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Introduction

It is wellknown that the discrete class representations of a semisimple Lie group
form the building blocks for the representation theory of semisimple Lie groups.
Several attempts have been made to realize these representations by proving
analogoues of the Borel-Weil-Bott theorem for noncompact symmetric spaces.
We note that in any such analogue there is no “ab initio” proof that the space
of “L2-harmonic forms” concerned is nonzero. In this paper we give a straight-
forward algebraic construction of a class of irreducible, infinitesimally unitarizable
representations of a semisimple Lie algebra. This class contains a special subseries
of the discrete series. Our method is by explicitly constructing (through algebraic
results about existence and uniqueness) certain operators on the direct sum of
some cohomology spaces (of bundles on a compact flag manifold); the operators
so defined will represent the given Lie algebra. Going into the details of this
paper one can see that our construction has some applications (among them,
for example, is a proof of Blattner’s conjecture for the special subseries of the
discrete series). In [1] Enright and Varadarajan obtained some modules which
include all discrete classes. Recently {i.e. at the time of writing up this paper)
Schmid has also obtained some modules which include ali discrete series.

We now begin to describe our results in detail.

Let G be a connected noncompact semisimple Lie group with finite center.
Let K be a maximal compact subgroup of G. Assume rank of of K=rank of G.
Let TCKCG be a Cartan subgroup of G. Let tCkCyg denote the Lie algebras
of T, K, and G respectively. Let t“Ck“Cg® denote the complexifications of t CkCg.
Let X be the set of roots of (%, g©) and PC X a positive system of roots. Let P, and
P, denote the set of compact and noncompact roots in P respectively so that
P=P,UP,. Let bCk® be the Borel subalgebra of k€, defined by

b=t+Z2,p9"

where ¢* is the root space corresponding to the root . Let BCK® denote the
corresponding Borel subgroup of K€ Let g=k+p be a Cartan decomposition
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of g and g“=k“+p® its complexification. Then p€ is stable under the adjoint
action of K°. Let

p.= ) aePnga !
so that p, Cp© and is stable under the adjoint action of B. Throughout this paper
we assume

tlp+»p+1p+1=0.

For 120, we denote by S(p,) the I symmetric power of the B module p,. We
denote by p_ the quotient B module p“/p, and by A%_ the g" exterior power
of p_. The characters e* on T are in one to one correspondence with elements 4
belonging to a lattice F of linear forms on i.t. For Ae F we denote by [, the one
dimensional representation on B got by extending uniquely the character ¢*
on T Let ¢ be half the sum of the positive roots. Consider a leF for which

i) {A+g,0>>0 for aeP, and <{i+g,a>=0 for acP,,
and
ii) H(AP_®l;1,,)=0, for i<s=dimK/B, where H(A%p_®l,,,,

denotes the i cohomology space of the sheaf of germs of holomorphic sections
of the homogeneous holomorphic vector bundle on K¢/B induced by the B
module Afp_®1;, ,,.

For each 4 as above, we construct in this paper an irreducible representation
0; of g on the space @, H(S(P.)®l,,,,). It will turn out that for Yek, g,(Y)
maps the I summand into itself and defines there the usual action of K¢ on the
cohomology space H¥(S'(p,)®1, . ,,). For Xep, g;(X) is a sum of two operators
AX) and &(X), where &X) maps the I summand into the /— 1% summand while
&X) maps the I summand into the [+ 1% summand. The map

0P @HIS (P )®1s2 ) H(S'™ p)®1, 4 2,) (©.1)
{(AX ®u)= A X)) is got as follows: We have the differentiation map

pC®Sl(p+)“’Sl_ 1(p+)

which is a B module map. Tensoring it with the identity of /,,,, and inducing
we get a vector bundle map of the associated vector bundles. This in turn induces
a map in cohomology which can be essentially interpreted as 0. In fact the operators
J(X) are our starting point. We then look for operators ¢(X) to build up a repre-
sentation g; with g(X)=dX)+¢&(X). Our proof of the existence and uniqueness
of the operators &(X): H(S'(p,)®1, 4 , )= HY(S'* H(p,)®!I, ,,) is by induction on /.
Since the map'0:p" @ HY(S'(p, )®1, 1, ) H(S' " }(p,)®I,. ,,) is by definition got
by inducing in cohomology the differentiation map (restricted to polynomials),
the exact complex of g-forms (g=0, 1, ..., dimp®) and exterior differentiation 5

! Throughout we make the assumption that [[p,,p,],p,]=0. Such positive root systems are

called special {or admissible). For any given G, there always exist such positive root systems P. Explicit
use of this assumption is made in the proof of Lemma 6.7 and in Section 9 where the unitarity of the
limits of discrete classes is proved
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must have an analogue by inducing in cohomology, (Lemma 2.2). We have maps

8 AP RHNS P )® 42— AP OHNSTIT  (p)® 54 2,) 0.2)
and exact complexes connecting these. The problem of finding
E:PC®HS(Sl(p+)®lA+ 29)“’HS(SI+ 1(I7+)®l;1+ 29) 0.3)

for which &(X)u=4#X ®u) must have the desired properties for building up the
representation ¢, is translated into a problem of finding a 1-form ¢ with some
properties for which the exterior derivative should be a given 2-form b. Thus
one has to know that the exterior derivative of b 1s zero Luckily enough this
happens to be so. (Lemma 4.2), That b should be the boundary of ¢ is only a part
of the conditions on & The other conditions on ¢ namely the K¢ linearity of ¢
and (3.7 IH) these are the ones which force it to be unique — make the problem
complicated. The key lemma for solving the above problem is Lemma 4.3, whose
proof is lengthy and by induction.
For our inductive proof of the existence and uniqueness of

e PCOHNS (P )@ L2~ H(S™ (p)®1142,)
it is very crucial to know and also desirable to have that
& P @H S (P )@, 1 2) = HS ™ (p)®142,) (0.4)

are surjective for i=0,1,...,1—1. The following is roughly the idea of proving
then that (0.4) is surjective for i=1

Any Xep is represented on a certain finite dimensional space of spinors L
by an operator C(X):L— L, such that C(X)((Y)+ AY)O(X)=(X, Y) where (,) is
a scalar multiple of the restriction of the Killing form to p. One first proves that
the operators

G:H(SMp )®1, 42 QL—H(S* 1(p,)®1;42,)®L
defined by

Cu®s)=2 X AX)s

(where X; runs through an orthonormal basis of p) have the properties that one
should expect of an “adjoint” — if one exists — of

F:H(S* (p )@l )@ L~ H(SHp )@, 5 ) QL
defined by
Flu®s)=2,dX u@UXy)s .

For example the kernel of the Laplacian GF + FG gives the cohomology groups
of the complex connecting the maps F for various k, which incidentally are zero
for k>0, The maps G were formed from the maps & But using properties of the
Clifford algebra on p for which the space L of spinors is an irreducible module,
properties of ¢ can be recaptured from G. The technical lemma needed is Lemma 6.7.

As indicated earlier, the representation g,(X) is defined using the maps g(X).

When J+p is not singular on any noncompact root o, the question arises
whether the representation g, that we construct belongs to Harish-Chandra’s
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discrete class w(A+ ). If A+ is assumed to be sufficiently regular, an affirmative
answer can be given using [3, Theorem (I1)]. However, the above conclusion is
true even without the assumption that 1+ is sufficiently regular. The situation
is similar to the problem of identification of the Enright-Varadarajan modules
{11 with discrete classes. Only for this purpose a result of Schmid, namely {8, (1.3)]
is used.

By construction the restriction to k of the representation g, decomposes in a
manner similar to the k decomposition of discrete class representations. Among
the g,, the ones corresponding to nonregular 1+ are called limits of discrete
series. Of course, even for the special system of positive roots P that we work
with the g, that we construct do not account for all limits of discrete series. This
is because of the vanishing condition i) (However, they account for all discrete
classes associated to P, if G is linear). The representation can be shown to be
same as the representation given by the module Dp ;. ,,. constructed by Enright
and Varadarajan [9].

Following is a brief idea of our proof in §9 that the representations g, are
unitaraziable. Dualizing the vector bundles associated to SXp,)®l,,,,, and
taking suitable direct images, one gets bundles R(ip,). @, H*R(y,) is our new
representation space and g, the new representation. The proof of the existence
of the maps &,(X) throws a hermitian form on H°(R(y,)). The operators g,(Z),
Zeg, leave the hermitian form on @, HYR(yp,) infinitesimally invariant. The
convenience in taking the direct images R(yp,) is that the hermitian form on
H°%R(yp))) is given by_invariant hermitian forms on the fibres of R(yp)). Similar
to F and G we have F and G. Since G is like an adjoint of F we conclude, with
appropriate induction hypotheses that the hermitian form on H°(R(p,. ))®L
must be positive definite on the image of G. This image contains sections of
R(yp,. )®a line sub-bundle of L. Eventually we conclude that the hermitian
form on the fibres of R(y, ., ;) must be positive definite.

§1

G denotes, as in the introduction, a connected noncompact semisimple Lie
group, not necessarily linear. G is assumed to have a compact Cartan subgroup.
We fix one such, denoted T, and let K be a maximal compact subgroup of G
containing T gDkDt denotes the corresponding Lie algebras. We denote by p
the subspace of g in the Cartan decomposition g=k+p and consider p as a K
module through the adjoint action. The superscript C will denote complex
conjugation. The root system for (g<, t*) will be denoted by X. For a root acZX,
g* denotes the one dimensional eigenspace of a in g¢. We fix an arbitrary! positive
root system P and set,

Py={aeP;g*Ck},
and

P,={xeP;g*<p}.
Roots in P, are positive compact roots and roots in P, are positive noncompact
roots. We put

e=3<P>, =3Py and ¢,=3(P),
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where for a subset ¥, (Y denotes the sun of the elements in Y. We once for all let
m=#P and s=#P,. (1.0)

T denotes the character group of T. We let t* = Hom(t, R), the real dual space of 1.

Elements e*e T are in one-one correspondence with elements u in a lattice

FCir*Cr*C. As in usual in the finite dimensional representation theory for k,

for a dominant integral linear from veit*, (dominant w.r.t P}), 7, shall denote

the finite dimensional irreducible representation of k, with highest weight v. (1.1)
Let B be the Borel subgroup of K¢ whose Lie algebra is

h: tC+ Zangga .

Then K/T =K%/B becomes a K¢ homogeneous compact complex manifold for
a linear form peHom(t%, C), we denote by [, the one-dimensional b-module
obtained by extending trivially on the nilpotent radical X,_p g* If e is a character
on T, I, also stands for the B-module given by it. By restriction, the K¢ module p©
becomes a B module. Then

Pe=2uep, 4" (1.2)
is a B-submodule of p©. Then
po=p"Ip. (1.3)

isalsoa Bmodule. The Killing forms ( , ) of g restricts to a nondegenerate symmetric
bilinear form on p¢, which is positive definite on p. We have

(p+.ps+)=0.

Therefore, the B module p_ is the dual of the B module p,. For a holomorphic
B-module m, H(m) stands for the i"™ cohomology space with coefficients in the
sheaf of germs of holomorphic sections of the homogeneous holomorphic vector
bundlc over K¢/B associated to m.

We now define

F={;eF|G+g a>>0,2eP,, and (/4. 2>=0,aeP,}. (1.4)
20 being the sum of all the roots in P, 2pe F. Thus,
/+20eF. (1.5)

As above, [, ,, denotes the one dimensional B module given by £+ 2¢0. If mis a
B modulc, we denote by S(m) the [-th symmetric power of m(I=0,1,2,...). We
now consider the tensor product S’(p+)®l,-_+zg and the cohomology spaces
H{(S'(p )®!;,,,) (0<i<s,1=0.1,2...)) of these modules. As usual. these co-
homology spaces naturally become finite dimensional K modules.

For a fixed / belonging to a suitable subset of F. the K module

D HIS' (PO, 1)

shall be the basic object of interest to us. It is on this space that we will construct
the representation g; of g. To make this construction possible, we need some
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information about the cohomology spaces H'(A%p_®l,.,,). For this we make
the following

Definition 1./. We say that Ae F satisfies the condition (x), when H{ A %p_®1,, , J=0
for every i<sand forevery g, 0=<g=<m.

Henceforth, we make the assumption AeF and that the condition (x) holds®
for A. (1.6)

Remark. If Ae F and if (A+ 0x+ <@, @) 20, for every ae P, and every QC P, then 4
satisfies the condition (*). (See Lemma 4.1, [3]).

Lemma 1.1. Let A F and suppose that condition () holds for 4. Then for all1=0, 1,2,...
Hi(SI(P+)®lA+29):0 s
Joralli<s.

Proof. The proof of this is contained in the proof of Lemma 5.3, [3]. One has
to note that for Ae F the condition (%) of this paper is the same as the condition
(3) for 1+2¢, of [3] q.e.d.

§2
In this article we will define a map
0:p QH (S H(p)®114 2 HAS(P)®15, 2,)

({1=0,1,2,...) and study its properties. First we fix the following conventions.
Let m be a K¢ module. By restriction to B, m becomes a B module. The associated
vector bundle over K/B is holomorphically trivial and m~ H°(m) as K€ modules.
If another B module n is given, then the cup product of cohomology spaces gives
a K€ module isomorphism

m® Hi(n)~ H(m)® H'(n)> H(m®n) 2.1

The Killing form (, ) of g© is nondegenerate and symmetric on p©. By this bilinear
form the K¢ module p° is isomorphic to the K¢ module Hom(p, ). We make
use of this isomorphism in the future, whenever convenient to do so, without
making further mention. The inclusion p, —»pC, gives rise to an inclusion

S'(p,)—~S'(p9) (22)

which respects the B module structures. Since p© has been identified to its dual
space, S'(p®) is the space of polynomials on p¢ of homogeneous degree . Thus
one has the differentiation map

8:p @S H(p9)—S'(p©) 2.3)
given by (X ® f)= 0y /. 6 is easily seen to be K linear.

2 There exists an integer N such that for every odd integer N'>N and every AeF (cf. (1.4)
N'(A+g@)—p€eF and the cohomology vanishing condition is satisfied for N'(A+g)-g¢. In particular

the set of limits of discrete classes that we construct is nonempty
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S'(p) denote the symmetric algebra on p‘. For

Ps

Remark 2.1. Let S(p©)=

1

1]

)
Xepb let

Ox:p —S(p°) 2.4)
be the linear map given

dx(Y)=(X, V)eS°(p ), (2.5)
the bilinear form being the Killing form. There exists a unique extension

3x:S(p)—S(p) (2.6)
of (2.4) as a derivation of the algebra S(p®). This gives rise to a map

3:p @S(p)—S(p°)
and one has

S{p®S PSP
The map in (2.3) is the same.

Under the map (2.3)

S(pe @S Hp,)NES(p). 2.7
Thus one gets a map also denoted by 4,

3:p°®S' " (p,)-S'(ps), (2.8)

which i1s a B linear map. Tensoring (2.8) with the one dimensional B module
l;+2, we get a map also denoted by 4,

53PC®SH1(p+)®lz+2g—’sl(l7+)®ll+29 (2.9)

which is B linear. Take the associated vector bundles on K/T; (2.9) induces a
bundle map between these vector bundles, which in turn induces K-linear maps
between the i™ cohomology spaces of the corresponding sheaves of germs of
holomorphic sections. Thus one has a K linear map

GH(P @S (P )®142) = HS (P )®51 2,) (2.10)

By (2.1) the first cohomology space can be identified with p@HS'" '(p, )®1; 1 2,)-
Thus, we get the desired map

O:pC@HS' H(p )@t 2~ H (S (p)®i1 1) - (2.11)
For Xep®and ue H(S'"* '(p,)®!,, 1, we now define

AXu=AX®@u) (2.12)
Thus, V X e p, we have the operator

AX):H(S'(p )®Ls4 1)~ H(S ™ ' (p1)®lis2,) (2.13)

(&(X) is identically zero, on the 0-th summand.)
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Qur aim is to define operators

oX): @H(S (P )®4 )= ®H (S (0 )®14 20 »
for every Xep€, such that eX){H(S'(p.)®1; 1 2} SH(S ™ (p,)®1;45,) s0 as
to have the following: For Y kS, define

0UY): @H (S (P )B4 2~ BH(S' (P )®1542,)

so that g,(Y) maps the I'" summand into itself and defines there the representation
of k“ on H¥(SYp ,)®!1,, 1,)- For X ep®, define

i X)=dAX)+&X).
For Z=Y+Xeg" where Yek® and XepC, define

eZ)=0Y)+0(X}).
Then the operators ¢(Z), (Zey©), shall define on irreducible representation of g.

The proof of the existence and uniqueness of the operators &(X) goes through
Sections 3, 4, 5, and 6.

We begin by proving the exactness of a certain complex connecting the maps 0,
for various [, defined in (2.11).

Since dimp, =m, dimp“=2m. Let g be an integer such that 0<g<2m—1.
Using the maps 6 of (2.8) we define maps

TS p )@ APTS(p )@ AT pC (2.14)
to be the restriction of exterior differentiation

Sl+ l(pC)® A qu_ésl(pC)® A q+ 1pC

It is clear that under exterior differentiation S'*(p,)® A %p° is mapped into
S'p,)® A% 'p. Note that 5 is a B module homomorphism. The maps in (2.14)
fit into the exact sequences in the following lemma.

Lemma 2.1. Let m=dimp, so that 2m=dimp°. Define Sp,)=0, if k<0.
If I>m, one has the following exact complex :

0-8(p )5S (P )® A P ST 2pL)® A 2. =S 2p )@ A 2 0
(2.15)

Let I<m. The quotient map p“—p_=p“/p, induces maps AIpS— n9p_.
We now have the following exact complex.

0—>Si(p+)§st~1(p+)®A lpCﬁ'.._)-.'ﬁsi(p+)®/\{—lp(‘
=5%p)® AP Alp_ -0 2.16)

Proof. The proof of this lemma can be easily extracted using the method in [2,
Proof of 3, Theorem p. 27]. q.ed.

The maps in (2.15) and (2.16) are all B module homomorphisms. Tensoring
with the one dimensional B module [, ,, gives rise to the following exact com-
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plexes of B module homomorphisms

For l>m
OQSI(P+)®IA+296—O’SI‘ 1(P+)® A IPC®IA+296—1>---“"Slwzm(PJr)@ A Zmpc®lz+29
-0 2.17)

is an exact complex of B module homomorphisms.
Forl<m

0_"33(?+)®{/1+ 29338{‘ I(?+)® A 1pc®fx+ 2gﬁ---"’sl(p+)® AT IPC®[.&+ 2o
_"So(p+)®/\lpc®l).+29_’ f\zp—®z:t+ 29_’0 (2.18)

is an exact complex of B module homomorphisms.

Lemma 2.2, For I>m, (2.17) induces an exact complex of K module homomorphisms

0—H(S"p )®1 4 2 ) SHAS' (p )@ A @154 2,)

5 S H(S TP )@ APP® )0 (2.19)

For I<m, (2.18) induces an exact complex of K module homomorphisms.

0= HA(SHp )®Lic2) S H (S ™ (p)® A ' @111 25
—H(S(p )@ AP ®lii 2= H(A'p-®l;1 2)—0 (2.20)
Proof. Consider (2.18) W"%=the image of & in S ' (p, )R A" 'p®I,, 1,
We then have a short exact sequence
0->Whi 1S 9p Y@ A PRI, > W0 (2.21)

By Lemma 1.1 and Remark 2.1, we know that the /"™ cohomology spaces of the
middle term are zero for i<s. Considering the long cohomology exact sequence
associated to (2.21), we can deduce the following:

If for a q, H(W"%) =0, for i<s, then H(W"2" 1)=0, for i <s and we have an
exact sequence

0—H(WH ™ s HA(S' ™ 4p, )@ A ®l, 4 )~ H(W-)—0 (2.22)
But from (2.18), we have the short exact complex
O->whi~! ‘“"SO(P+)® A ipc®lz+zg—’ A lP— ®ZA+2Q“’O .

Since Ae F and satisfies condition (#), H(-)=0, for i<s, for the last two terms.
From the long cohomology exact sequence the same vanishing also holds for
W=t Thus the conclusion in (2.22) holds for all . The exactness of the complex
in (2.20) follows now. The exactness of the complex in (2.19) is proved similarly.

g.e.d.

Remark 2.2. Identify
H(S"™p )@ AP @it 2 ~H(S (0 )@l 2)® A %pE.
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Let X, X,, ..., X,,, be an orthonormal basis of p w.r.t the Killing form. Then the
map 3% H(S'(p,)®1,. zg)_’Hs(Slw P )® A lpc®l2+29) is given by

2m
Pw= ) AXuX,, (2.23)
=1
where (X ;) is defined in (2.12). Also, the map
FUHAST )@ A PE®L L 1) HAS T Hp )@ AP @540,

is given by
2m
I'w@X)= Y AXWRX, AX (2.24)
i=1

where ve H(S' ™ '(p,)®I;,,) and XepC. (2.23) and (2.24) can both be easily
deduced from the definitions.

§3

In this article we discuss the existence of certain maps &(X): H¥(S'(p )®1,, ,,)—
HXS" Yp,)®l,42,), (Xep©). These maps will be later used to build up an irre-
ducible representation of g© on ® H(S'(p,)®1, ,,). The existence and uniqueness
is established by an inductive argument on [. For notational convenience, we put

H::HS{S‘(PJ@{H@) (3.1)

and denote the representation of K¢ (and also k) on H, by 7, It will also be
convenient to add suffixes to the maps 4 of (2.11). Thus we rewrite (2.11) as

O P @HYS (p )@l 2,) = H(S' ™ H(p)®542,) (3.2)
We also change the notation in (2.12) and rewrite for X € p<, and ue H¥(S'(p , )®1, 1 »,)
X )u= (X @u) (3.3)

A simple computation using the K linearity of (3.1) shows that for Xep®, Tek®
and ue H(S'(p,)®1; 1 2,)

WXt (Ty=1,_ (To(X)+ [ X, T] (3.4
Lemma 3.1. For ue H, X, Y ep®, we have
0 (X)a(Vyu=0,_,(Y)3(X)u.
Proof. Of course [=2. By Lemma 2.2, 9'¢%uw)=0. But by Remark (2.2)
1) = ; (8- 1(X)(X Ju— 8- (X )aUXJu} X, A X,
The lemma now follows. q.e.d.

We now make the following induction hypothesis: Induction Hypotheses:
Let [=1. Suppose for k=0, ...,i—1 we have defined K® linear maps

e P OH(S P )@l 2 )= H(S* 1 (p)®1142) (3.51H)
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with the following properties:

Denoting for X e p€, ue H(=HS"p,)®,:2,)

g(Xu=¢e(X®u), (3.6 1H)
they should satisfy

e Xep_ (Vv=e(V)e,_ (X, (3.71H)
for X, Yep® and veH,_,-(0<k<I—1). For X, Yep® and ue H (0<k<I-1),

Oy 1(X)eNu— 0y, (Ve X u=1,[X, Y]u—gp_ ((X)0(Y)u

+ e (YO X)u (3.8 TH)

[The motivation for desiring (3.8 IH) comes from the fact that we want the operators
o(T) (Tek® and &X)+e&(X) (X ep©) to define a representation of g¢.] Note that
for k=0, (3.8 IH) becomes 0,(X)eq(Y)u— 0,(Y)eo(X)u=14(X, Y]u.

Moreover, our induction hypothesis also includes — this is very crucial — that
for k=0,1,...,/—1 the map ¢, of (3.5 IH) has the following property.

sdp @H(S (P )® 1142 )=H(S* " 'p)®1512,) (3.91H)

Some more induction hypotheses will be stated (p. 13) after some preparation.
In the next section we will prove the existence and uniqueness of a k¢ linear map

813PC®HS(SI(P+)®Z/1+zg)_*Hs(SH 1(P+)®11+2g)

satisfying (3.7 [H) and (3.8 IH) for k=1.
In §5, we show that (for [=0)

503PC®HS(I/1+ 29)_’Hs(sl(17+)®l/1+2g)

exists satisfying (3.8 IH) for k=0 and is unique.

In §6, we prove the surjectivity (3.9 IH) for ¢, and &,.

We complete this section after dualizing the exact complexes of §2. This will
be used in the next section in proving the existence of the map &. By Serre’s duality
Theorem, the dual of

HY(S(p )®1142) = HUS'(p)®1 - -2, (3.10)

canonically. Here, g, equals half the sum of the noncompact positive roots.
Here (S'(p_)) is the dual of S'(p,) and I_; ,, is the one dimensional B module
given by —1—2p,. By dualizing the exact complexes (2.17) and (2.18) and taking
the induced maps in cohomology is the same as dualizing the complexes (2.19)
and (2.20) respectively. We thus have the following

Lemma 3.2. For I>m, the dual complex of (2.17) induces an exact complex of K¢
module homomorphisms

0—HOS(p_)®!_ ;- 2, EHOUS Hp )® A P @I ;- 240)

L —HYS"M(p)® A PRI, 5,)<0 (3.11)
(3.11) is precisely the complex dual to (2.19).
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For I<m, the dual of (2.18} induces an exact complex of K module homo-
morphisms

O—H (S p )@ ;2o M=H(S' ' (p)® A 'p°®1 52,
L —HUS%p )@ NP1 42, )—HUA D@1, 54, )—0 (3.12)

{3.12) is also the complex dual to (2.20).
Using the maps

12 P @HUSNp )R ;- 2, ) HUS*  p)®1_,_5,.)
of Lemma 3.2, we now define for Xep©and Ee H(SNp_)®!1_; ,,)
1 X) (©)=n(X®¢) and note (X ((Y) =1 Y)— ((X) (3.13)

We should remember that we have fixed the positive root system P, that JeF
with respect to this P and satisfies the condition (). Of course the choice of P
was arbitrary®. For our needs in the next section it is convenient to consider
also another positive root system which is closely related to P.

Let % be an element of the Weyl group of (k%, %) such that xP,= — P,. The
latter is a subgroup of the Weyl group of (g, ). Thus —xP is also a positive
root system of (g%, t). Symbolically we denote by F_,, the set which is defined
analogous to F. The following notation should be regarded carefully. No confusion
will arise if one bears in mind that » acts on t¢ but not on ¢°.

With respect to — »P, the B module which is the analogue of the B module
p. of (1.2) is symbolically denoted xp_. The analogue of p_ is denoted »p,.

Since » is an element of the Weyl group of (k% t)x acts on Hom(z%, C). We
now have the following

Lemma 3.3. Let AcF and satisfy the condition (x). Then —xieF_, and satisfies
Hi(A%p, @ 51 20)=0 (3.14)
for i<sand all g.

Proof. Let K€ be a connected simply connected covering of K€. Let T be a
cartan subgroup of K¢ lying above T and B a Borel subgroup of K¢ lying above B.
Let ¢ be a Dynkin outer automorphism of K°. So,

oB)=B, oT)=T and ¢/T=-x (3.15)
and also
olg)=g9~", VoeP,. (3.16)

Using o, we will twist the homogeneous holomorphic vector bundle associated
to the B module A% _®l,,,, and obtain a new homogeneous holomorphic
vector bundle. Note that K/B~K/B.

If ye K¢ and if u(y) denotes the old action of y on the vector bundle, we define
a new action u° by

w(y)=uoy). (3.17)

Note that the holomorphic structure of the vector bundle is unchanged. Only
the homogeneous structure is changed. Thus any vanishing of cohomology spaces
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present in the old bundle is present in the new bundle too. The lemma now follows
if one observes that the twisting yields a homogeneous bundle which is identical
to the homogeneous bundle induced by the B module A%p, ®I_, .2, q-ed

Remark 3.1. Let K€ and 6:K¢—>K€ be as in the proof of Lemma 3.3. Let
7:K > Aut(V) be a finite dimensional representation of K€ Let 7 denote the
representation of K¢ obtained by composing. The representation 70 of K€ can
be easily seem to be the dual (noncanonically) of © (by inspecting the weights
of the former, which are obtained by applying —x to the weights of the latter).
In particular, 70 comes down to be a representation of K€, Again, if E is a homo-
geneous holomorphic vector bundle on K¢/B=K¢/B, let E° denote the homo-
geneous holomorphic vector bundle obtained by twisting by o as in the proof
of Lemma 3.2. If 7' denotes the representation of K¢ on HY(E), then the repre-
sentation of K¢ on H'(E®) is precisely the one obtained by twisting the repre-
sentation 7 by o, as in the beginning of this remark. Thus the representaiion
of K¢ on H'(E") is isomorphic (noncanonically) to the dual of 7',

Corollary 3.4. As K€ modules,

Hs(Sl(p+)®lA+29)2HO(SI(%p+)®lx(A+2gn)) s (3.18)
for1=0,1,2,....
Proof. By Serre’s duality theorem

HO(SI(XP+)®I;<(A+29“)) ~dual of HS(SI(%P—)®I—;<(A+29))
But by Remark 3.1,

H(S'(xp YR 512, ~dualof H(S(p)®I;,,,) g.ed.
We now define maps, for X ep®
NdX): HUS* 0ep )@ 54 200~ HUS* 10t Moiis 200) (3.18)

analogous to (3.13) working with —xP and — wieF_,.
We are now in a position to state the final part of the induction hypothesis.
We assume that for k=0, 1, ..., IK® linear isomorphisms

Jk:HO(Sk(xp+}®lx(A+ 2gn))‘*HS(Sk(p+)®ZA+ 20) (3.191H)
are given satisfying for X ep® and £e H(S*oep )@l 54 2,,) OSk<I—1)
FHImX) (@) =ed X)/4&) (3.201H)

where 7,(X) is the map defined in (3.18) and (X) are the maps (3.6 [H).

Proposition 4.1. Let 1> 1. Suppose for 0< k<1~ 1, we have defined K€ linear maps
(3.51H)

Sk:pC®HS(Sk(p+)®lA+ Zg»)“"’HS(Sk+ 1(p+)®1}x+2g) .

having all the properties of the induction hypothesis of §3. Then there exists a
unique K€ linear map

e @HS(p )@ 2~ H(S™ (0 )®1542)) (4.1)
satisfying (3.7 TH) and (3.8 TH) for k=1.
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The proof of this proposition needs a lot of preparation.
Let X, Yep® and ue H(S'(p,)®1, . ,,). We define

alX, Y): H(S'(p )®l;4 )= H(S'(p . )®li12,) (4.2)
by a(X, Y)u=the right hand side of (3.8 IH) for k=1, i.e,

alX, Yu=1[X, Y]u—eg_ (X)O(Yu+e_ (V) (X)u (4.3)
Note that
a(X,Y) isalternatingin X and Y. (4.4)

Also the obvious map
a: AP @HS (P )@l 2~ H (S (p)®lis2,)
is K€ linear.
Definition 4.1. Given vector spaces L and M and YX, ¥, Ze p® given maps
wX, Y, Z2):L-M
which are multilinear in X, Y and Z, we define
alty y (X, Y, Z):L-M
to be the map given by
alty y X, Y, Z)= Y sgn(o)(cX, 0¥, 0Z) (4.5)

where ¢ runs through the group of permutations of X, ¥, Z and sgn{o)= +1
denotes the signum of g.

Lemma 4.2. For every X, Y, Zep©,

alty y za(X, Y)e,_(Z£)=0 (4.6)
and

alty x yO(W)a(X, Y)=0 4.7

Proof. Using 4.4

1)2alty y a(X, Y)e,— (Z)

=a(X, Ve, ()~ alX, Z)g,_((Y)+alY, Z)e,_ (X)

=7l[X, Y&, y(Z)— & (X)O(Y)er- ((Z)+&, 1(Y)O(X)e, - ((Z)
~ 0l X, Z]e,- (V) + &~ 1(X)0(Z)e, - (Y) — &, 1(Z)0(X)e,— (Y)
+ul Y Z]e - (X) — 8- ((Y)O( Z)e, - ((X) +e, ((Z)0( Y )e, - 1(X)

=7[X, Yo (Z)—&_ ((X)(OfY)e;- (Z)— O Z)e; - (Y))
+1lZ, Xe- (Y) =& (Z) (0 X)e; - ((Y)— 0¥ )e;_ (X))
+olY, Z3e, ((X) - ((Y)(0(ZD)e, - (X) — 0{X)e - ((2))
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{(Now use (3.8 IH) for k=/—1 for the second terms on each line)

=X, Y], (Z)— e (X) {t,_ | [¥, Z] &, o(Y)0,_ (Z)+&,_,(2)0, ()}
+1lZ, X (V) =& ((Z) {,1[X, Y]~ o(X)0, (V) +¢2(Y)0- (X))}
+o[¥. Ze ((X) =& (V) {r,-1[Z, X] -8 A2)0,_ 1(X)+ &, ,(X)0,- ((2)}

Using (3.7 IH) all the terms in which 7; or 1,_; does not appear are seen to
cancel. On the other hand using the K¢ linearity of the maps (3.5 IH), one deduces
similar to (3.4), the following. For Xep©, Tek® and ue H(S"p ,)®I, . ,,),

e Xt T) =1 (Ted X) + 6 LX, T] (4.8)
Thus
o[ X, Ylg (2 —&_ (D [X, Y]=¢[[X, Y] Z]

Now to prove 1/2 alty y ,a(X, Y)e,_,(Z)=0, we use the above identity together
with Jacobi’s identity. Thus (4.6) is proved. The proof of (4.7) is similar. (q.e.d).

Using the map (3.19 IH) for k=1, we define for X, Yep",
b(X, Y):HO(Sk("’CP+)®lx(A+zg,‘))"’Hs(Sk(p+)®l/1+2g)

to be the composite a(X, Y)-j. Now using (3.20 IH) Lemma 4.2 can be rephrased
as follows.
For X, Y, ZepS,

alty y (X, Y, (Z)=0 and alty x yAW)b(X,Y)=0. 4.9)
Proposition (4.1) will now be deduced from the following
Lemma 4.3. Let i 20, j= 1. Let

b: AP @H (S (P )@+ 20,0~ HAS (P )B4 2,) (4.10)
be a K¢ linear map. For X, Yep® define a map

WX, Y):HUS0tp )®1a 120, HA(S(p )B4 2,)
by B(X, YYe=bX A YRE). Assume

alty x yOAWINX,Y)=0 and alty y BX, Y)n,_(Z)=0.
( The second condition becomes vacuous if i=0.) Then, i) 3 a unique K* linear map

pp @HSotp 1 )®Lss 20,0) > HAS (P )@ 2,) 4.11)
such that with the usual definition of maps

HX):HOS0ep @iy 200) = HI(S Hp )B4 2)
(X e p©) the following two properties hold.

ForvX, Yepc,

WX, (V)= (Y (X)) and &), (X)u(Y)— ;4 (VX)=D(X, Y).

(4.12)

( first part of 4.12 becomes vacuous if i=0.)
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ii) These also exists a unique K€ linear map

0P @HUS ™ op @it 200) = H(S(p I®1545,) (4.13)
such that when
U(X)3HO(SH 1(%P+)®lx(/1+ZQn))*"HS(Sj(P+)®I/1+2g)
(X ep®) are defined as usual, the following two properties hold
HXW(Y)=0(Y(X) 4.14)
oXLY) = oY X) =X, Y). (.15)

The proof of this lemma is by induction on j and to start induction one needs
the following lemma which we prove in the next section. The casei=0 of Lemma 4.3
is also proved only in the next section,

Lemma 4.4, Let i>0. Let

b AP @HUS P )@y 200~ H ik 2) (4.16)
be a K¢ linear map. With b(X, Y) defined as usual, assume

alty ¢ BX, Y- (2)=0.

( This condition is vacuous if i=0.) Then
i) 3 a unique K€ linear map

ﬂ:PC®HO(Si(%P+)®lu(A+ 29"))‘”’H5(51(P+)®11+ 2g) (4.17)
such that

(X )u(Y) = 3y Y)u(X) = h(X, Y) (4.18)
and

X - (Y)= (Y, (X) (4.19)

(4.19) is vacuous if i=0.
il) Then also exists a unique K linear map

v pC@HUS™ 0p )@ L4 200~ H 34 2) (4.20)
having the following property,
W X(Y)— oY )n(X)=b(X, Y). {(4.21)

Proof of Lemma 43 (the case i>0). Since for two vector spaces L and M
Hom(L, M)=L*®M, the map b in (4.10) corresponds to an element

be AP @H S op )®1_ 14 20)OM (4.22)

where M = HY(S/(p,)®I 1+20- For any map b as in (4.10), (i.c, without assuming
the other data, for a while), the maps

alty y zb(X, Y)n,_ 1(7~)IHO(Siw 1(xp+)®lm“20"))H5(Sj(p+)®l“ 20)

give rise to a map

AP QHOS™™ (P ) ® 151 20,0) > H(SHp ) ® 134 2,) -
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The last map corresponds to an element
Sbe AP @HS'™ ' (p )@l yis 20)OM (4.23)

Now let us look at the exact complexes of Lemma 2.2 applied to —xieF _ .
We have in particular maps

PRH(S™ (4p )@ ss20) > A P @H(Sxp )@ i 20
5 ACPEQHAS Houp )@ i 20) (4.24)

Tensoring with id,,: M— M, the identity map, we have also

pC®HS(SH 1(%p~)®l~x{)t+ zg)®M

5 AT OH S p VB 11 29)OM

BAPCRHS™ Y up _)®I_ 134 20)OM (4.25)
(We have denoted ¢*®id,, and ¢*®id,, by é* and & respectively.)
It is straightforward to chock that

sb=C-3*b (4.26)

where C is a constant independent of b. For the particular map b given in (4.10)
of the lemma, by data, we know that 6b=0 and so 8’b=0. By exactness, there
exists an element

5epC®HS(Si+1(%p*)®l_,((“29))®M (4.27)
such that under the map 6% in (4.25)
av=h. (4.28)

The maps ¢' and @ of (4.25) are of course K linear maps. The map b in (4.10)
being K€ linear, the corresponding element b of (4.22) is K€ invariant. By Schur’s
lemma, therefore, the element © of 4.27 can be modified to be K¢ invariant with
(4.28) still satisfied.

Let

U3PC®HO(Si * 1(%p+)®lx(/1+ ZQn))“’MZ HS(Sj(P+)®lA+2Q) (4.29)

be the K¢ linear map corresponding to ¥ of (4.27). Much in the same way as
remark (4.26), one now reinterprets {4.28) to mean the following: VX, Yep©,

UX(Y) =Y )nX)=b(X, Y) (4.30)
We want a v which in addition also satisfies (4.14). At any rate, let us define

binpt@HUS™ 1(%P+)®3xu+ 200 H(ST T Hp )@ 20 (4.31)
by

(X, Y)=0(X)(Y)— d(Y)u(X) (4.32)

fj—1=1,

alty, x y0; (WIH(X, Y)=0 (433)
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follows easily from Lemma 3.1. Also,
alty y zb'(X, Yin(Z2)=2 altx, Y, za,(X)v( Ymd(2)
=alty y, Zaj(X) (W(Y)(Z)—uo(Zn(Y))
=alty y ,(X)NY. Z)  (by(4.30))
=0, bydata in the lemma.

Now, we make the following induction hypotheses: “Lemma 4.4 is valid for all
i=0 and Lemma 4.3 is valid for all i20 and k<.

Applying the induction hypotheses to the map b in (4.31), we conclude that
there exists a K¢ linear map

w 3PC®HO(Si+ 1(%p+)®lx(l+ 2gn>)"Hs(Sj(P+)®fa+ 2@)
such that VX, Yep©,

HXMLY)=p(Y)n(X) (4.34)
and

X (Y)— oY) (X)=b'(X, Y) (4.35)
Now, we replace v by v— i’ in (4.29). Then (4.30) and (4.34) imply

(=) (X(Y) — (0= p) (YI(X) =X, Y).
Also (4.32) and (4.35) imply

XY (v—p) (Y)=0Y) (v—p)(X).

Thus part (i) of Lemma (4.3) except for the uniqueness is proved under the induction
hypothesis.

We now use the map v of part (i) of Lemma 4.3 to prove part (i). Let
Ee HOS™ (3P 1 )®1y 14 24.)- Consider the element

2m

e)= Y X, @uX)ep @H(S(p.)®;42,) (4.36)
r=1
Using (4.14) one sees that under the map

o' :pC®HS(Sj(p+)®lA+ 29)“’ A ZPC®HS(SJ~ 1(p+)®ll+ 29)

0Ye(£))=0. Therefore, by the exactness of the complexes of Lemma 2.2, there
exists an element J(&)e H(S'* (p,)®1, 4 ,,) such that (&)= °(J(¢)). Thus we have
defined a map

JHS™ N (xp ) ®Lyas 200~ HI(S 1 (p)® 11k 2) (4.37)
such that VX ep® and Ve HY(S" (p  )®L 15 200k
UX)E = 0;, ((X)(E). (4.38)

We now define a map
1P @HUSxp )@l 120,) > H(S (p)®1i4 2,) (4.39)
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by taking
au':‘}a??f (4.40)
We claim g satisfies the condition (4.12) and (4.13} of Lemma 4.3. For,
w0 - ((Y)=Jen(X)n; - (Y)
=Jon (Y 1(X)=p(Y)n; - ((X).
Also,
aj+ XYy~ aj+ {(Vu(X)= 'aj+ {X)In{Y)— aj+ {(Y)In(X)
=u(Xn{Y)—o(Y)n(X), Dby(438)
=b(X,Y), by(415).

The assertion about uniqueness (for all i and j) in Lemma 4.3 and also in Lemina 4.4
follow from the following Lemma.

Lemma 4.5. Ler max(k,)=>1. Let

‘P:PC®HO(SI(%P +)®lx(,1+29,,)—*Hs(Sk(P+)®l,1+ lg) (4.41)
be a K€ linear map such that

WX)p(Y)=3(Y)p(X), VX, Yep* (4.42)
and

eXm (Y)=p(Y)n,-(X), VX, Yep* (4.43)
(4.42 is vacuous if k=0, whereas 4.43 is vacuous if 1=0.)

Then ¢=0.

Proof. We first consider the case /=0, so that k= 1.

For every £e HUS (%p . )®1, 1+ 24, consider the element

2m
od)= Y X, ®0(X)ep @H (S P )®it2,)-

r=1

Using (4.42) one sees that 0'(e(£))=0. Therefore by the exactness of the complexes
of Lemma 2.2, therc exists an element J(&)e H(S*" (p,)®I,,,,), such that
e(&)= d°%J(&)). Thus we have defined a K€ linear map

-}3H0(lxu+ zgn))"’Hs(SH 1(P+)®£A+ 29) (4.44)

By Corollary 3.4, as K¢ modules HU,;, 2, JH (s s 20) > H 11 2,). We
assert that " any K° linear map

Hys4 2, )2 H(S W (p)®lis2,),  (Fh20) (4.45)

i1s identically zero'.

This fact is contained in ([3] Lemma 4.2, 4.3).

This proves the map J=0 and the case of the lemma for /=0 can be now
casily deduced.
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Next we consider the case k=0. For a while let M denote the K¢ module
HYl,,,,) The map ¢ in (4.41) gives rise to an element

PeP @H (S (p )®1- 434 2)OM .
The map

A ZPC®HO(SI_ 1(WM)@L XA+ ZQR))‘*HS(SO(PH@ZH 29)
given by

X A Y@Ep(X)(Y)E= oY) (X)E
corresponds to an element

oge Ap"QHNS' ™ (up )R _ s+ 20)OM .

As remarked in (4.26) one sees that é¢ = C-3'@. But by (4.43), data, ¢ =0. By
exactness, therefore, there exists

peH(S' l(xp—)®l—x(l+2g))®-M (4.46)

such that under the map ¢°,
503HS(SIJr 1(%P—)®l-x(/1+ 29))®M‘*PC®HS(SI(%P~)®Lu(H2g))®M

®@P)=¢. ¢ being K€ linear, ¢ is a K fixed element and by Schur’s lemma,
¥ can be taken to be K€ fixed. But by Corollary 3.4 and the assertion (4.45) one
concludes P=0. Thus ¢ =0 and also ¢ =0.

Now we consider the general case. The proof is by induction on I. We can
assume k=1. We make the induction hypothesis that the assertion of the lemma
is proved for =0, 1,...,I'—1. We want to prove for I=1". The proof given earlier
for 1=0 has certain general features. For £e HY(S" (3p . )®1, 1 2,,))» We construct
e&)e p"@H(SXp,)®I, 4 ,,) as in there. We then get a map, K€ linear,

JZHO{SP(XP-I»)@Zx(AnL Zgn))“"Hs(Sk+vs(p+)®ll+ 2g)
such that e(&)=3%J(8), ie, VXGPC,

P(X)= 0, (X)) .

Thus to prove ¢ =0, it is enough to prove J=0. We now define a map ¢’ by
composing,

"h'— 1 :pC®H0(Sl‘— 1(%p+)®lx(l+ 29”))_’H0(Sl,(%p+)®lx(l+ Zgn))
with
J5H0(Sl,(%l’+)®lx(z+ 24:,1))“"}18(‘5"(+ 1(P+)®lx+ 2)

Since #;._, is a surjection, in order to prove J=0, it suffices to prove ¢’ =0. But
the induction hypothesis can be applied to ¢': For,

Or 1 X)@'(Y)= 0 (XD ((Y) = (X - ((Y)
=Yy - (X) = Ops 1(Y)@'(X).
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Also, if I' —10,
O (X o (Y)=Jnp (X my (V) =Jn. _ (Y _ 5(X)
=@ (Y)n, —»(X).

The Lemma 4.5 is now completely proved.

§5. Proof of Lemma 4.4 (for all /) and the Proof of Lemma 4.3 (i=0)
The proofs depend upon the following lemma.

Lemma 5.1. Let JcF and satisfy condition (¥). For ¢>0 and j=0, there does not
exist any nonzero K€ linear homomorphism

HS(SJ(P+)®IA+ 29)—"HS( Ap_®l,. 29) .
Proof. We recall the spin representation
c:0(p9)—End(L) 5.1

(see [4,§17). Here o(p©) is the Lie algebra of all endomorphisms T of p© which
leave the Killing form infinitesimally invariant, ie, (TX,Y)+(X, TY)=0,
VX, Yep©. Let ad:k“—o(p©) be the adjoint representation. Now define a rep-
resentation y of k¢ on L by

X:o‘cad R (52)
The weights of y are of the form
Cn— Y1 Vs (5.3)

where y,,...,7, are distinct noncompact positive roots (see [4, Remark 2.17).
By (1.4), 2<{i+ g, ay/{a, &) is a nonzero positive integer, Yoe P,. Thus 2{1+,, o)/
(o, oy is a nonnegative integer for every ae P,. We thus have an irreducible
representation

ot o K> End(V,, ) (5.4)

In [3, §3, Lemma 3.4] it has been proved that when the condition (*) is satisfied,
we have an isomorphism of k¢ modules:

@ H(Ap_®li12)=V;4,,®L (5.5)
g=0

(Although the statement in [3,§3] is made under an extra assumption that
{4, 4> =0, Vae P,, this last assumption is not used there; what is just needed there
is that one has an irreducible representation with A+ g, as the highest weight
and that condition () is satisfied.)

Now to prove Lemma 5.1, we turn Schmid’s proof of [7, (8.34) Proposition]
(where he proved “Blattner’s conjecture” = “vanishing theorem”) to our advantage.

The highest weight (w.r.t. Py of any irreducible component of V,, ®L
equals the highest weight of V,, , plus a weight of L; so by (5.3) such a highest
weight is of the form

At 0+ 0 =V1— = V»  ViEP,. (5.6)
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In V,,, ®L, the irreducible k° module with highest weight 1+ 2g, occurs with
multiplicity one. Under the isomorphism (5.5) this irreducible module is precisely
the summand for ¢=0, ie. H%l;,,,). Thus by (5.6) the highest weight of any

irreducible component of Y HY(A%_®I,,,,) is of the form

g=1
A+20,—yi—...—Vv, t=1, 7yeP, (5.7
By [3, Lemma 4.3], the highest weight of any irreducible component of
HYS(p )@l 2,)
is of the form
wid+o+0,+p1+...+B)—0ok, BiEP, (5.8)

where w is an element of the Weyl group of (k<, t). If the assertion of the lemma
is false, then an irreducible component of ®;, oH*(S/(p.. )®1, , »,) and an irreducible

component of @ HY(A%_®l,,,,) would have to be isomorphic. Thus a weight
g=1
of the form (5.7) and a weight of the form (5.8) would have to be equal. i.e.

Ato+o,+ P+ +B=w A+ 20,— 7 — ...~V 0 (5.9)

Elements in (5.7), being highest weights, are dominant with respect to P,; so
also is g, Thus A+29,—y;—...—7,+t ¢, is dominant with respect to P, For
every weight v which is dominant with respect to P, and for every element w of
the Weyl group of (k<,t%), v—w ™ 'v is a sum of positive compact roots. Thus,
there exist o;e P, such that

W A+20,— 71— .. =70 =A+20, =V — . P F O — Oy —...— 0, (5.10)
(5.9) and (5.10) imply
Y= == — ==+ B+ 4B
But this is a contradiction since t=1. Thus the assertion of the lemma is true.
g.ed.

The Proof of Lemma 4.4 (for all i). First we consider i > 0. Repeating the arguments
from (4.22) to (4.30), we conclude the existence of the map v in (4.20) having the
property (4.21). Thus part ii) of Lemma 4.4 is proved for all i >0. (The uniqueness
was already proved using Lemma 4.5). Now let i=0. The K¢ linear map

b: 2PC®HO(1;¢(1+ 20~ H (L4 2,)
of (4.16) gives rise to a K€ invariant element

be AP @H (it 20)OM (5.11)
where M=H*(I,, ,,). From Lemma 2.2 (applied to — xAeF _p)

PC®HS(S1(%P—)®I—;¢(A+29))il’ A 2PC®HS(l—x(/1+ 29))
—H(A*up, ®l 424 (5.12)
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is an exact sequence of K¢ modules. Tensoring with id,,;: M—M, we have an
exact sequence

PC®HS(SI(%P-—)®I—;{(1+ 29))®Mﬂ A ZPC®HS(J—)<(1+ 29))®M
__-)HS(AZXP+®I—%(Z.+29))®M (513)

of K¢ modules. Applying Remark 3.1, H(A*xp, ®I_ . 5,) is isomorphic to
the dual of H(A’p_®l,,,,). Thus by Lemma 5.1. There is no non-zero K¢
invariant element of H(A2xp, ®1_ ;4 2,)®M, the last term in (5.13). Hence
the exactness of the sequence (5.13) gives the following:

There exists an element 5 of pHY(S (xp_)®I_ 24 2,@M such that

b= o). (5.14)
v corresponds to a map, K¢ linear,
vip @HS 0P N)®yiv 20> M=H; 3,) (5.15)
As usual, we interpret (5.14) to mean
b(X, Y)=uo(X)no(Y)— uo(Y)no(X) .
Thus part (ii) of Lemma (4.4) is proved for all i=0. Using part (ii) we will prove
part (i). For e HO(S™ Yop  )®1yz+ 24,)» define e(Qe H(;,,,)®pC by
2m
(8= 3, X,®uX,)¢
r=1

as in (4.36). We thus have a K€ linear map
e: HYS™ 1(%p+)®lx(l+ 29n))_’pC®Hs(lA+ 20) (5.16)
Applying Lemma 2.2, we have an exact sequence

o

Hs(Sl(P+)®z).+ 29)“’PC®HSU,1+ 29)“*Hg( A 1P~ 1 29)

The composite of the map e with the second map above is zero by Lemma 5.1
and Corollary 3.4. Thus, there exists a K¢ linear map

JLHOS™ 0p )@y 20— H(S (0 )® 1 2) (5.17)
such that

e=0"J (5.18)
Le. (X)) = 0,(X)J(&). We now define

1P @HS (1P )@l 4 20)~ H(S ()@ 2) (5.19)

by u=J-n, Then p has the desired properties of Lemma 4.4 part i) Lemma 4.4
is now completely proved. With this the proof of Lemma 4.3, for i>0, is complete.

Proof of Lemma 4.3 (the case i=0). We are given a K linear map

b: A ZPC®HO(I>¢(A+ 2g,.))_’Hs(Sj(P+)®lﬂ.+ 2@)
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(z1). X1, X,, ..., X3, is a basis of p© as usual. For EeH (g, define
f(&en ZPC®HS(SJ(}’+)®£).+ 29) by

JO=Z, X, AX.@b(X, X)C.
We thus have defined a K€ linear map

f3H0(zx{A+ 29,,))" A 2PC®HS(Sj(P+)®fA+ 29)
The data alty, y y{W)b(X, Y)=0 in Lemma 4.3 implies that &*(f(£))=0. By the
exactness of the complexes of Lemma 2.2, we conclude that there exists a K¢
linear map e:H%(l ;4 2,,) P @H (S Hp, )®l;42,) such that f=d'e. The
contraction

pC®pC__’C

which is the restriction of the Killing form now gives us a map u, by composing

PC®HO(1;¢(A+ 2,_,,.))‘lﬁe’l’c®PC®H"‘;(S’.Jr 1(p+)®lz+2g)
'—’HS(SH 1(F+)®11+29)
one now reinterprets f = d'e to mean (4.12) of Lemma 4.3. Thus Lemma 4.3 part

i) is proved for i=0. For part ii) look at the exact sequence given by Lemma 3.2
(for —xdeF _,p)

HO( A lxp— ®lx(l+ 29,,))"’H0(PC®I;¢(A+ ZQ,.,))
E‘O*HO(Sl(%PJr)@lx(M 29,1))

We claim that the composite of the first map with the map p in (4.11) (for i=0)
is zero. For H(A'xp_®l,;.12,,) is the dual of H(A'up, ®l_,;424) BY
Remark 3.1 the dual of H¥(A *xp, ®1_ 2+ 2) I8 isomorphic to H( A 'p_ @1, 2,).
Our claim now follows from Lemma 5.1.

Thus the map u is zero on the Kernel of #° Since #° is a surjection, we now
get a K€ linear map

T HYSYotp )®Lys4 20,0~ H(S (P )®111 2,)
such that u(X)¢=Jny(X)¢. We now define for X ep©,

AX):HYS (4 )® L4 20,) > H(S (P )@ 1)
by v(X)=0;. ,(X)J. The maps v(X) give rise to a map

0:p @HUS 0P 1 )®li1 4 200) > H(SH P )®1142) -

This map v serves for part ii) of Lemma 4.3 (for i=0) as an easy computation
shows.
The proof of Lemma 4.3 for i=0 is now complete.

Proposition 5.2. Let 1, denote the representation of K€ (and also of K€) on H¥(l,, , ).
There exists a unique K* linear map

e0: P @HY(;1 1)~ H (S (P )®14 2,) (5.19)



Algebraic Construction of a Class of Representations 25

such that Yue H¥(l,, ,,) and X, Yep©,

Tol X, Yu=0,(X)eg(Y)u— 0,(Y)eo(X)u (5.20)
choose and fix a K€ linear isomorphism

PH s 200~ H 12, (5.21)
There exists a unique K€ linear homomorphism

JHHOS 0 @y 20,0~ H(S' (0 )@ 154 2,) (5.22)

such that (3.20 IH) is satisfied for k=0.
Proof. Define
b: A ZPC®H0(I:¢(A+ 29,.))’*HSUA+ 20)

by B(XA Y®E)=1,[X, Y]j°(¢). By applying Lemma 4.4 (the case i==0) to the
map b above we conclude the existence of a map

1P @H 14 20,0~ HA(S (0 )® 151 2)
such that
O (XNUY)E— S (VUX)E=10[ X, YIE).
We now define
eo(X ®@u)= X ® ). (5.23)

The map ¢, thus defined serves for (5.19). Again, we consider Lemma 44 for
i=0 and for the map b above. In (5.17) we constructed a map

J:HO(SI(KP+)®5xu+2gn))“’Hs(Sl(I’+)®za+ 29)
and y and J are related by
MX)E=no(X)¢, Xep® and EeH(Lyisa,,) (5.24)

We now take the above map J to be the map j* in (5.22). Then, for ée H(L, ;4 2,.)
and X ep",

£ X)) =p1(X) (&), by(523)
=/"no(X)(¢) by (5.24).

Thus Proposition (5.2) is proved, except for uniqueness, If there are two maps (5.19)
both having property (5.20), then (5.23) gives two maps u both having the property

O (X)(Y) = 0,(Y)u(X)=b(X, Y). (5.25)

But this will be a contradiction of Lemma 4.4. Thus the uniqueness of ¢ is proved.
Suppose there are two maps j' both serving for (5.22). Define

n=j'ne.

Since 7, is a surjection, the above defines two distinct maps u both satisfying (5.25).
This will contradict Lemma 4.4. Proposition (5.2) is completely proved. g.e.d.
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Proposition 5.3. Let [= 1. Let ¢, be the map given by Lemma 4.1 under the induction
hypotheses of §3. Then there exists a unique K linear map

jH b HO(SH 1(%p+)®lx(l+ ZQn))_’HS(SH 1(p+)®ll+ 20 (5.26)
such that (3.20 IH) is satisfied for k=1.

Proof. Define a{X, Y) as in {4.3}. Now define

b: A 2PC®HO(Sl(%p+)®Ix(A+ZQH))—’HS(Sl(p+)®la+ 29)
by
(X A Y& =a(X, Y)I(&)

where j is as in (3.19 IH) for k=1 We now apply Lemma 4.3 with i=j=/ for the
above map b. We now take for /! in (5.26) the map J defined in (4.37) for this
case. We observe that the map p given by Lemma 4.3 gives rise to the map ¢
in Proposition 4.1 by the relation

el X )= p(X) () ' (n) (5.27)
On the other hand p and J are related by (4.40}, i.e.,
HX)=JIn(X) (5.28)

Now, for £e HY(S"(%p . )@+ 2,,) and X ep©,

aX)j(&)=pX) (&), by (5.27)
=/"'n(X)(©) by (5.28)

Thus proving (3.20 IH) for k=1 The proof of the uniqueness of /*' is exactly
similar to that of j* in the proof of Proposition 5.2.

The surjectivity (3.9 IH) for k=0, ! and also the fact that the maps j' and /™'
of (5.22) and (5.26) are isomorphisms are proved in the next section.

§6
Proposition 6.1. The map ¢, in (5.19) and the map &, in (4.1} are both surjections.

The proof of this proposition is broken up into lot of lemmas.

Let cliff (p©) be the Clifford algebra on p©: (see [4,§17]): Let X, ..., X,,, be on
orthonormal basis of pCp®. Then CIliff (p©) is generated by p“C C(p©) subject
to the relations

Xl=-1 and X X;=-XX{i%)) (6.1)

Let p§ be the complex subspace of Cliff (p€) spanned by {X X i <;j}. The orthogonal
algebra o(p®) (see (5.1)) can be naturally identified with the subspace p$ and then
the representation ¢ in (5.1} can be extended to a representation

C:Cliff(p©)—End(L) 6.2)
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of the Clifford algebra. Regarding the representation y of & on L (5.2) we have
the following: For Tekt,
Z (TX1X)

i, j=1

CX)HCX ) (6.3)

{[4, Lemma 2.17). We now define a map
d:SHp )QL-S " p)QL (64
by

2m
du®s)= 3, dxW)@C(X))s (6.5)
i=1

where Jy_is the differentiation map (2.6). At this point, it is to be remarked that
the representation y:k“—~End(L) need not integrate to a representation of K€
However, it can be always integrated to a certain covering group K¢ of K¢
For convenience of notation only we assume that y actually integrates to a
representation of K. If prefered, one can assume that the new covering group is
denoted by K€, forgeting the old group K¢ The K¢ module L restricts to a B
module L and 64 is a B module homomorphism. It is easy to check that

d*=0 (6.6)
Tensoring with [, ,, one gets from (6.4) another map also denotes by d.

d:54p )@l 4 2,@ L5 (p )L, + 1,®L 6.7)
Then in cohomology we have a map

D HA(SHp )@l 2,® L)~ H(S* (0, )®1512,01L) (63)

Since L is a K¢ module
HY(SHp  )®142,@L)=H(SHp . )®1;1,)®L
Then the map D, can be checked to be given by

2m

Du®@s)= 3 X u@C(X)s (6.9)

i=1

We define Dy =0. Because of (6.6),

D,_,D,=0. (6.10)
We now define a map for k=0, 1, ...,
EGH(SHp )@ 2)® L~ H(SH (0,)®1,. 5 )® L (6.11)
by
2m
Eu®s)= ) e X u®@C(X)s (6.12)

i=1

We define E_, =0.
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Claim. E,E, _,=00<kZx])
Define

E,_, HYS (po)®l 4 29,.)®L“’H0(Sk{9—}®3— i-20)OL
by

Zm
E_(v®s)= z M- (X @ C(X s .
i=1

The module L (for o(p©)) is self dual. The map E, _, is then essentially the transpose
of D,. Then (6.10) implies the claim.

The Killing form (,) of g restricted to k is negative definite. Choose a basis
Y., ..., Y, of k such that

B(Y, ¥)=0, if i+j

=—1 if i=j (6.13)

We now have the following

Lemma 6.2. Let k= 0.
Ei D+ Dy Ey
= -2 (1,1 (Y)* — (0 0) +(es 0¥
+ Zqu(Y;)Z®1 — Zi{er - (X)X )+ Gy 1 (X Del( X )} ®1 (6.14)

Proof.

2m
Ey D= Z - 1 (X)X )R C(X)C(X )
=1
= Z; e (X)X ) — e (X DOLX )R CXHCX )
— 2 ((X)O(X)®1  (using (6.1))

2Zm
Dy Ey= Z Ops 1(Xi)8k(Xj)® C(Xi)C(Xj)

ij=1
= Zic A0 (XD X ) — Oy (X P X )} CXHCX )
=20 1 (X Jed X)®1
Thus,
Ey  Dy+ Dy Ey=2; 1l X, X;10CX)UX)
= Zi{er - ((X)OUX )+ Gy (X)) X)}®1  (using (3.8 IH))
=1/2 Zi,jfk[Xia Xj]®C(Xi)C(Xj)
= Zi{ex - (X)X )+ Gps (X ) X))} @1 (6.15)
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Consider the first term in (6.15). We have
122 ul X X 190X )0(X)
=-1/2 X ; Z (X, Xj], Yq)fk(Yq)@)C(Xi)C(Xj)
g=1
=-1/2 quk( Yq)®2f,j([yq» Xl Xj)C(Xi)C(Xj)
= —2Z7(Y)@x(Y) (by6.3)
= - @0 (L) + Il @1+ Z10dY)’ .

By [4, Lemma 2.2] the third summation above equals —{g, 0} + (g 0u)- Thus
from (6.15)

Ey Dy+ Dy E=— ZAQ@X) (Y;;)Z —{0, )+ (0w Qk)‘i‘zqfk(y:;)Z@l
= Z{er- ((XDOUX D) + G 1 (X De X )} ®1
ged.
Lemma 6.3. The linear map of HS(Sk(p+)®l,1+zg)®L into itself (k=0) given by
—quk(yq)z + 2 {6 (X)) + O 1 (X el X))}
is independent of k. It equals scalar multiplication by (A+ ¢, A+90)— (o, 0).
- Proof. The proof is by induction on k. The case k=0 will be proved in the next

section. Let k> 0. Assume the lemma to be true for the values 0,1, ..., k—1. Let
A, denote the operator in the lemma. We will prove that for every Xep©,

O X)A,= A, 1 0(X) (6.16)
Granting this for a while we will show that A,=(1+9, 1+90)—(g, ¢). Indeed,
for any ue H{(SXp,)®I,, ,,) and for any Xep", from (6.16),

XA W)= Ay- 1 0(X)u

={(A+g, A+0)— (0, 0)}0(X)u
by induction hypothesis

=0dX) {(A40, A+0)—(0, 0)}u.

Thus, the elements 4,(u)} and {1+ ¢, A+ 0)—(g, ¢) Ju both go into the same element
in p"@HYS*" '(p,)®!,.,,) under the map . Since & is an injection, it follows
that 4,(u)={(A+0, 2+ 0)— (0. @) }u.

Now we prove (6.16).

Xyl Y =14 ()Xt V) + O[X, Y Jr(Y,) by (34)
:Tk‘1(};)251:()()‘}‘%—40;)@{)@ Yq]
+ Gl X, Y Jr(Y) (by (3.4} again)
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Thus,

ank(X)Tk(Y)z 2t (Y, ) X))+ 21 (V)aLX, Y]
+ 280X, YY) (6.17)

O X)ex— (X)X )= O X Der - (X)X )+ - [ X, X 10X
— &= 2 X) 0 ((X)OLX )+ 8 X )0 ((X)OLX)
(by 3.8 IH) (6.18)
Ol X)Oes 1(X e X )= Od X ) Ops ((X)E X )
= O X )0y 1 (X e X)+ A X )t X, X ]
= 0 X e 1(X)OUX)
+ 0 X Jer - ((X)0dX)  (by 3.8 IH) (6.19)

Claim.

2m

Y G (X )0(X)=0 (6.20)
i=1

The K€ linear map

20— I(Xi)ak(Xi):HS(Sk(p+)®l/l+ zg)‘*Hs(Skhz(PJ@l“ Zg)

is by the definition of the maps AX), clearly got by inducing in cohomology
the B linear map

Ziéx.éx,:sk(lh)@l“ZQ*Sk_Z(P+)®IA+20 (6.21)

where Jx are the maps in (2.6) (tensored with the identity map of [,,,,). But
X0x,0x is the “laplacian” and “holomorphic” polynomials are *“harmonic”.
Thus (6.21) is zero and the claim is proved.
Summing (6.18) and (6.19) over i=1,...,2m, using 6.20 and noting that
G- 1(X) O X )= G (X)) (X)), we get
AX)Z e ((XDOLX )+ Oy (X e X))
=28 2(X )0 (X )+ O X Der- (X)) AX)
+ 211 [X, X 10X )+ 20X )l X, X ] (6.22)
Now (6.16) can be concluded from (6.17) and (6.22): For
DI P 1(Yq)ak[X’ q] = Zq'fk— I(Y;I)Zi([X’ q], X)o(X)
=—2; (Y, [X, XDt (Y)OUX)
=211 [X, X 10dX)
and similarly
200X, YJudY)= Z0dX)nlX, X] g.ed.

The result of Lemma 6.2 can be restated as follows.
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Let k=0. Then
Ei (Dy+ Dy Ey= — 2 (1, ®%) (Y;)Z —(A+0, A+ 0)+(gs 1) (6.23)
We now have the following

Lemma 6.4. The linear map E,_ D+ Dy, E, of H(S¥p, )®!,,,,)®L into itself
is an isomorphism for k>0. For k=0, the map is, of course, D Ey and its image
equals the image of D,.

Proof. k=0 is arbitrary. Let V,CH(SYp,)®!,,,,)J®L be an irreducible K€ sub-
module on which E,_,D,+ D,, E, is zero. & is the highest weight of the K¢
module V;, with respect to P,. It is well known that

— 2 (1®1) (V) ly, =+ 00 £+ 01— (0w 01 (6.24)
(6.23) and (6.24) now imply
(€+owl+od=(+0 i+0) (6.25)

Since V,SHY(SHp . )®!,41,)JQL, the K¢ module H(Sp,)®;., )JQL®V* has
anonzero K€ invariant element. Since L ~ L*, we then conclude that an irreducible
submodule of V.®L and an irreducible submodule of H(SKp . )®l,4,,) are
isomorphic. Let v be the highest weight of such an irreducible component V,.
Since V,CV.®L, v is the form

v=¢+g,—7r —...~F, FEP, (6.26)
On the other hand, since V,£ H(SXp,)®!,, 1,), v has the form

v=wl+o+g,+ B +...+B)—0o (6.27)
for some element w of the Weyl group of (K, t). Thus

Ato+o,+ B+ +B=w E+o—r—...—1) (6.28)

Repeating the arguments after 5.9 (which is the same as the arguments in the
proof of [7,(8.34) Proposition]) we conclude there exist elements «,, ..., o€ P;
such that

Ato+o,+pi+. .+ =C+o—r—. .. —r—0y—...—q, (6.29)
Thus

Etop=A+o+ B+ i+t o bt (6.30)
Hence,

(E+0pE+0)=(A4+0, A4+0)+200+0, B+ ...+ Bp+ri+ ... +r i+ +...+0,)
+(By+ . Bt o, B By
Fryd o ) (6.31)

On the right hand side the third term is nonnegative. Also, we have assumed
that AeF. By (1.4), then, the second term is also nonnegative. Using (6.25) we
then conclude that

Bit . 4Putri+. o Hr o+ +o,=0 (6.32)
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But §,, r;, o; are all positive roots. Thus we conclude
k=0, r=0 and t=0. {6.33)

At this stage, the lemma is proved for k>0. For k=0, let V,.CH%(l,,, QL be
any irreducible K¢ submodule. D Ey(V)=0 if and only if {= 1+ ¢,. This follows
from (6.32) and (6.30).

Claim. The irreducible module with highest weight A+ g, occurs with multiplicity
one in

H{l;42)®L. (6.34)

By [3, Lemma 4.3], H%(I,, , ) is the irreducible K module V;, , o With highest
weight A+ 2¢,. Now, the multiplicity of V;,, in V,,,, ® L= the dimension
of K¢ invariants in V% , ® LV, ,,.= the multiplicity of V,,, in V;,, ®L.
The last number is well known to be one.

Thus the image of

DiEg: V420, @LoV, 45, QL

is the unique K¢ submodule of V. ,, ®L which is complimentary to V,,, €
Vit 2,,@L. Since the image of D, E, is contained in the image of

Dy :H(SYp,)®i4t 2 ®L—HY;12)®L,

to prove the lemma for k=0, it is enough to prove D, is not onto.
As remarked in (6.8), D, is the map induced in cohomology by the B module
map

d:p, ®lz+2g®L—’lz+zg®L
given by

2m
AXRe®@s)= Y 34 (X)®e®C(X))s.
i=1

{(6.7) and (6.5)). By 2.5, the map d is simply
XRe@Rs—eR@C(X)s .

It is well known that
L/Cp L=,

the one dimensional B module given by —p,. Thus one has a B module exact
sequence

P @l 2,®L5 5, QL1 ent 200 (6.35)

In cohomology (6.35) induces a K€ module exact sequence

HY(S (0 )® 2 )@ LB H (L, , )JOL—H(,, o4 2,)-0.

Thus D, is not onto. Now the lemma is proved for all k=0. g.ed.
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Corollary 6.5. Let 0<k<I. We have
Dy EH(SM (P )®11 2 )@ LY= Dy i (H(S* (1)1, 4 5 )R L) (6.36)

Proof. The case k=0 is already proved in Lemma 6.4. Now assume k>0. Let
ve H(S*" '(p,)®1,4,,)®L. By Lemma 6.4, Jue H(Sp,)®I;,,,)®L, such that

Dy, (v)=E,_ Dyu+D,, E.u. (6.37)
Applying D, and using (6.10) we see that

D.E, Du=0.
By the claim following (6.12), one also has

EE,_ \Du=0.

Thus (E,_ Dy + Dy, 1EQE,_ {Du=0. Hence, by Lemma 64, E,_ D,u=0. Now,
from (6.37)

Dy ((0)=Diy 1 Edu).
The corollary is proved. q.ed.

We recall the maps g (0<k=<D):p @H(S"(p ) @11+ 1)~ H(S* (9, )®1, 4 2,)-
We put

F,{=the image of &, (6.38)
By the definition of the maps E, in (6.12), one sees that

image of E,CF,,,®L (6.39)
Corollary 6.5 now implies.
Corollary 6.6. Let 0< k<. Then

Dy 1 (H(S* Hp @14 2)®L)= Dy 1(Fiey 1 O L) (6.40)

Proposition 6.1 will follow from

Lemma 6.7. Let k=0. Let Fy,, be a K submodule of H(S** '(p,)®I,, ,,) and
suppose

Dy, 1(HS(SH1(P+)®lx+zg)®L)=Dk+1(Fk+1®L) (6.41)
Then, Fi, = H(S* {(p )®1, 4 2,)-

Proof. We make specific use of the assumption that [p., [p.,p.1]1=0. Let QS K*
be the parabolic subgroup defined by

Q={ke K| Ad(k) leaves p, stable}.

Let g be the Lie subalgebra of k¢ corresponding to Q. In [3, §9] it has been shown
that {p,, p,]=u, where y is the nilradical of g. Let Q=MU be the Levi decom-
position of Q. Then for ke U,Ad (k)X = X forall Xep,.Let W,, ,, betheirreducible
M module with highest weight A+2¢, (with respect to BnM). By extending
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trivially over U, W, ,, becomes now a MU module. Hence also SKp )W, 24,
isa Q module. Note that U acts trivially on Sp, )@ W, ,, . When a holomorphic
Q module W is given, we denote by H{(K/Q; W) the K module given by the
i-th cohomology space with coefficients in the sheaf of germs of holomorphic
sections of the holomorphic vector bundle over K“/Q associated to W. Let g
denote half the sum of those positive compact roots for which the root space
lies in u. Let [,, denote the one dimensional Q module given by 2¢,. One can
then see that

Hi+r(Sk(p+)®lA+ Zg)ﬁHi(KC/QQ Sk(P+)®W/1+ 29n®l2gq)

for every i and k. Here r=dim K/B—dimK¢/Q. (See [3, p. 172] for necessary
references.)

From the Borel-Weil-Bott theorem for the parabolic subgroup Q of K¢,
one can easily see the following.

Suppose V'is a K€ module and put

W=V*={veV;,xv=0, forany xeu}
so that Wis a @ module. Then

H{K/Q; W®l5,,)=0 (6.42)
for 0<i<5=dimK“/Q and
HYKQ, W®l,, )~V (6.43)

We now come to the proof of the lemma. We label the two half spin rep-
resentations L’ and L” so as to get Q module surjections §':L'—I_, and §":L"~
l_,.®p,. We have the following commutative diagram the arrows of which
are explained below.

Sk(P+)®WA+ Zgn®129q®LN(~'d_Sk+ 1(p+)®Wl+ Zgn®12gq®L,
l 1®g" l 1@¢
SKPI®W,4 20, @, P @1, &S P )@ Wy 5, ®15,, B,

The Q module map d is defined similar to (6.7). The map J is got by tensoring
u—Z8y (WX, of S !(p,) into Sp.)®p, with the identity map in the other
factors. Inducing in cohomology we have the following commutative diagram.
HYHE/Q, SKp )® Wi 1 2,®124, L") & HIKQ, S H(p Y@ Wi 1 20,120, D L)
Lasgn, L aem,
HY(KC/Q, SHp YO W1 20,®120,®p+ ®1_,,) & H(K/Q, 5 '(p)®
W’H 29n®129q®l‘gn)

Here d, is induced in cohomology by the Q module map d defined similarly to
(6.7). Also the Q module map ¢ is an injection and its image in

Sk(p+)® W:H» 29n®129q®p+ ®I~Q“
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is a Q module direct summand (a complementary module being the tensor product
of Wis 20,8, ®I_, with the kernel of the symmetrisation map S¥p,)®p,—~
S¥*Y(p_)). Thus, § . is an injection,

Identifying HYS*" ' (p, )®1,2,) With Gy = HUKS/Q, 810 )@ Wy, 2,, O,
the K¢ submodule F,,,; of G,,, corresponds to a K¢ submodule F,,, of
HKE/Q)S* (0 )@ Wys 20, @12,

The K* submodules F, ;®L and G, ,®L’ of the top right hand side corner
of the above diagram have the same image in the bottom left hand side. Since 6.,
is an injection

{1 ®§?)#(Fk+ 1®L!):(1®€7)#(Gk+ 1®L’) (6-66)

{In this version the vanishing condition (x) in (1.6) is not used).

Now we note the following: Since the unipotent radical U of Q acts trivially on
S Yp )@ Wy 1, the K¢ submodule F of HYKS/Q, 8" (p,)®W,1,,.®b,)
are in one-one correspondence with Q submodules @ of $¥"'(p )@ W,, ,, , s0
that

F=HYK/Q, #®l,,)

6.44
Fe@ ( )

Explicitly, &= {ve Fix-v=0,Yxeu}. We denote by ¥,,, the Q submodule of
S Yp)®W, ., ,,,. corresponding to F, ;. Clearly,

(1®7)4(Fi \@L)=HY(K/Q, & 1 ®1,, ®1_,) (6.68)

Again there exists a one-one correspondence between K© submodules F' of
HY(K/Q, " Hp )®W;. 2,,®1_,,®,,) and Q submodules & of $**'(p,)®
Wi 2,,®1_,, because the latter is a Q submodule of

{EeS*THPIV®Viy o x-E=0, Vxeu}.

Here, V;, . is an irreducible K¢ module with highest weight A1+ ¢, and we have
identified

Wii2,®@1, =lueV,, , Ix-u=0,Vxeu}.

Note the following: Let F be a K€ submodule of H(K/Q, S** (p . )@ Wy 2,,®11,)
and ¢ the corresponding @ submodule of $** (p,)@W,,,, . Let & be the Q
submodule of S*" Yp, )@ W, ,, ®I_,,, defined by @ =@&®I_, and let F' be the
corresponding K€ submodule of HYK/Q, S*" Y(p. )@ W, 1,,®1, ®1,,) Then,
(1@7)4(F®L)=F'. Moreover, if F, is properly contained in F,, then @,, @}, F}
are properly contained in @,, @}, F, respectively.

Now, in view of {6.66) and {6.68)

@k+ 1®l-gn:8k* 1(}’4»)@ %-}- Zgn®l-gn »

hence

(pk+ 1 =Sk 1(P+)® W, 2007
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and hence
Frr1=Gpsy.

This completes the proof of Lemma (6.7) qe.d.
In the next section we take up the case k=0 of Lemma 6.3.

§7. Proof of Lemma 6.3 for k=0

Consider the representation 7, , ®x of H® on V,,, ®L. The irreducible K¢
module t;,,, on V,.,, with highest weight 4+ 2p, occurs with multiplicity
one in 7, , ®x. We thus have an inclusion,

Vitag, Vit o, ®L. (7.1)

On the symmetric space G/K,t;,,, and 7,,, ®x induce G-homogeneous
vector bundles E, and E respectively. Because of (7.1) we have an injection

E,—»E
This induces an injection
CP(Eq)— CR(E),

where C¥ denotes the space of C* sections which are K finite.
We now use the results of [3°. The Dirac operator

D:CZ(E)—CL(E), (7.2)
is defined in [3, §37. Let
H(Eo)= {se CZ(E,)|Ds=0} . (7.3)

We now define a filtration in CZ(E,) as follows: Cg(E,) can be naturally identified
to the space

C;(O(G7 VA+2Q,.)O = {fG_’ V}L+29ni .
i) fis infinitely differentiable and f(gk)=1,,,,.(k” ") f(g) and
i1} fis left K finite} . (7.4)

Any feCg(G, V,,,,)° is completely determined by the function fip— Vitao
defined by

Jf(X)=f(exp X). (7.5)
For, writing ge G as exp X -k for Xep and keK,
Slexp X k=132, (k") f(X)

in view of i) in (74). f has a formal Taylor expansion as an element of
T2 o(S(PI® Vit 2,,)- (By our identification p©=(p©)*, S'(p©) is to be regarded as
the space of homogeneous I™ degree polynomial functions on p©). We now define

Cgi= {fe CR(G, V1+2g,.)0|
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the formal Taylor expansion of f has component zero in S(p)®V;, ,,,, for
1=0,1,...,i—1}.

Since Cg(Eo)=CZ(G, V;,,,,)° by our identification, we now have a filtration,

CRE)=CZ oD CR DCR 5 ... {7.6)
One has the obvious identification

Cirl CE 1 =S DV®V, 1 26, - (1.7)
We thus have a projection

T':C3 1~ S(POVD Vs 2, - (1.8)
The filtration 7.6 induces a filtration on H{(Ey) (7.3) by intersection.

H{Eg)=Hg olEg) 2 Hy (Eq) 2 Hx,z(Eo) 2 ... (7.9
where

Hy {Eq)=HJE)NCE ;. (7.10)

Under the condition (%) of § 1 for 4, it has been shown in [3, proof Lemma 5.3] that

TI(HK,I(EO)) < i#(HS(Sl(PJr)@[M 29)) (7.11)
where i, is as defined in (6.49). (Here we have made the identifications

HS(Si(PC)®lA+ 2g) = SI(PC)®HS(33+ 29) = S[(PC)® Vis ZQ,,) .
By the methods of Schmid in [5] and [6] one can show that under the condition
{(x)of§1 on A

Hy(Ey)#0. (7.12)
Choose I 20 and se Hy (E,) such that T'(s)=+0. If /40, then ZX,® &(X )(T'(s)) +0.
Thus for some XepS §(XNT'(s)+0, ie. T Ym(X)s)+0. Note that
n(X)se Hy ;. ((Ey). Descending further if necessary, we can find se H(E,) such
that T%s)=0. Hence, TO(Hy o(Eo)=i.(H¥l;,,,). (We will hereafter drop i,
in (7.11)). Because of (11) and because the multiplicity of the irreducible K¢ module
H(l;,,,) in ®,>0HS(Si(p Y®l42,) is one ([3, Lemma 4.2 and Lemma 4.3])
there exists a unique irreducible K¢ submodule V,, 20, Of Hg(Eo) such that

HK(EO):VA+2Q,1®HK‘ 1(Eo) (7-13)

TO'VM 29,.:VJ,+2g"_’i#(HS(SO(p+)®IA+2g)) (7.14)
is an isomorphism.

G acts in the usual way on the space of C* sections of the G homogeneous

vector bundle E;. Denote by 7 this representation of G. Then for s belonging a
suitable subspace of C* sections of E,, one can define for Xeg

AX)(s)= —| 7(exptX)s (7.15)
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At any rate the above is well defined for all X and for all se H (E,} and moreover
RHXNHK(E)) € H(Eo) .

Fairly elementary arguments actually show the following. For Xep g,

XY (Hg (Eo)) & Hy ;- 1(Eo) . (7.16)
Also, if se C¢ , then for Xep,

XWs)e CR - - (7.17)
In view of (7.7), #A(X) induces a map

Sx: S PV®Vir 20,25 (PV® Vi 2, (7.18)
As can be expected the differentiation (7.15) induces differentiation in (7.18} i.c.

Sy=C-5,®1 (7.19)

where C is a nonzero constant independent of X and dy 1s as in (2.6).
Hence, for se Hy (E;) and X ep,

T'= Y#(X)s) = CAX)TX(s) (7.20)

{where A X) is as defined in (2.12)) as follows from the commutativity of the diagram

H(S' (pV® L1y 29) < H (S (0V®L12,)
[ T ig T
HY(S' ™ Hp)®lis 1) < H(S'(p)® L. 2,).
On the other hand, consider the map
EO:PC® 17/1+ 29,,’“’HK(E0)
given by
T(X ®s)=A(X)s . (1.21)

The map &, is clearly K€ linear. No irreducible component of p°®V,, ,,, has
highest weight 4+ 2g,,.

Thus, no irreducible subspace in the image of , has highest weight 4+ 2g,.
Hence

Zo(P @ Vis 2,,) € Hy 1(Eo) (7.22)
Thus there exists a unique map

£0: PCRH (4 2= HAS (P )® 114 2,) (7.23)
such that for Xep®and seV,, ,, ,

T'E(X@s)=&(XRT’), (724

We define for X ep© and ue H(l, . ,,),
go(Xu=eo(X ®u). (7.25)
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From (7.21), (7.24) and (7.25) we have for X e p€ and se V,, 20

eo(X)(TOs)= T (#(X)s) . (7.26)
We have for seV;, ,,,, X, Yep©,

TYRX)AY)s— R X)s)=TR[X, Y]s).
Thus, from (7.20)

C-AXNT'#Y)s) ~ C- AYNTHAX)s)=71o[ X, Y] T7s.
Now using (7.26)

C-d(X)eg(Y)T s — CAY)eg(X) T s =14[ X, Y] TO. (7.27)
Hence, for
ue (I3, 5,), C- A X)eo(Yu— C- A Ve X)u=r1o[ X, Y]u. {7.28)
Thus,

C-ep(X)=¢o(X) (7.29)

where &,(X) is as in Proposition 5.2.
For

se Hy(Eo) € CR(Eo) € CX(E),
by (7.3) D(Ds)=0. On the other hand, it is proved in [4, Proposition 3.2] that
D(Ds)=Z (Y, s — ZA(X s
+{i+e A+0)—(e 0)s,

where {Y,}, {X,} are bases of k and p in Lemma 6.3. Thus for se Vis 2o

{(A+0, A+0)— (0. )T s = — 2, T(R(Y)*s) + Z, TURX )R(X ))s)
=—X,1(Y) T+ Z,CAX )T (A(X)s), by (7.20)
=—Z1o(Y)* T s+ Z,CAX Jeo( X )T%s, by (7.26)
= —Z oY) T s+ Z,&X Jeol X )T . by (7.29)
Thus, Lemma 6.3 is proved for k=0.

§8

G, 1° C k° C ¢ are as in the foregoing sections. p, is the subspace of g© spanned
by the root vectors corresponding to noncompact roots a.e P, where P is a positive
system of roots of (¢, g°). Let o= half the sum of the roots in P. F is the lattice
in Hom(}/ -1 t,R) defined by the characters on T. Let
F={leF|{A+9,0)>0,YVaeP, and
(40,020, Vae P} .
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Finally, for Ae F, we say that A satisfies the condition (¥) when H{( A %p_®1,, 20=0,
Vi<sand ¥, z0.

In the statement of all the theorems in this and the next section, we assume that
P is chosen such that the condition

tlpesp+Lp1=0

is satisfied and A€ F is chosen such that the condition (%) is satisfied.

We then recall again the following facts for clarification.

1} For any G admitting discrete series therc is always a choice of P such that
lpssps) P+ 1=0. For SO(2n, 1) and SU(n, 1) any chotce of P has this property.

2) For AeF, if A+, a| is sufficiently large for every compact root o then
the condition (x} is satisfied [3, Lemma 4.1].

3) There are lots of Ae F such that {1+, o) is zero for a noncompact root
and condition (%} is satisfied. For this combine Remark 2 with the following obser-
vation: There exists an integer N, such that for every integer N> N,, A F=
N(A+g)—peF and satisfies condition (x).

4) Let F'={leF|(i+g,a>>0,Vaec P}. Then the (disjoint) union of the
F'as P varies over all the positive rootsystems containing a fixed P, parametrizes

the discrete series for G. If G is linear and if P satisfies [[p,,p.],p.+]1=0, then
A€ F'=>] satisfies the condition (x) [3, §97].

Theorem 8.1. Suppose P satisfies [[p,,p+],p+1=0. Let AcF and assume that }
satisfies the condition (x). For k=0, there exist unique K€ linear maps

e PCRH (S (P )® 14 2= H(S* (P )®14 2,) (8.1)

with the following properties:
Denoting for X e p©, ue H¥(SHp . )®1, 1 1,)

e XJu=eyX ®u) (8.2)
they satisfy
e (Xl Y) =g44 (Ve X) (8.3)

for all X, Yep©. Also, with 8(X) defined as in (3.3) for k=1,
Oer (X Y) = Oy (Ve X) =1, [ X, Y] - (X)O(Y)+e_(Y)O(X). (84)

For k=0, we have

O X)eY) = 0i(Y)eo(X)=710[ X, Y]. (8.5)
Moreover, for all k=0,
gk@C®HS(Sk(P+)®IA+ zg)): HS(SH I(P SR, 29) . (8.6)

Proof. For k=0, the existence and uniqueness of ¢, with the desired properties
follows from Proposition 5.2 and Proposition {6.1).

Further by Proposition 5.2, the map &, so constructed has the following
property:

Choose and fix a K¢ linear isomorphism j° as in (5.21). Then there exists a
unique K¢ linear homomorphism j! as in (5.22) such that (3.20 IH) is satisfied
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for k=0. By looking at (3.20 [H), it is clear that image of j! 2 image of
eo=H(S'(p)®1542,), by (86)

Thus, for dimension reasons j' is an isomorphism.

Now, we prove the theorem by induction: Let [ = 1. Suppose for k=0,1,...,1—-1,
the existence and uniqueness of ¢, satisfying (8.3), (8.4) and (8.6) has been estab-
lished; suppose the maps g, so constructed have the following property: For
x=0,1,...,1 there exists unique K¢ linear isomorphisms j* as in (3.19 IH) so that
(3.20 TH) 1s satisfied for k=0, 1,...,1—1.

Under the above induction hypothesis, the existence and uniqueness of g
satisfying (8.3) and (8.4) is proved in Proposition 4.1. The property (8.6) for the map
¢ so constructed is proved in Proposition 6.1. In Proposition 5.3, the existence
of a unique map jas in (3.19 [H) for k=1+ 1, satisfying (3.20 IH) for k=1 is proved.

The proof of Theorem 8.1 is complete.

Theorem 8.2. Suppose P satisfies [[p..p+1,p.1=0. Let JeF and assume that A
satisfies the condition (x). Let

HA:@I;OHS(SI(I)+)®IA+29)-
For XepC, let p{X):H,— H, be the linear map defined by
0 X u=((X)+e(X)u

for ue H¥(S'(p . )®1; 4+ 2 )(0o(X)=0). Here £(X) is given by Theorem 8.1. For Ye K¢
let 0,(Y):H;— H, be the linear map given by

e Yu=1(Y)u

for ue H(S p . )®l; 1 »,)- For Z=Y+ X where Yek® and X ep®, define
0i(Z)=0,(Y)+0:X).

Then g, defines an irreducible representation of g on H;.

Proof If Yy, Y,€ kS, it is clear that ¢;[Y}, Y;1=0i(Y)ouY2) — 0 ¥2)ex Y1)

Let X, X,ep“ and ue H(S'(p,)®!; ,,). We have to compute 9;(X )o,(X,)u—
0 X)X Ju.

X oA X ) u=0,(X ) (X Ju+efX;)u)
=0 (X)X Jute_ (X)X )u
+ 0 (X De(X ) ute 4 (X el X5)

Similarly, write down the expression for @,(X,)e,(X )u and take the difference.
Note that

e (X e X5)=e, ((Xp)efX,) by (83).
Also,
O (X )0(X,)=0,-(X2)6(X,) bylLemma3.1.
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Then (8.4) implies that

X DoAX )~ X ek X ) =0:[X,, X,].

Now let Xep® and YekC. The K€ linearity of ¢, and the K® linearity of g imply
that for ue H(Sp . )®1,4 ,)

T (Y)o(X)u= (X)r(YIu+ oY, X]u
and

T Ve X)u=e(X)r(Y)u+elY, X]u
ie.

e Y)o(X)u=0(X)o(Y)u+ Y, Xu
and

(Ve X)u=efX)oYVIu+elY, XJu.
Adding up we see that,

(Yo X)u=0X)eY)u+o,[Y, Xu.

Thus indeed g, is a representation of g.
Now suppose H' is a nonzero g invariant subspace of H,. Let { be the least
nonnegative integer such that

HC Dz HS(SR(PQ@leQ) .

We claim [=0. For, suppose not. Choose an element uc H' which has a nonzero
component in H(S'(p,)®!,, ,,). Since the map

60:HS(Sl(P.4—)®lx+2g)_’PC®HS(Sl_1(17+)®IA+2Q)
defined by
5G(U)=ZiXi®az(Xi)U

is an injection (Lemma 2.2), if v=+0, there exists an X such that (X Jv=0. Thus,
one can choose Xep®© such that J(X)u,#0, where u is the component of u in
HS'(p,)®l;4,,) Then it is clear that p(X)u has nonzero component (X )u,
in H(S'"" "(p,)®I,4,,). This contradicts the minimality of [ since g X)ueH'
Thus [=0. Since the multiplicity of H*(l;,,,)in ® ;. HY(S' (p,)®1;4,,) is zero,
one now concludes that H%(1,,,,) C H'.

Now let k>0 and suppose that H(S'(p.)®!;,,,) € H', for i=0,1,...,k—1.
Since

&e— 1 PC@H(S* P )®lis 2~ HYXSH (P )®114 5,)

is surjective, any ue H(S¥p . )®1,. » o) can be expressed as
=22 (X)v, X;ep©

where v,e H(S*" '(p,)®I, ., ,,)- Since
X )vi= 0 (X Do+ & (X))v;
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we have then,
u=20,(X;)v, mod(H¥(S*~ P )@ 29))
ie. ue H' mod(Z,_ . H(S'(p,)®1,42,)- So, in fact, ue H'. Thus we have concluded

ILI/ZI"I}L .
g.ed.

Theorem 8.3. Suppose P satisfies [[p.,p.],p.1=0. Let AeF and assume that A
satisfies the condition (). Let Q(P, A+ o) be the universal g module constructed in
[8,§34]). Let mp ., be the representation of g on Q(P, A+¢). Then mp ;. ,~0;.
In particular the g module Q(P, A+ ¢} is irreducible.

Proof. By using [Lemma 8, (4.2)] one can show that there is a nonzero g module
homomorphism f of Q(P, 1+ ) into H,, the representation space of ¢,. But since
¢, 1s irreducible, f has to be a surjection. On the other hand using [Lemma 8, (3.8)]
one can show that for any irreducible representation d of k, the multiplicity of 6
of in 7p ;,, is less than or equal to the multiplicity of é in ;. This proves the
theorem. qe.d.

Theorem 8.4. Suppose P satisfies [{p,,p+ ) p.1=0. Let JeF and assume that J
satisfies the condition (). Let @, be the irreducible representation of g given by
Theorem 8.2. Let t, be an irreducible finite dimensional representation of k with
highest weight u with respect to P,. Then the multiplicity of T, in ¢, equals

where Wy is the Weyl group of K and Q(w(u+ ¢,) — (A+ 20, + 0,)) denotes the number
of distinct ways in which w{y+g,)—(A+2¢,+¢,) can be expressed as a sum of
positive noncompact roots, i.e. roots in P,.

Proof. We have only to sum up over m the multiplicity of 7, in H(S™(p,)®1, 4 ,,)-
The theorem now follows from [3, Lemma 4.3] q.e.d.

§9. The Unitarity of the Representations g,

First to get a hermitian form, what we need is a family of conjugate linear maps
T HOSHp B - 20,) = H(S (P )®i4 2)) .

preserving the K actions and having properties similar to (3.20 IH) rather than the
C-linear maps

jk:HO(Sk(%p+)®gx(A+ 299))—’Hs(sk(17+)®iz+ 29}

in (5.26), which preserve the K¢ actions and have the properties (3.20 IH). By
Serre’s duality, the module on the left in (9.1) is canonically the dual of the module
on the right. Thus j, can be used to define a hermitian form. But the important
thing is to prove that j, is positive definite. Naturally the positivity conditions in
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(1.4) will enter into the proof. And as in the rest of the paper, especially §6, tensoring
with the spin module »x:k— End{L} seems to help.
For xep® and any k=0, recall the maps

??k(X):HO(Sk(%P+ )®Zx(l+ 29«))”’H0(5k+ 1(%P+)®qu+ 29,.))
in (3.18}. We denote by

B H(SHp )®1 5, )~ HUS po)®l_,25,)
the negative of the analogously defined maps (3.13).

Lemma 9.1. Let (e HOSNp_)®I_;-,,), ue H(S* '(p,)®1,,,,) and Xep. Then
ELX)IE up = — (&, Gr (X))
(Here, {,) is given by Serre’s duality).
Proof. We have, from (3.13)
EXE uy = — (X ®&), uy
= —(X®¢ P uy, by Lemma 3.2
= —(X®E ZXi® Oy (X )up
= —2{(X, X & G (X)uy
== Gy ((X)uy  qed.
We now define for Xep®, k=0
S 1(X):HOS  Hp )@ -5, ) > HOSH(p )@ -5 5,,)

to be the negative of the transpose of &,: H(SX(p  )® 1, , )~ H(S* Hp  )®1, 4 2,)-
Also, define for Ye kS,

T(Y): HO(Sk(P-)®l—/:— ZQn)”"Ifo(Sk(PJ@L i-200)

to be the negative of the transpose of
Tk(Y)5HS(Sk(p+)®gz+ 29)"*}?{8(5;(@-&)@1“»29) ;

Then 7, defines a representation of k& dual to 7, and is precisely the representation
of kK on H(SXp_)®I_,_,,,) considered previously.

Lemma 9.2. The maps 5,{X): H(SXp )®!_;_,,)—HS* Yp_)®I_,_,,) defined
above are the unique maps with the following property :
1) 0 ((X)OU(Y)= 0, - (Y)OUX), VX, Yep© and k= 2.
_ i) The_map O:p®@H(SHp_)®I_ 5, JH(S* p_)®I_, ,,) defined by
I(X®&)= 0 X)¢ is K module map. _
i) VX, Yep, [ X, Y]=2, ((X)O(Y) =&, ((Y)(X)

+ Gr 1 (XELY) = G ((Y)E(X)

Proof. This is got by dualizing Theorem 8.1. q.e.d.
Similarly dualizing Theorem 8.2, we have
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Lemma 9.3. Let H,=®,5 H (S p_)®I_,_,,) For Xep'. Let g,X):H,~H,
be the linear map defined by

guX)E :(51((X)+ GH0.4)'S
for Ee HO(SXp_)®I_,_,, ). For Yeks, let g,(Y) be given by
OAYIE=T(Y)C

for cfeHO(S"(p*)®l4#ZQn). Extend @, linearly to all of g°. Then g; defines an
irreducible representation of g on H,.

We now choose and fix a conjugate linear K module map
Ho(l—z—zgﬂ)—’Hs(lhzg)

such that for & &eH(I_;_,,) (&, jo€'> defines a K invariant positive definite
hermitian form on H%(/__,_,, ). We now have the following

Lemma 9.4. There exist unique conjugate linear K module maps

JeHOSHp @15 20,)~ H(S P )® 1 2,)
with jo as already chosen, having the following property: For X ep and
fEHO(Sk(Pw)(@!— /1—2g,.) N

Jir 1EOE) = X) (il 6)) - 9.2)
The maps j, also satisfy
Jie 10 X) = 8 X - (9.3)

Proof. For the existence and uniqueness of j,, in view of Proposition 5.3, it suffices
to prove that there exist conjugate linear K module maps

a:H(SKp )y®I_,_ 29")—+H0(Sk(}€p+)®lm“ 2om) (9.4}
such that for £e HY(SYp_)®I_,_,,)and Xep
Uy 1 ELX)E) =1l X) (@ &) 9.5)

and such that g, is onto for every k2>0. For then the existence and uniqueness of
ji would follow from those of j,=j(a) ™" in Proposition 5.3. (We have taken
ao=(jo) " o) Also, to prove the existence of the surjective maps (9.4) with the
properties (9.5), it suffices, by dualizing and using Lemma 9.1 to prove the existence
of surjective conjugate linear K module maps

bk:HS(Sk(%P~)®l—K(A+29))“’Hs(sk(17+)®l/l+2g)
such that for ue H(S** '(xp . )®I_ 434 2,) and Xep
b O+ (X)u)= Ger (XD (g () 9.6)

(bo=the transpose of a,). For then a,=(— 1)* transpose of b,, will do the job. We
define b, as follows: Take ueHS(S‘(xp_)®LW+29)). Choose orthonormal basis
X1, X,,..., X,,, of p and consider the element

e(ep @H ;4 ,,)
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defined by
e(w)= 2, X;®bo(0,(X)u)

Clearly ure(u) is a conjugate linear K module map of H(S"(kp_)®! ,;+20)
into p"®HY!;,,,). By Lemma 5.1, the composite of the above map with
PRH, ;) H, ,,®p_) is identically zero. Thus, from the exactness of the
completes (2.20), for ue H(S (xp _Y®1_ 14 2,) there exists

biwe 'S (p+ )B4 2,)

such that e(u)= (b (). Since & is an injection, if u+0, e(u)%0 and b,(u)=+0.
The conjugate linear map b, is the desired map. For dimension reasons b, is a
surjection.

Now let m>1 and suppose that b, has been defined for k<m satisfying (9.6)
in the appropriate range. Let ue H(S™(up_)®I_,;+2,) Define an element
e(Wep"@H(S™ Hp, )®l;. 20 bY

e(u)=2X,@b,,_ (0 (X )u)
Recall the map &' in (2.19). By 2.24
AMe)=Z; X;AX® 0 (X )by 1 0nl X Ju)

i, j*J

=2, X;AX,®b,,_ (0, (X )0 (X )u)

i, j*j
=0, because of Lemma 3.1.

Thus by the exactness in Lemma 2.2, there exists a unique element
b, (we H(S™p,)®1,.,,) such that e(u)=(b,(u). The map u—b,(u) is the
required map.

We have to verify (9.3), i.e. we have to prove that for Xep,

ék(X) = (}k— ;) -1 ak(X)}-k

Denote by 3,(X), the map on the right hand side above. We verify that J(X) has

all the properties required for the uniqueness assertion in Lemma 9.2. The pro-

perties i) and ii) of Lemma 9.2 obviously hold for &,. The property iii) for a, follows

combining (9.2} and (8.4) and noting that j, commutes with the k action. g.e.d.
We now define a hermitian form on H(S*(p_)®I_,_, o) bY

(& EV=(ETEY .

We have to first verify

Lemma 9.5. Let £, &eHYSKp )®1_;_,,) letting conjz the complex conjugate
of 2, (£, &)=conj (£, §)

Proof Define i;: HO(S (p)®I_,- 2Qn)—’Hs(Sk(P+)®lx+2g) by <§ lk(é)> conj
CE &) for & EeHUSHp )®I_;5,,) (For fixed ¢ conj (&, j&)) depends
linearly on &', etc.), Iy 1 is a conjugate linear K module map. We will prove the lemma
by showing that i, =j;. For this we will show that 7, has the property (9.2) required
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for the uniqueness assertion in Lemma 94. We first verify that for
EeHSHp_)®I_;_5,) and Xep

-ik + 18X =X ﬁk(é ) 9.7

The two sides are elements of H(S*" '(p,)®1,,,,). We have to show that they
have the same scalar product with

PeHSH ()@ 52,
We have
<W:_ik+ (X)) =conj <§k(X)é7.7k+ {w) .
On the other hand
s el XD(E) = =iy (XD, T(ED
{(by the def of 0, )
= —conj <f>}k5k+ (X
= —conj (¢, G, 1(X)7k+ )y, (by9.3)
= —conj (E(X)E, Ji+1(w)> by Lemma 9.1.

Thus (9.7) is proved. Note that by the choice of j, and the definition of iy, io=Jo-
Now Lemma 9.4 can be applied g.e.d.

The hermitian forms on H%(S¥p_)®I_;_,,.) give rise to a hermitian form on
H,=®kz0HS4p_)®!_,_,,,) by making two different summands orthogonal
to each other.

Proposition 9.6. (Infinitesimal Invariance). The operators 0,(z),z€g, leave the
above defined hermitian form on H , infinitesimally invariant, i.e.,

(@x(2)¢, &)+ (&, ex(2)8)=0
Proof. We have only to prove that for Xep,
EiEHO(Si(p—}(@I—Z.A 29,)? = k—“ 1’ ka k+ 1

(5k(X)f§k, Ero ) H (& T (XD - =0 (9.8)
and
EUX)Es Exv 1)+ (Epo Os ((X)Ep4 1) =0 (9.9)

The left side of (9.8) equals

Ol o Jx= 1= 1) + Lo =t X)Ek— 1D
=& e Xk 1&x- 10 + L diae (XD 10
=0, by(9.2).
(9.9) is proved similarly g.e.d.

Proposition 9.7. The hermitian form on H(S¥p_)®I_,_,,) is positive definite,
i.e.,for ié HO(Sk(p')®{— A~ ZQ,‘)a ‘f# Oa

(&, A&y is real and positive .
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A brief idea of the proof of Proposition 9.7 has been given in the introduction.
We need several lemmas.
Recall the spin representation »:k—End(L) and c:cliff(p)—End{L). We
choose and fix a positive definite hermitian form on L such that for s, s’'e L and
Xep,

(c(X)s, 8"+ (s, c(X)s)=0 (9.10)

(see [4, Lemma 4.1]). We also choose and fix a nondegenerate bilinear form on
L such that for s, e L and Xep®,

{e(X)s, 8+, e X)s =0 9.11)
Similar to the maps D, and E, ((6.8) and (6.11)), we now define
Dy HSHp_)®1_ -2, )R L—-H(S* Yp_)®1_;_,,)®L (9.12)

by DYE®s)=Z (X )E@c(X )s and
E:HOSHp )@ -2, )®L—HS* (p_)®I_,_,,)®L

by Ek(é®s)=Z§k(Xi)&f®c(X,»)s. It is easy to see that for ¢, H(S{(p_)®I_; _ 20 )@ L,
l:k_ la ka k+1 and (p?‘EHS(Si(p+)®lA+29)®L’ l:k—' 1’ kv k+ ]a

(Dipis OF- 1> =P B 10} 1) (9.13)
and
<Ek€9k, Okr 1) =P Dis 1084 8.14)

With respect to the hermitian forms, we have

Lemma 9.8. For 0, HY(S(p )®!_;,_,,)®L,i=k—1,k k+1 we have,
(Ekq)k’ it 1)=(Py, D—k+ 1Pk+1)

and
(Bk(pk’ P 1) =(py, Ek— 1Pu-1) -

Proof. Follows from (9.8), (9.9) and (9.10) g.e.d.

Let Qg denote the casimir of K. Combining (6.23), (9.13) and (9.14) we have,
for k=0,

Eo Dyt Dy \E = (1,®@1)(Qg) — (0, A+ 0) + (01 00 - (9.15)

Thus, if peV_,CHYSXp_)®I_;_,,)®L, where V_, is an irreducible k& sub-
module with lowest weight —y, then,

(Ek— 15k+§k+ 1Ek)¢= {(utop, n+o)—(A+0,1+0)} 0. (9.16)
Moreover, as concluded in (6.30),
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where A4 is a sum of positive roots, with 40, if k>0. Using (1.4}, we conclude
that if k>0, then

(u+ep nte)—(A+e A1+0)>0.
We have proved

Lemma 9.9. Let k>0, and let peV_, S HY(S"p_)®!_;_,,)®L, where V_, is an
irreducible k submodule with lowest weight — u. Then,

((Ek— 15k+ 5k+ 1Ek)§0, Q)=c(®, ),

where c, is real and positive. In particular if the hermitian form on HOSp )®
122, ) is positive definite then (E,_ Do+ Dy, , EDo, @) is real and positive if ¢ +0.

We now make the following induction hypothesis. Let m>1 and assume that
the hermitian form on H%(SXp )®I_,_,,,) is positive definite for k<m.
Note that by our choice the hermitian form on H%(I_,_,, ) is positive definite,

Lemma910 Let EeHYS" Np )®l_; 2,)®L, so that E¢eHS"(p_)®
20 )®L. If EE%0, then, (EE, EE)>0.

Proof. Let Sy= the image of the map E,_, and R, = the image of the map D, ;.
For k>0, the operator Ek D+ D, E, has kernel {0} Note that for peR,,

D,@=0, while for qJGSk,Eklp—O By these remarks, S, =E,_ D u(S,)=E,. {(Rp_1)-
Let @e8,,. Then ¢ = Em () for a umque WweR,, 4. Ifqo%:() then =0, Now,

Since we image of D,, we have D,,,Em_1(u>)=DmE,,,‘1(1p)+Em_25m_1(w). For
nonzero 1, the last expression is nonzero if m—1>0. For m—1=0, the same
assertion is true for nonzero e R,. This can be seen as follows. Noting Dy,=0,
EoD,Eo(p)=(D1E, + EoD)Eo(yp)+0, since Ey(y)+0 for nonzero weR,. Ap-
plying these remarks to (9.17) and using Lemma 99 for k=m—1, the lemma
follows g.e.d.

With our induction hypothesis, according to Lemma 9.10, the hermitian form
on H(S™(p_)®!_,_,,)®L, is positive definite at least on the image of E,,_ ;.

The one dimensional B module [, is a submodule of L. Thus, we have an
inclusion as K¢ modules,

HO(S™(p )®1_ 3 20,@1, )= HYS™(p )@ _;_,,®L)
3H0(Sm(P—)®l-z—2gn)®L~
Lemma 9.11. HO(S™(p_)®!_; _,,,®l1,,) is contained in the image of E,_ .

Proof. Let S" '(p_)®L 4 S™(p YQL be the transpose of d,,:S"(p,)QL—
8" (p Y@L, where d,(u®s)=2 o5 u®c(X )s. Let e,_, also stand for the map

S"Hp )@ 52, @L—-S"p)®I_;-,,,QL,

got by tensoring with the identity map on the factor [_;_,, . Then E, _, is clearly
the map got by inducing in cohomology from the map ,,_ ;. We claim that

the image of E,,_ , = the kernel of E,, . (9.18)
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First observe that we have the following exact sequence ‘at the fiber level’.

01324, ®1, S (P )@ 55, ®L- ...
2L SHp IR 4 2, OL-5 . (9.19)
The verification of this fairly easy. Note that for each term of the above exact

sequence, for the associated vector bundles, H()=0, for i>0. Inducing from
this in cohomology (see proof of Lemma 2.2) we then have an exact sequence

OAHO(I—A— 2Q"®t9n)_’H0(S0(p—)®l~l- 2gn®L)

oy Bl HSHp @I g L)~
Thus the claim (9.18) is proved. To prove the lemma we have only to observe that
S™p_)®I_,_,,,®1,, € kernel of 2, q.e.d.
Corollary 9.12. Under the inclusion

HOS™p)®!_ 3 2,,®1, JHUS™(p )@ _; 3, ®L)~HYS"(p_)®I_;_5,)®L,
the hermitian form on H°(S™(p DRI, )L restricts to a positive definite
hermitian form on H/(S™(p )®1_,; _,, ®1,).

For the rest of the proof of Proposition (9.7), we use the assumption that
[[p+,p+] p.1=0. We use the notation in the proof of Lemma 6.7. Let W_,_,,.
be the irreducible M® module with lowest weight —4—2g, (relative to M*nB).
Regard W_;_,,, as a Q module in the usual way. For the same reason as in
{3, page 172], we have the identifications

HOSNp)®I_ ;- 50,)x HYK o, SNp )@ W_; _5,,)
H(S¥p )@y 2) x H(K /g, SHp YOW, 12, ®L3,.) (9.20)
{See page 66)
HOSHp Y@®1_ -5, ®1, )~ HYK 5, S )OW_,_,,.®1,),

via these identifications, the conjugate linear K module maps j, give rise to
conjugate linear K module maps

G HUK g, SMp YOW_ 52, ) = HAK g, SHp . )@ Wiy 2, ®la, ) . (9.21)

and hermitian forms give rise to hermitian forms. As is well known, K/,=K/y
where M=0nK. An M invariant hermitian form on S¥p )@W_,_,, induces
a K invariant hermitian form on HO(KC/Q, S¥p_Y®W_,_,,) by integration on
K/ (with respect to a K invariant volume element in K/,, of total measure 1).
We now observe the following: Let V be a finite dimensional {(not necessarily
irreducible) K¢ module. Let

W=VY={veV|yv=0,Vye U},

where U is the unipotent radical of Q. Wis a Q module. Let W* =dual of W, By
the Borel-Weil-Bott theorem,

H{(K/y; W*)=0(i>0)
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and
HO(K/g:; W*)~V*  canonically.

In this context, it should be noted that End,(W*) is canonically isomorphic to
EndK(HO(Kc/Q, W*). As already pointed out an M invariant hermitian form
on W* induces a K invariant hermitian form on V*. But, what is more important
is the following assertion:

Lemma 9.13. The above correspondence is a bijection from the space h,dW*) of
M invariant hermitian forms on W* onto the space h {V*) of K invariant hermitian
Jorms on V*. Under this correspondence an M invariant hermitian form on W* is
positive definite if and only if the corresponding element of hi{V*) is positive definite.

Proof. Since hy(W*) and hg(V*) are spanned over C by the set of positive definite
elements A (W*) and hE(V*) respectively, it suffices to prove that hEf(W¥*) is
bijectively mapped hi(V*). The assertion is obvious when V* is irreducible. In
general given an element of hZ(V*), choose an orthogonal decomposition
V* =@ V* into irreducibles. Let W= ®W?* denote the coiresponding decomposi-
tion of the M* module W* It is now clear what element of h5,(W*) we should
take to get the given element of hf(V *) as the image. q.e.d.

We are now in a position to complete the proof of Proposition 9.7.
SHp_)® W_ -2, and S¥p_YQW_,_,, ®l, are isomorphic to an appropriate
W* of Lemma (9.13) by choosing V to be an appropriate K¢ submodule of
SHP )RV, 4 2, in the first case and Sp)®V,,,, in the second case. Thus, we
conclude that our hermitian forms on H(S™(p_ JQW.,_,,) and H(S"(p_)®
W_ ;- 2,.®1,) are induced by unigue M invariant hermitian forms, say h, on
S"p Y@W_,_,,, and h, on S™p_YQW_,_,, ®I,. But h; and h, are related
as follows:

The hermitian form on H(S™(p_)®W_,_,,)®L what we have been con-
sidering is the “product” of the one on HS"(p _)@W_,_, o) induced by h, and
the K invariant hermitian form (9.10) on L. It is clearly induced by the M invariant
hermitian form on S"(p _)®@W_,_,, ®L which is the product of h, on the factor
S"(p_)Y®W_,_,,, and our hermitian metric (9.10) on L. This hermitian form on
S"Mp_)QW_;_,, ®L restricts to a M invariant hermitian form on $™(p_)®
W_,_ 5, ®l, which then induces a hermitian form on H%S"(p.)®
W -2,.®l,). The latter is clearly the restriction of our hermitian form on
HS™(p_YQW_,_, 2J® L. But this restriction is induced by a unique M invariant
hermitian form on S™(p_)@W_,_,, ®!, , namely h,. Thus we have related h,
and h,.

By Corollary 9.12 and Lemma 9.13, h, is positive definite. According to the
above relationship 4, is the “product” of h, on the factor S™(p_)J@W_,_,,, and
the positive definite M invariant hermitian form on [, got by restricting the one
on L. Hence h, is positive definite and Proposition 9.7 is proved.

In conclusion, by Proposition 9.6 and Proposition 9.7 g, is an irreducible
unitary representation. Hence g,, the dual of g, is also an irreducible unitary
representation.
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