H] and [V]) of ii) Define an operator c :

R — R by
Yrew (=1)"em
Srew (C1e

c(e”) =

The operator c is R" -linear.

The main idea of the proof by Hulsurkar and Verma is to solve the sys-
tem of linear equations by inverting a | W | x | W | matrix (a,,) where
apr = c(e” %707 ) [which is essentially guaranteed to be ‘upper triangular’
unipotent by i)]

To find (X, r)rew which solves
e = Xur e’
=
multiply both sides by e~“70 to get
—

Applying ¢ to both sides

c(e’ o) = Z Xv.r c(e r0tr) (c e W).

The left side of this system of equations is a column vector (whose | W |
entries belong to the ring R"). Multiply this column vector on the left by
the | W | x | W | matrix (f,,,) (whose entries are in the same ring) which
is the inverse of the matrix (a,,) where a,, = c(e 0% ) to solve for the
unknown column vector (x,,-)rew-

The proof of iii) is similar. In fact one can see the following :-

Let ® : R — R be the ring homomorphism defined by ®(e?) = €. Observe
that
(®oc(e)x(St) =cod(e) Vn € A.

Define a | W | x | W | matrix (8,) by . = ®(8,,), where f,, are

as above. Then the column vector (7, ,)-ew required in iii) is obtained by
multiplying the column vector (c(e’~%e=0)),cp on the left by the matrix
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(/B(IT,T)U,TEW'

Remark 1 : Let € A. Applying Proposition (iii) to v + £ in place of v we
find that In,14,, € R, (1 € W), such that

eu-l—ﬁu.X(St) — Z 77u+zu,76&7-

Therefore
e’ x(St) = X, nefe

— ler—2
- ET Ny4-tu,m€ ¢ a

We denote by F the Grothendieck group of formal integral combina-
tions of finite dimensional representations of U. If w € F, the character
x(w) € R™ has an obvious meaning and x : F — R" is an isomorphism.
We also have to introduce the corresponding Grothendieck group F' for Uy-
modules. Again if w € F', the character y(w) € R" has an obvious meaning
and y : F' — R is an isomorphism. Sometimes, if convenient, we use the
same symbol to denote an element of F' and its character in R".

Theorem: Suppose a coherent family {m(v)},ean of virtual representations
of U is given. Given v € A, write v = v + (v where v' € A and
2V, 0)/(a,a) € {0,1,--+,£ — 1} for each simple root o. Let e .St =
S N7 in the notation of Proposition i) . Choose p(v',7) € F' whose
character is 1, . Set

W)=Y o) @70 +e)

(in the Grothendieck group of representations of Uy; see Remark at the beginning of section 2).
Then {T(v)},en is a coherent family of representations of Uy with T(0V") =
(V') ® St.

Proof: We have 1, , € R" and
GV,_St — Z N+ 6167—-

Remark 2 : By Remark 1, for any p € A, we can also write (uniquely)

v . —lp+-Ler
eV .St = Z M tpr € 1
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where 7,/44,, € R". In the course of the proof, it will be established that in
the statement of the Theorem, the rightside of 7(v), i.e. 3, p(v/,7) @7 (V" +
€;) equals

Soop( +lp,T)@T(V — p+e)
where p(v' + lpu, 1) , (€ F'), is chosen so as to have character 7,714, ;.
The main ingredient in the proof of the theorem is the following lemma.

Lemma: Suppose
dYooxi e =30 et

where x; , (1 =1,---,m) , and ¢; ,(j=1,---,n), € RY and Bi,v; € A.
Assume, as in the Theorem, that {m(v)},en is a coherent family of repre-
sentations of U. Let p;,7; € F' such that x(p;) = xi and x(1;) = ¢; .

Then,

Y pi@T(B) =) 707(v)
(Both sides lie in the Grothendieck group obtained from Uj-modules; see
Remark at the beginning of section 2)

Suppose the coherent family 7(v), ., has the property (see [BV, Definition
2.2]) that

i) m(v) has infinitesimal character parametrized by the W- orbit of v

ii) 7(v) is zero or irreducible when v is dominant with respect to a fixed
positive system, and 7(r) # 0 if v is dominant regular.

Then it can be expected that 7(v) for dominant v (with respect to the positive
system in ii) above) is represented in the Grothendieck group by a Uy- module
(as opposed to an arbitrary element of the Grothendieck group, which in
general is a virtual module, i.e., a difference of two modules). In the next
section we show that this is indeed true for Ay and B,, using Lusztig’s formula
for the multiplicity of irreducibles in Weyl modules of quantum groups at
roots of unity. More generally, we can also relax the conditions i) and ii) above
to allow families m(v), ., which do not necessarily have integral infinitesimal
characters.

If in the theorem we take Verma modules for the coherent family 7(v),.
then the expression for 7(v) given in the theorem can be used to deduce the



multiplicities of the irreducible subquotients occuring in a composition series
for the quantized Verma modules at roots of unity. The formula so obtained,
of course, involves

i) the multiplicities of the irreducibles occuring in 7(v) for various v and
ii) the multiplicities of irreducibles occuring in the Weyl modules for Uy.

In addition the formula involves the knowledge of the coefficients 7, .; the
explicit determination of 7, . was indicated in the proof of Proposition (iii).

Examples:A;, Bo
B,

If Ay is the fundamental weight which takes the value 1 on the short simple
root and A, the fundamental weight which takes the value 1 on the long
simple root, let us denote the weight mA; + nAy by the pair (m,n). The
fundamental parallelopiped {(m,n) |1 < m < {,1 < n < ¢} can be divided
into four ‘alcoves’ described as follows: ‘lowest’ alcove = {(m,n) | 1 < m <
,1<n</l1<m+n</{l1<m+2n </} Second alcove = {(m,n) |
I1<m<61<n<l1<m+n<ll<m+2n <2} Third alcove =
{m,n) |1 <m <01 <n<ll{<m+n<20(<m+2n <20} ‘Highest’
alcove = {(m,n) |1 <m <1 <n<{ll<m+n<20,20<m+2n < 3(}.
If 41 is a dominant integral weight let Y (4) denote the Weyl module for
Uy (where A is a primitive £ — th root of unity) whose character x (Y (u)) is
given by
Srew (=1 e
Yrew (—1)emr

and let Y (u) denote the unique irreducible quotient of Y (u) if the latter
is nonzero and zero otherwise. (Caution: Elsewhere, we have used the
notation F'(u) to denote the irreducible module with highest weight ;2 when
p is dominant integral. Thus, Y (u+p) = F(p).) The following decomposition
of the Weyl module into irreducibles is known (see [APW, section 11]).

cle!) =



(3.1) If (m,n) is in the lowest alcove then

n) =Y(m,n)

i) Y(m,
i) Y(m,—m—n) =Y (m,l —m —n)+Y(m,n)

i) Y(m+2n,—m—n)=Y(m+2n,0 —m—n)+Y(m,{ —m—n)
iv) Y(m+2n,t—n)=Y(m+2n,¢—n)+Y(m+2n,{—m—n)

Assuming as above that (m,n) is in the lowest alcove our first task is to
carry out the calculation indicated in the proof of proposition iii) in section
2 for e(™™ St. We find that

(3.2)
mn) St =
e ,z) Y (m,n)
+eOY (l —m,m+n)+Y(l —m —2n,n)}
fel=* ){Y(m+2né m—mn)+Y(m,n)}
+e=20Y (0 — m — 2n,n)
+eONY ({0 —m,l —n)+ Yl —m —2n,m+n)}
+e&=0Y (m, £ — m — n)
+e26=0Y (0 — m — 2n,m + n)
+el

LY (m +2n, 0 — n) + Y (m, £ —m — n)}
(

See Fig.2. Let v = (m" +m,{n’ + n) where m',n" € Z* and m,n are as
above (i.e., (m,n) is in the lowest alcove). By the theorem in section 2, the
member of the coherent family (of virtual representations of U)) attached to
(¢m” +m, n" + n) is given by



(3.3)

l/) T(lm" +m,fn" +n) =

T 1 n” +1)®Y(m,n)

+ (m )®{Y(€—mm+n)+Y(€ m —2n,n)}
+7(m" —1,n" +1) @ {Y(m+2n,0 —m —n) +Y(m,n)}
+7(m’ —2n +1)®@Y (¢ —m—2n,n)

+7(m )®{Y(Z m,l—n)+Y({l—m—2n,m+n)}
+7(m” +1n—1)®Y(m€ m —n)

+7(m" +2,0" —1) @Y (£ —m — 2n,m +n)

+7(m" +1,n") @{Y(m+2n,L —n) +Y(m, L —m —n)}

Observe that (m" — 1,n" 4+ 1),(m" —2,n" +1),(m" +1,n" — 1) and
(m"” 4+2,n" — 1) may not belong to the positive cone; consequently, 7(m" —
Ln"+1),7(m" =2,n" +1),7(m"+1,n" —1) and 7(m" +2,n" —1) may only be
virtual modules and not actual modules. We will see that after decomposing
the Weyl modules appearing in (3.3) into irreducibles it is possible to regroup
the summands in such a way that the sum of the terms in any group is an
actual module. We explain this in detail below.

Notice that if (m,n) is in the lowest alcove (¢ —m — 2n,n) is also in the
lowest alcove. Thus (3.1) implies the following decompositions.

) Y (= m—2n,n) = V(£ —m—2n,n)
) Yl—m—=2nm+n)=Y{—m—2n,m+n)+Y({ —m—2n,n)
i) Y(l—m,m+n) =Yl —m,m+n)+Y({ —m—2n,m+n)

) Y(C=m,l—n) = V(L= m, 0 —n) + Y (£ —m,m+n)

Using these decompositions in 3.3, we can write
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(3.5)

T(v) = (Em +m, " +n) =

7(m" +1,n" +1)®Y(m,n)

+7rm'n+1)®{7(£ m,m+n)+Y({l—m—2nm+n)+Y({—m~—2n,n)}
+7m" —1,n" + 1) {Y(m+2n,—m—n)+Y(m,{—m—n) +Y(m,n)}
+7(m" —2,n" +1) @Y ({ —m — 2n,n)

+7(m" 0 )Yl —m, L —n) + Yl —m,m+n)+ Yl —m—2n,m+n)

+Y(—m—2n,n)}

"

+7(m +1, n”—l)®{7(m {—m—n)+Y(m,n)}
+7(m" 4+ 2,0 —1){Y({ —m —2n,m +n) + 7(6 —2n,n)}
+7(m" +1,n") @ {Y(m+2n,0 —n) +Y(m +2n,¢ —m —n) +Y(m,{ —m —n)

+Y(m,n)}

Now we have to group the terms so that 7(v) is seen to be an actual
module. First we consider the case (m",n") = (0,0), which is in fact the
most difficult case. In this case, 3.5 becomes

(3.6)
T(v) =7(m,n) =
7(L,1) @Y (m,n
+7(0,1) @ Y (¢ — m,m + n)
+{7(2,-1)+7(0,1)} ® Y (¢ —m — 2n,m + n)
+H{7(=2,1)+7(0,1) +7(2,-1)} Y (£ — m — 2n,n)
+H7(-1,1)+7(1,0)} @ Y(m + 2n,l — m — n)
+{7(1,-1) +7(1,0) + 7(—1,1)} ® Y (m, £ — m — n)
+{7(1,-1) +7(1,0) + 7(—1,1)} ® Y (m, n)
+7(0,0) @ Y (¢ —m,{ —n)
+7(0,0) ® Y (¢ — m,m + n)
+7(0,0) @ Y (¢ — m — 2n,m + n)
+7(0,0) @ Y (¢ —m — 2n,n)

+7(1,0) @ Y(m + 2n,{ — n)

For the following it may be profitable to refer to Fig.2. There are lot of things
to observe about the grouping in the right side of 3.6. Observe

7(=1,1) + 7(1,0) = pr_yn{7(0,1) ® F(1,0)}
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where F'(1,0) is the irreducible finite dimensional module with highest weight
(1,0) and pr() means ‘projection to the direct summand in the tensor prod-
uct with infinitesimal character corresponding to (,)’. Hence recalling our
assumption 3.0, we conclude that m(—1,1) + 7(1,0) is an actual module as
(0,1) is in the positive cone. Hence, in the right side of 3.6, {7(—1,1) +
7(1,0)} ® Y(m + 2n,¢ — m — n) is an actual module. Observe

7(2,—1) +7(0,1) = pr,—1){r(1,0) ® F(1,0)}

Hence, 7(2,—1) + 7(0,1) is an actual module as (0, 1) is in the positive
cone. Hence, in the right side of 3.6, {7 (2, —1)+7(0,1)}®Y ({—m—2n, m+n)
is an actual module.

Next, we make the following observations:

F(1,0)®F(1,0) decomposes as the direct sum of A2F(1,0) and S*F(1,0),
the second exterier and second symmetric power respectively. The latter is
irreducible and is isomorphic to F(2,0); the former has an invariant given by
the invariant alternating form in F(1,0) - in fact, A2F(1,0) = F(0,0) + F(0,1).
The weight (0,0) occurs with multiplicity 1 in F(0,1) and with multiplicity 2
in F(2,0).

Using this information, we wish to assert that

m(2,-1) 4+ 7 (0,1) + 7(—2,1)

is an actual module. It is much easier to see that (2, —1) + 27(0,1) +
m(—2,1) is an actual module, as the latter equals pr()[7(0,1) ® F(2,0)].
Call this last module V (we would tacitly use the identification of F(2,0) as
the second symmetric power of F(1,0)). If we show that 7(0, 1)is a submodule
of V our assertion would follow. We show this now. Let T = pre 1y[7(0,1) ®
F(1,0)]. Then T =7(1,1)+7(—1,2). Let W = pr(oH[T®F(1,0)]. Then W =
27(0,1). If 7(0, 1) is non zero, regard the last identity as giving a submodule
W (isomorphic to two copies of 7(0,1)) of T ®F(1,0). The modules W and
T®F(1,0) are submodules of 7(0,1) ® F(1,0) ® F'(1,0). Our assertion made
a while ago would be established if we show that under the projection of
7(0,1) ® F(1,0) ® F(1,0) into 7(0,1) ® S?F(1,0) the image of W is non-
zero.(This would give the required non-zero submodule of V.) To show this we
just observe that W does not contain 7 (0, 1)®F(0,0) where F(0,0) is identified
with the space of invariants in AF(1,0). The point is that pr[7(0,1) ®
F(1,0) ® F(1,0)] equals 47(0,1) + (2, —1) + m(—2, 1), while pr [7(0,1) ®
A?F(1,0)] and pr1)[7(0,1) ® S?F(1,0)] are equal to 27(0,1) and 27(0, 1) +
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7(2,—1)+m(—2, 1) respectively. Thus our assertion that 7(2,—1)+m(0,1) +
7m(—2,1) is an actual module is completely proved. Hence in the right side of
3.6, {7(—=2,1) +7(0,1) + 7(2,—1)} ® Y (¢ — m — 2n,n) is an actual module.

Next observe that pr(; g)[7(1,0)® F(0,1)] = 7(1,-1) +7(1,0) +7(-1,1).
Hence, the right side of the above equation is an actual module. Hence, in
the right side of 3.6, {7(1,—1) + 7(1,0) + 7(—1,1)} ® Y (m, £ — m — n) and
{#7(1,-1) + 7(1,0) + 7(—1,1)} ® Y (m, n) are both actual modules.

Thus, though 7(v) is apriori only a virtual module, from the right side
of 3.6 one sees that 7(v) is indeed represented in the Grothendieck group
by an actual module forv = (m,n) in the lowest alcove. When v = (¢m" +
m, n" +n) where m",n" € Z* and m,n are as above (i.e., (m,n) is in the
lowest alcove) and (m” n") # (0,0) the proof that 7(v) is an actual module
is along similar lines. We have given in the following pages details for (m,n)
in the second alcove and (m”,n") arbitrary.

Next we suppose that (m, n) is in the second alcove; recall that this means
that m, n, m+n lie between 0 and ¢, while m + 2n lies between ¢ and 2¢. Let
mo =m and ng = £ —m — n ; then one sees that (mg, ng) lies in the lowest
alcove. Also, note (m,n) = (mgy,{ —mgy — ny). From 3.1,

(mg,ng) = Y (mg, ng)

(mo, £ —mo — ng) = Y (mo, L — mo —ng) + Y (Mg, no)

(mo+2ng, L—mo—ng) =Y (mo~+2ng, L—mo—ng)+Y (mg, £ —my—nyg)
Y (mg + 2n9, £ — ng) = Y (mg + 2ng, £ — ng) + Y (mo + 2ng, £ — mg — ny)

To begin we need an expression for (™™ St - either following the method
indicated in the proof of proposition (iii) in section 2, or any equivalent
expression (see Lemma after remark 2, section 2). We will use the following
expression. See Fig.3.
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(3.8)

elm:n) St — e(mo,t=mo—no) Gt
(

eb=0Y (my, ny)

+e(0:0) {Y(€ mo, Mo + ng) + Y (£ —mg — 2ng,no) }
+e(=60 {Y(mg + 2ng, £ — mo — ng) + Y (mo, no) }
+e(=2620Y (0 — mg — 21, 1)

+e0OLY (0 — mg, £ — ng) + Y (£ — my — 2ng, mo + ng) }
+elb )Y(mo, ?—mg — ny)

+ePE0Y (0 — my — 2ng, mg + 1)

+eEOY (mg 4 219, £ — o) + Y (Mg, £ — mg — 1) }

Suppose v = (fm” + m,fn" 4+ n) where m",n" € Z* and m,n are as
above (i.e., (m,n) is in the second alcove). By the theorem in section 2, the
member of the coherent family (of virtual representations of Uy) attached to
(¢m” +m, n" + n) is given by

(3.9)
T(v) = _(ﬁm +m, n +n) =
7(m" +1,n" —1)Y (mg, no)
+7r(m” n ){Y(€ — mg, my +ng) + Y (€ —my — 2ng,n0) }
+7 (m' —l,n + 1){Y (mg + 2ng, £ — mo — ng) + Y (mg, no) }
+7 (m’ —2 ' +2)Y (€—m0—2n0,n0)
+7(m”,n" + ){Y(Z mo, L —ng) + Y (£ —mgy — 2ngy, mg + no) }
+7(m” + 1, n + 1)Y (myg, £ —moy — ny)
—|—7r(m +2, n ) (£ — my — 2ng, Mgy + np)
+7(m" 4+ 1,0 ){Y (mg + 210, £ — 1) + Y (Mg, £ — my — ng) }

Using the decomposition of the modules Y(,) appearing in 3.9 into irre-
ducibles Y'(, ), we obtain similar to 3.5 the following:
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7(v) =7(tm" +m,tn" +n) =

Fm" +1,n" —1)® Y (mg, ny)

+7(m",n") ® {Y (€ — mg, mp + ng) + Y (£ — mg — 2ng, mo + ng)
+ Y (€ —mg — 2ng, ng) }

+7~r(m_” —1,n" 4+ 1)@ {Y(mg + 2n0, £ — my — ng) + Y (mg, £ — my — 1)
+Y(m0,n0)} .
—2,n" +2) Y (£ —my — 2ny,no)

" "

w(m ,n +1) @ {Y (£ = mg, l — ng) + Y (£ — mo,mo + no)

" "

w(m" +1,n") @ {Y (mg + 2no, € —ng) + Y (mg + 2no, £ — mq — ng)
+ Y(mg,ﬁ — My — TL()) + Y(mo, ’I’Lo)}

If2<m” and 1< 0’ 7(m" +1,n" —1),7(m",n"), 7(m" —1,n" +1),7(m" —
2,n" +2),7(m",n" +1),7(m" +1,n" +1),7(m" +2,n") and 7(m" +1,n")
are members of the coherent family whose parameters are in the positive
cone. Hence,the corresponding virtual modules are actual modules. For
other choices of (m", n”), we need to regroup the terms on the right side of
3.10, similar to 3.6.

Case 1-a). Suppose n” = 0 and 2 < m/.

Then,r(m" +1, —1)+x(m" —1,1) = pr(muﬂ,_l){ﬂ(mu, 0)®F(1,0)} Thus,
{Fm" +1,-1)+7(m" —1,1)} ® Y (mq, ny) is an actual module. This is the
only grouping needed in this case. All the other terms in 3.10 are seen to
involve 7(,) for a parameter in the positive cone.

Case 1-b). n" = 0 and m" = 1.

Observe 7(—1,2) +7(1,1) = pr_12){m(0,1)® F(1,0)}. As already noted
in case 1-a, (2, —1) +7(0,1) = pr,—1){7(1,0) ® F(1,0)} Thus, in the right
side of 3.10, {7(—1,2) + 7(1,1)} ® Y(£ — mg — 2ng,no) and {7(2,—1) +
7(0,1)} ® Y (mg, ng) are both actual modules. No other grouping is needed
in 3.10 in this case.

Case 1-c). n' = 0 and m" = 0.

3.10 becomes

— -
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+Y (€ —mg — 2ng,n0) }
+7(—1,1) @ {Y (mg + 2ng, £ — mg — ng) + Y (mg, £ — mg — ng) + Y (mo, no) }
+7(=2,2) @ Y (£ — mg — 2ng, ng)
+7(0,1) @ {Y (£ — mg, £ — np) + Y ({ — mg, mgy + ng)
+Y (€ —mo — 2ng,mp +ng) + Y (£ — mgy — 209, 1) }
+7(1,1) @ {Y (mo, £ — mg — ng) + Y (mo, no) }
+7(2,0) ® {Y (¢ — mg — 2ng,mo + no) + Y (£ — mgo — 2ng, ng) }
+7(1,0) @ {Y (mo + 2ng, £ — no) + Y (mo + 2ng, £ — mg — ng)

Regrouping the terms on the right side we rewrite 3.11 as follows:

(3.12)
T(v) =m(m,n) =
7(1,-1) +7(1,0) + 7(—1,1)} ® Y (mq, ng)

+7(0,0) ® {Y (£ — mg, mg + ng) + Y (£ — mg — 2ng, mp + ny)
+7(€ — My — 2%0, Tlo)}

+{77'(—]_, 1) + 77'(1, 0)} X {?(mg + 27’L0,£ — mgy — no) + Y(mg,ﬁ — Mgy — TLO)}

—|—77'(0, ].) X {?(6 — My, f— ’I’Lo) + ?(6 — My, My + ’I’Lo)
+ Y (€ — mg — 2ng, mo + ng) + Y (£ — mo — 2n9,n9) }

+77'(1, 1) & {V(mg,é — My — Tlo) +7(m0, TLO)}

+77'(2, 0) X ?(6 — Mgy — 27’1,0, myo + 7’1,0)

—|—77'(1, 0) X Y(mg + 2n0, l— Tlo)

We observe that pr¢,_{m(1,0)® F(0,1)} = 7(1,—-1) +7(1,0) +7(-1,1)
and pr_1){7(0,1) ® F'(1,0)} = 7(=1,1) + m(1,0) and pr_s2{7(0,1) ®
F(0,1)} = m(-=2,2) + 7(2,0). (It may be useful to refer to Fig.3.) ;From
this we see that 7(0,0) is an actual module.

Case 2-a). Suppose 0 < n" and 2 <m".

This is already taken care of : see the paragraph before Case 1-a).

Case 2-b). 0 < n" and m" =1.
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In this case, (m" — 2,n" 4 2) is not in the positive cone but occurs in
the right side of 3.10; it suffices to observe that since pT(m//_27n11+2){7T(m” —
Ln +1)®F(1,00} =7(m" —2,n" +2) +7(m",n" +1), one can conclude
{(Fm" —2,n" +2)+7(m" ;0" + 1)} @Y (£ —mg—2ny, ny) is an actual module.
All the other terms in the right side of 3.10 contribute actual modules as the
remaining 7(, ) involve parameters in the positive cone.

Case 2-c). 0 < n" and m" = 0.

The parameters (,) which are not in the positve cone but for which 7(,)
occur in the right side of 3.10 are (—1,n" + 1) and (—=2,n" 4+ 2). They can
be paired with other 7(,) which also occur in 3.10. As 7(—1,n" + 1) +
m(1,n") = pr(_l,nuﬂ){ﬂ(o,n”) ® F(1,0)} and 7(=2,n" +2) + 7(2,n") =
Pr—an +2)1m(0, n") ® F(2,0)} regrouping the right side of 3.10 presents no
difficulty.

Next we suppose that (m,n) is in the third alcove; recall that this means
that m, n lie between 0 and ¢, while m + n, m + 2n lie between ¢ and 2¢. Let
mo = 20 —m — 2n and ng = m +n — ¢ ; then one sees that (mg, ng) lies in
the lowest alcove. Also, note (m,n) = (my + 2ng, ¢ — my — ng).

We begin with the expression

(3.13)
e(m,n)s’t — e(m0+2n0,£7m07n0)‘st
eBE=0Y (mg, ng)
+€(2l 0) {Y(ﬁ mg, My + no) + Y(ﬁ moy — 27’1,0, no)}
+€(£l {Y(mo + 2’”0, {— mo — 7’L0) + Y(mo, no)}
+€(0 20) Y(Z moy — 27’1,0, ’I’Lo)
+€(Ol {Y(f my, {— 7’L0) + Y(f moy — 27’1,0, mo + 7’1,0)}
+€( )Y(mg, {— moy — 7’1,0)
+€( ’ Y(ﬁ mo — 2’”0, mo + ’I’Lo)
+e&OY (mg + 219, £ — o) + Y (Mg, £ — mg — no) }
(See Fig.4).

Suppose v = (¢m" + m,¢n" + n) where m",n" € Z* and m,n are as
above (i.e., (m,n) is in the third alcove). By the theorem in section 2, the
member of the coherent family (of virtual representations of U)) attached to
(¢m” +m, n" +n) is given by
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(3.14)

(v) =7(m" +m,tn" +n) =
(m" +3,n" —1)Y (mq, no)
+7(m" + 2, n ){Y(Z mo, Mo + ng) + Y (£ —my — 2ng,np) }

il

3

+7 (m” + 1 n' + 1D){Y (mg + 2ng, £ —mg — ng) + Y (mqg, n9) }
+7r(m n —i— 2)Y (£ —mg — 2ng, ng)

+7(m",n ){Y(é—mg,é—ng)—i—Y(Z—mg—Qng,mo—l—ng)}
+7(m" —1,n" +1)Y (mg, £ — mg — ng)

+7(m",n" )Y (é mo — 2ng, my + ng)

+7(m" 4+ 1,0 ){Y (mo + 219, £ — 1) + Y (Mg, £ — my — ng) }

The details of the proof that 7(¢m" + m, ¢n" + n) is an actual module
are similar to what we saw earlier in the case of the second alcove - namely,
though certain terms 7(, ) which appear on the right side of 3.14 may, apriori,
be only virtual modules they could always be paired with other terms 7(,)
such that the sum is an actual module. Occasionally, one may require to
regroup the original troublesome 7(,) with more than one term. Such a
pairing is invariably possible, by appealing, if necessary,to the decomposition
of the modules Y'(, ) into irreducibles Y(, ). In the present case, (m"+3,n" —1)
is not in the positive cone if n” = 0. Likewise, (m" — 1,n" + 1) is not in the
positive cone if m" = 0. If n" =0, 7(m" +3,n" = 1) +7(m" +1,n" +1) =
pr(mu+37nu_1){7r(m” +2,n" )@ F(1,0)} As (m" +2,n") is in the positve cone,
the required pairing is achieved. Likewise, when m" = 0, it suffices to observe,
mm’ —1,n" +1)+x(m" +1,n") = pr(mufl’nuﬂ){w(mu, n" +1)® F(1,0)}.

Finally, we consider the case when (m,n) lies in the ‘highest’ alcove. In
otherwords, m, n, lie between 0 and ¢, m+n lies between ¢ and 2¢ and m+2n
lies between 2¢ and 3¢. Let mo = ¢ — m and ny = ¢ — n. Then, (my,ng) lies
in the lowest alcove. We use the expression,
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(3.15)

elmn) Gt — ell=—mot=no) Gt
e®0Y (my, ng)
+e&OY (0 — mg, mo + 1) + Y (€ — mg — 2n9,10) }

+eCE0 LY (mg + 2ng, £ — my — ng) + Y (mo, no) }
+e(3z0 Y (€ —mg — 2ng,n0)
+e&OLY (€ — mg, £ — ng) + Y (£ —mg — 2ng, mo + n9) }
+e(029Y (myg, £ — mg — np)
+el=620Y (¢ — my — 2ng, mp + ng)
+e@OLY (mgy + 219, £ — 1) + Y (Mg, £ — mo — ng) }

(See Fig.5).

Suppose v = (fm” + m,fn" 4+ n) where m",n" € Z* and m,n are as
above (i.e., (m,n) is in the highest alcove). By the theorem in section 2, the
member of the coherent family (of virtual representations of Uy) attached to
(¢m” +m, n" + n) is given by

(3.16)

v) =7(m" +m,tn" +n) =

(m ,n”)Y(mg,ng)
+7(m” 41, n VY (6 = mg, mg +ng) + Y (£ — mg — 2ng,n0) }

2

+7(m" 42,0 )Y (mg + 2ng, £ — mg — ng) + Y (Mg, n0) }

+7(m" + 3, n”) (£ —mgy — 2n9, np)

+7(m” + 1 n" + D{Y (€ —mg, £ —ng) + Y (£ —mg — 2ng, mg +10) }
+7(m”,n" + 2)Y(m0,€ — mg — ng)

+7(m" — 1 n" 4 2)Y (£ —mgy — 2ng, mo + ng)

+7(m”,n" + D{Y (mo + 210, £ — no) + Y (mg, £ — mo — ng) }

(m" —1,n" 42) is not in the positive cone if 7" = 0. In this case, one can
however see that 7(m" —1,n" +2)+7(m" +1,n" +1) is an actual module as
m(m —1,n" +2)+7(m" +1,n" +1) = PT (" —1,5" +2) {r(m",n" +1)®@F(1,0)}.
This leads to the proof that 7(/m" +m,¢n" +n) is an actual module in this
case.
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| Y:(a;p-é-b) .(pi—a,:p-b)

Fig.1. p=\ell, ﬂ?,b) \in lowest alcove. Octagons represent
Weyl modules with center( ¢ )shifted. Outer octagon represents St.
hift is determined by choice of origin and positive system.
See figs.2,3,4,5.
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(Pp)

Y(a,p-a-b) (p-a,p-b)

Fig.2. See Eqns 3.2,3.3. p=\ell, (a,b)=(m,n) \in
lowest alcove. (m”,n")=(0,0). Shaded
region is positive chamber
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Y(a,b (p-a,atb) D 2
o T oo

(12p,2p

(p-a,p-b)

Fig.3. See Eqns 3.8,3.9. p=\ell, (a,b)=(m_0,n_0),
(m”,n")=(0,0). (m,n) \in second alcove.
Shaded region is positive chamber
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(-B'p)

Y(a,p-a-b) (p-a,p-b)
Fig.4. See Eqns 3.13,3.14. p=\ell, (a,b)=(m_0,n_0),

(m”,n")=(0,0). (m,n) \in third alcove. Shaded
region is positive chamber
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Y(a,p-a-b) Y(p-a,p-b)

Fig.5. See Eqgns 3.15,3.16. p=\ell, (a,b)=(m_0,n_0).
(m,n) \in highest alcove. (m”,n”)=(0,0).
Shaded region is positive chamber.

24



Finally, we remark that when the members of the coherent family 7 () have
nonintegral infinitesimal character, no additional problems are encountered.
This remark applies also in the case of Ag which is taken up next. Thus, for
B, and A, (and of course A;) we have the following result.

Theorem: Suppose a coherent family {m(§+v)},en of virtual representations
of U is given ( € € h*) having the property (see [BV, Definition 2.2]) that

i) (& + v) has infinitesimal character parametrized by the W- orbit of
§+v

ii) m(€+v) is zero or irreducible when £ + v is dominant with respect to
a fized positive system V¥, (i.e., for a € ¥, 2(£ + v,a)/(a,a) € Z,&
2+v,a)/(a,a) € ZT) and T(E+v) # 0 if E4v is dominant regular.

Given v € A, write v = V' + 0" where v € A and 2(V/,0)/(a,a) €
{0,1,---,0 — 1} for each simple root a. Let €”'.St = Y0, ,.€" in the no-
tation of Proposition (iii) . Choose p(V',7) € F' whose character is 0, ;.
Set

TE+v) =3 p(/, 1) @F(E+1" +e)

(in the Grothendieck group of representations of Uy). Then {T({+v)},en is
a coherent family of virtual representations of Uy. Furthermore, the virtual
module T(€€ + v) for dominant (€ + v (with respect to the positive system in
(1) above) is actually represented in the Grothendieck group by a Uy- module.
A,
If Ay, Ay are the fundamental weights, let us denote the weight mA; + nA,
by the pair (m,n). The fundamental parallelopiped {(m,n) |1 <m < /£,1 <
n < £} can be divided into two ‘alcoves’ described as follows: ‘lowest’ alcove
={(m,n) |1 <m<l1<n</{l1<m+n </}, and ‘Highest’ alcove =
{(m,n) |1<m <l 1<n<ll<m+n<2}.

If 11 is a dominant integral weight let Y () denote the Weyl module for
Uy (where A is a primitive ¢ — th root of unity) whose character x(m,n) is
given by
direw (_1)“7)67”
Yrew (1) e
and let Y (x) denote the unique irreducible quotient of Y () if the latter is
nonzero and zero otherwise. The following decomposition of the Weyl module
into irreducibles is known (see [APW, section 11]).

clet) =
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(3.17) If (m,n) is in the lowest alcove then
i) Y(m,n) =Y (m,n)
i) Y(l —n, 0 —m) =Y —n, L —m)+Y(m,n)

If (m,n) is in the lowest alcove then (n,¢ —m —n) and (¢ —m — n,m) are
also in the lowest alcove and hence we also have

i C—m,m+n)=Y{l—m,m+n)+Y(—m—n,m)

Let v = (¢m" + m, ¢n" 4+ n) where m",n" € Z* and m,n are as above
(i.e., (m,n) is in the lowest alcove). By the theorem in section 2, to write
down the member of the coherent family (of virtual representations of U))
attached to (¢m” +m, fn" +n) first we need an expression for e(™".St. Such
an expression can be found by carrying out the calculation indicated in the
proof of proposition (iii) in section 2. We find that

(3.18)
elmn) St =
e“OY (m, n)
+e0OY (£ — m,m + n)
+el=0Y (n, £ —m —n)
+e00Y (¢ —n, 0 —m)
+eb=0Y (0 —m — n,m)
+e&0Y (m +n, L —n)
(See Fig.6.)

By the theorem, the member of the coherent family is given by
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(3.19)

(1/): T(lm" +m,fn" +n) =

(m" +1, n,,+1)®Y(m n)

(m” n +1)®Y(€—m m+n)
(m —1,n" +1)®Y(n,{ —m —n)
7(m' ')®Y(€—n€ m)

7(m" —|—1n -1)@Y({ —m—n,m)
+7(m" +1,n" )@Y (m+n,{—n)

R ==
ST

Using the decompositions 3.17 in 3.19, we get

(3.20)

(V)—ﬁ(ﬁm”—i-m,ﬁn”wLn):

7(m" +1, n”—i-l)@?(m n)

—|—7r(m n +1)®{Y(Z m,m+n)+Y({l—m—n,m)}
m ~ 1,0 +1)®Y(n,{ —m—n)

m ')®{Y( —n,l— m)+Y(mn)}

v A

If 1< m” and 1< n", all the parameters (,) for which 7(,) occur in the
right side of 3.20 are in the positive cone. Hence,the corresponding virtual
modules are actual modules. If 0< m” and 0 = n", then pr(muH’_I){w(m” +
1,0) ® F(1,0)} = 7(m" +1,—1) +x(m",1). Thus in the right side of 3.20,
7m +1,-1)@Y({l —m—n,m)+7(m" ,1) @Y (£ —m —n,m) is an actual
module. Similarly, if 0 = m" and 1< n", then pr(_l,nuﬂ){ﬂ(o,n” +1)®
F(0,1)} = 7(=1,n" +1)+7(1,n"). Thus in the right side of 3.20, 7(—1,n" +
DY (n,l—m—n)+7(1,n")®Y (n,{—m—n) is an actual module. Thus,
7(¢m" +m,n" +n) is seen to be an actual module.

Next, suppose that (m,n) is in the highest alcove. Thus, 0< m < £,0 <
n<fland { <m+n <20 Put my="{—n,nyg =~¢—m. Then, (mg,ng) is
in the lowest alcove. We can see that
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(3.21)

(See Fig.7.)

e(mn) St =

eO0Y (my, ng)

+e0DY (£ — mg, mo + ng)
+e(029Y (ng, £ — my — ng)
Y (0 —ng, £ — my)
+e2E0Y (0 — my — ng, my)
+eB0Y (mgy + ng, £ — nyg)

By the theorem, the member of the coherent family is given by

(3.22)

7(v) =7(lm" +m,ln" +n) =
F(m',n") ® Y (mg, no)

+7(m",n" +1) @Y (£ — mg, mg + ng)
+7(m",n" +2) @Y (ng, £ — my — ng)
+7(m" 4+ 1,n" +1) @Y (£ — ng, £ — my)
+7(m" +2,n") @Y (£ — mg — ngy, my)

One sees that all the parameters (,) for which 7(, ) occurs in 3.22 are in the
positive cone. Thus, 7(¢m" + m,¢n" 4+ n) is an actual module.
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Fig.6. See Eqgns 3.18,3.19. p=\ell, (a,b)=(m,n) \in lowest
alcove. (m”,n")=(0,0). Fig.7. See Eqns 3.21,3.22.
(a,b)=(m_0,n_0). (m,n) \in highest alcove.
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