e e et <

Pramana Vol. 3, No. 3, 1974, pp 143-155, © Printed in India,

Compressive energy of ions in ionic crystals
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A'bs-tract. ‘The possibility of writing the repulsive energy in the Born model of
bmar}./ lonic crystals as a sum of two separate contributfons from the two ions has
been investigated. Such an approach leads to two identities, one connecting the
lattice spacings of a family of ionic crystals and the other connecting their compres-
sibilities. These identities have been tested on the alkali halide crystals over a range
of pressures. The agreement is found to be quite satisfactory. Some further pre-
dictions with respect to crystals which exist as two polymorphs have also been tested.
In all cases, the deviations of the experimental values from the exact identities can
be traced to the fact that second neighbour repulsions in the crystals have been
neglected. It is hence concluded that individual compressive energies for ions in
ionic crystals is a very attractive possibility.

Keywords. Alkali halides; atomic compression; Born model; ionic crystals;
repulsive energy.

Introduction

The introduction of concepts like ionic radius, ionic polarisability, etc., that are
dependent on individual ions has proved of immense value in the development
of the theory of ionic crystals. In this context it seems relevant to ask whether
one could extend these ideas to more complicated properties like compressibility.
The concept of ionic compressibility would require two postulates: (g) the inter-
nal energy of an ion is a function of its size, and (b) the repulsive energy
in an ionic crystal arises from the increase in the internal emergy of the
ions when they are compressed. The repulsive energy would then have to be
written as the sum of contributions from the two ions as in eq. (1) below. This
is a classical picture which would not get theoretical support from the quantum
mechanical approach where repulsion is caused by the overlap of neighbouring
electron clouds. But then one must note that even the concept of the ionic radius
for which there is definite experimental evidence cannot really be justified from
the overlap theory. The full quantum mechanical treatment, in fact, leads to
very messy numerical computation which has only been carried out approximately
for a few compounds, and does not appear to lead to any physical insight. There
seems therefore to be some need for postulating empirical functions for the form
of the repulsive energy. Almost all earlier workers have tried either the function
A[/¥™ or b exp (— r/p) where r is the interionic distance and have succeeded to some
extent in explaining the behaviour of ionic crystals. In this paper, we investigate
the consequence of postulating a function of the type in eq. (1). All functions
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proposed are only attempted approxima'tions to the true repulsive functlgna.L 1:;10::—
ever, the function we have proposed, .lf founfi acccsptabl.e3 1.1as som? a \t'hl Cgm.-
Firstly, this would directly lead to a kind .of inverse a.ddltwlty. rule for :1- om-
pressibilities of ions. Further, if we .c‘ons-lder a family of b_mary 1§n1c a);l als
made up of all combinations of m positive 1ons :'«md n negamye ions, gv gr:ai L
earlier approaches mentioneddabove yvouldlrec%ulri m;'z i‘iizttllgzss to be determ .
t alternative would require only (m + » . . .
thinlil:issegaper, we test this postulate [(eq. (1)] on the al.kah halides. Thde lvafx:(x)iu;
attractive forces between the ions have bee-n treated as in the Born model [
good review of the Born model, see Tosi (1964)]. . ol
Just from the functional form of the repulsive potentla.l assumc.sd, we ared able
to derive two identities which have to be satisﬁe-d by_ cf'ertam experimentally etel:-
minable quantities in sets of crystals. These .1dent1t1es.have.been tested on the
alkali halides. The agreement appears to be satisfactory 1.mp1y1ng.tl.1&.1t the concep}:‘
of individual compressive energy for ioms is an attractive possibility worthy o
further investigation and evaluation.

Theory

In this paper we investigate the possibility of the repulsive energy being completely
separated out into the sum of contributions from the two ioms. Thus

Wiep = W (ry) + W_(ro) (1)

where, W, and W_ are functions of r,. and r_, the radii of the two ions. The func-
tions W, and W_ are presumed to be unique for a given ion and hence transferable
from one crystal to another. Geometrically, we can visualize an ion as a soft
fluffy sphere, the repulsive energy being produced by compression and distortion
at the points of contact with its neighbours. The repulsive energy in this formu-
lation does not depend on the agency causing the distortion. It should be noted
that in the present formulation 7. and r_ are variables which can vary for a given
ion from crystal to crystal and also with pressure in the same crystal.

To keep the discussion as general as possible, we do not specify any parti-

cular functional form for W, and W_. We thus write the total lattice energy per
molecule of a binary ionic crystal as

2 C D
W= 20— 5= S+ Walr) + W_ () &)

where the first three terms on the right hand side give respectively the Madelung
electrostatic energy, the van der Waals dipole-dipole interaction energy and the
van der Waals dipole-quadrupole interaction energy. As it stands, W is a function
of three variables—r, the nearest neighbour distance, r,, the radius of the positive
ion, and r_, the radius of the negative ion.
Now, in our geometrical picture of the crystal, the nearest neighbours are in
contact with one another, so that we immediately have the relation
r=rytro 3)
we hav? one further relation expressing the internal equilibrium
This arises from the minimisation of the energy of the crystal with

In addition,
of the lattice.
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respect to its internal co-ordinates r, and r_. Physically we can picture this as
the two ions pushing against each other and so adjusting their radii [subject always

to equation (3)] that the forces they exert on each other are balanced. This
requires the condition

AW, (ry) _ dW_(r)
dr+ - dr_ (4)

Relation (4) like relation (3) is always valid.

Because of relations (3) and (4), r,. and r_ are functions of . Thus, in equation
(2), W becomes a function of only r and we are justified in talking of total deriva-
tives of the type dW (r)/dr, d2W (r)/dr2, etc. Differentiating (2) with respect to
r and using relations (3) and (4), we then have

W) (r) =W/ (@) = & T AT T W =f (r) ®)

where for convenience in later discussion, we have called the function on the right
F(r). f(r)is a unique function of r for a given crystal though it is, in general,
different for different crystals. In the present picture of the crystal, r, and r_ are
perfectly meaningful physical parameters. The reason why it is necessary to con-
vert back into a description in terms of r is that the various quantities of interest
are experimentally determined only as functions of r. All the quantities in f(r)
can be calculated from experimental data as will be shown in the next section.
Hence, one can calculate the derivative of the two ionic repulsive functions. This
derivative varies with the lattice spacing as can be seen from (5), and hence for a
range of pressures, one gets a range of values for W' (r,) and W_' (r_).

Now suppose we consider the same ion occurring in two different crystals. To
fix ideas, let us say the positive ion is common to two crystals. In general, W,/
(r.) will not be the same for both the crystals. However, it is possible to find two
pressures P, and P, such that the value of f(r) is the same in both the crystals.
The function W.’ (r,), we have assumed, is a property of the ion alone and so is
the same in both crystals. Thus, if W.’ (r,) is a monotonic function of r,, we can
say that the ion has the same radius r,. in crystal 1 at pressure P; and crystal 2 at
pressure P,. This is somewhat similar to the original idea of Goldschmidt (1926)
and Pauling (1927) of assigning ionic radii except that in the present treatment,
the ionic radii are variables and so are equal in two crystals only when f (r) is the
same.

Now consider four ions A+, B¥, C-, D~ and the four crystals they form
A+C- A*D- B*C- B*D-
I II 11 v (6)

Suppose we consider these four crystals under such pressures that the value of
f(r) defined in (5) is the same for all four. Then by the above arguments, ion A*
has the same radius in crystals I and IL, ion B* the same radius in crystals III and
1V, etc., and it is easily shown that

(ry+ 7)) — (rn + Fm) = (e + ro + @@ +r>— (> +ro
— (2 +ro)=0 (7

Equation (7) is an identity among the lattice spacings of any four crystals of the
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type (6) considered under conditions of equal F(). Eq. (7) follows from the
original assumption of additivity of separate ionic repulsive energies which we have
seen leads to the concept of uniqueness of ionic radius under identical forces,
regardless of the actual crystal considered. Hence a verification of (7) may be
considered a justification of the assumption.

Now, differentiating (5) with respect to 7 once again, we have

S « L w o dr__ dEW | 2ae® | 42C 720
W (rd) 7z = W) g7 = dre + =5 s T e (8
Differentiating (3) with respect to r and solving with the help of (8), we have
dr.. W_ " (r_
() (9)

dr ~ W ) = W ()

and a similar expression for dr_/dr. Substituting back in (8) and inverting the
whole equation, we have

1 1 1
WGy T WD) dW | dae?  42C 12D % ) (10)
dr2 ;,-3 + }"8 + rlO
where, _for convenience, we have called the function on the right g (). The left
hand.sade of (10) is again the sum of two terms each of which is exclusively the
function of one of the ions. Hence, exactly as before, if we consider four crystals
of the type (6) under conditions of equal values of f(r), we have

0+ g0t — {8 + 8y =0 an
g (r)i§; related to the compressibility through d2W/dr2 [egs (10) and (15)] and hence
(11) is e.ssent.ially an identity among the compressibilities of the crystals I to 1V.
The- ve_rlﬁcatlon of (11) may be considered another justification for the additivity
of ionic repulsive energies assumed in (1).

It should be noted that in eqs (7) and (11), the four crystals compared have
tf) be of thfa same crystal structure. This is an obvious precaution since the repul-
sive potential is a function of the co-ordination number. However, we could cor-
rect 'for the change in crystal structure by postulating that the rep:ﬂsive potential
is directly proportional to the number of nearest neighbours n, Z.e.,

F !.x- ] == g
Vi(ry) =nh (ry) (12)

:z?zz::uf: (r%_)hilss 2 unique function .for a given ion, independent of the crystal

ruety 1. Tt eems reaspnab?e in our geometrical picture of the repulsive
potential arising frorp the distortion and compression of the spherical ion at the
points of contact with its neighbours. Thus, if a crystal exists in two different

structures (at different pressures i
: , of course) having the ' 1
distance, then (12) implies that ) y same nearest neighbour

na fa(r) g (r) (13)
This is yet another result that can be tested.
It i '
should be mentioned that the results (7, (11) and (13) cannot be exact if

second neigh i
repulsion cgani%‘irbrepulsmns are also present. This is because second neighbour
€ separated into two functions of . and r_ alone, but depends
- >
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on the inter-ionic spacing r (= r+ 1+ r_). Thus,

_ the expression (2) for the lattic
encrgy does not include the contribution from ) =

second neighbour repulsion.

Results

~ The above identities, eqs (7), (11) and (13), have been tested for the alkali halides.

The experimental values for the calculations were taken from the following
sources. The room temperature atmospheric pressure lattice spacings were taken
from NBS (1953-1957). For variations of r with pressure, the compressibility
data of Vaidya and Kennedy (1971) were used. The van der Waals coefficients

C and D were taken from Mayer (1933). For dW/dr and 42 W/dr?, the Hildebrand
(1931) equations of state were used

=—p1 (14)
AR R IE )

where P is the pressure, V is the volume per molecule, T is the temperature, 8 is
the isobaric volume expansivity 1/ QV/2T), and K is the isothermal com-
pressibility — 1/V (0V/dP);. The room temperature, atmospheric pressure
values of the thermodynamic quantities were taken from Cubicciotti (1959, 1960,
1961). Since there are no experimental data at high pressures, the following
approximate relations were used:

Be = Bo E%I%, (16)
HC, +HCOIL-BHED, H£CDN, o

where Kp, the compressibility at pressure P was obtained from the PV data of
Vaidya and Kennedy (1971). Relations (16) and (17) were derived assuming that
the Griineisen’s constant y ( = VB/C,K) is independent of pressure. It should
be mentioned that the approximations (16) and (17) are not very important since
the corresponding terms in (14) and (15) are only in the nature of small correc-
tions.

Using the above values, the quantity f () was calculated as a function of pres-
sure for 15 alkali halides, viz., the chlorides, bromides and iodides of lithium,
sodium, potassium, rubidium and caesium. The fluorides were not included becaqse,
in many cases, sufficiently reliable high pressure data were not available. Taking

the crystals in groups of four as in (6), the quantity

Ar:(rl +r1v)—"(ru+rm) (18)
was calculated for a range of common value of f (r). The mean results are tabu-
lated in table 1. It is seen that { Ar) is not exactly zero as expecjted.- by eq. (7 bl..It
is invariably a small negative quantity. The significance of this is discussed in

the next section. The r.m.s. deviations of Ar, also given in table 1, are seen
to be of the order of 0-0020 A (r is of the order of 3 A).
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Table 1. Testing relation (7) among lattice spacings and relation (11) among com-
pressibilities for sets of alkali halides

Ar(A) A g (10-%cm?/erg)
Type of Combination of Alkali
structure Halides ( Ar) r.mn.s. (Ag) rums.
deviation deviation
NacCl LiCl, LiBr, NaCl, NaBr —0-0048 0-0010 -+0-134 0-002
LiCl, LiI, NaCl, Nal —0-0116 0-0012 +0-133 0-12
LiBr, LiI, NaBr, Nal —0-0064 0-0010 —0-121 0-15
NaCl NaBr, KCl, KBr —0-0147 0-0005 —0-310 0-021
NaBr, Nal, KBr, KI —0-0128 0-0008 —0-718 0-013
CsCl KCI, KBr, RbCl, RbBr —0-0065 0-0007 -+0-180 0-13
KCl, KI, RbCI, Rbl —0-0123 0:0010 —0-080 0-07
KBr, KI, RbBr, Rbl —0-0060 0-0003 —0-190 0-065
KCl, KBr, CsCl, CsBr —0-0121 0-0009 —0-169 0-204
KCl, KI, CsCl, Csl —0-0344 0-0019 +0-160 0-171
KBr, KI, CsBr, Csl —0-0213 0-0030 +0-329 0-083
RbCI, RbBr, CsCl, CsBr —0-0071 0-0023 —0-353 0-11
RbCl, RbI, CsCl, Csl —0-0208 0-0024 +0-180 0-084
RbBr, RbI, CsBr, Csl —0-0131 0-0041 +0-505 0-058

In a similar manner, at constant f(r), the quantity Ag given by

Ag Z{g(r)x_}'g(r)w}—{g(r)I1+g(r)111} (19)

was also calculated for the same groups of crystals. The mean results are tabu-
lated in table 1. The r.m.s. deviations of Ag are seen to be of the order of 0-15
X 10~%cm?/erg. (g is of the order of 5 x 10-% cm?/erg).

To get a better idea of the quantities entering in the calculations above, a few
sample tables and graphs are shown in Appendix 1.

Equation (13) was tested in the case of potassium and rubidium halides which
exist in a NaCl type structure (n, = 6) at low pressures and a CsCl type structure

Table 2. Testing relation (13) (ligancy effect) for potassium and
rubidium halides

nafy (r) nags (1)
nlfg (l‘) mgs (r)
Crystal ——
naf ()N LS./ mags ()N r.m.s.
Nufor)/  deviation \g, (),  deviation
KCi 0-026 0-002 0-895 0-005
KBr 0-894 0-003 0-905 0-025
KI 0-830 0-002 0-854 0-007
RbCl 0-974 0-001 0-986 0
-01
RbBr 0-948 .. 1-00 ’
Rbl 0-897 .. 0-939




Compressive energy of ions in ionic crystals : 149

(nn, == 8) at high pressures. The quantities nyf; (r)/nfs (r) and g, (r)fnyg, (r)
have been calculated for these crystals for a range of common values of 5 anldlthc
mean values are tabulated in table 2. The deviations of these quantities from the
expected value of 1'0 are discussed in next section.

Discussion of the results and effect of second neighbour repulsion

Ta!:»les 1 z_lnd 2 show that the relations (7), (11) and (13) are not exactly satisfied.
It is Qosmblc to explain the deviations as due to the effect of second neighbour
rc;?ulsxons which have been neglected in the above theory. The effect of second
neighbour repulsion is to increase the total repulsive potential and thus to shift
the equilibrium to larger inter-ionic distances. Whereas this effect is present in
all the crystals, the effect can be expected to be much larger in those cases where
the ions are of widely differing sizes. In table 1, the crystals have been arranged
so that crystal II has the largest disparity in the sizes of the ions. Thus, the
increase in r,, would be expected to be much larger than the increase in r,, ry,
or r,, and hence Ar is expected to be always negative, as indeed it is in table 1.
There are some further trends which strengthen the belief that second neighbour
repulsions might be responsible for the deviations. The deviations in Ar would
be expected to be greater where there is greater disparity in size between the lar-
gest and smallest ion in a group. This is verified in table 1 where Ar is larger
whenever Cl~ and - are compared than when CI~ and Br- or Br~ and I~ are com-
pared ; so too, Aris larger whenever K+ and Cs* are compared than when K+ and
Rb* or Rb* and Cs* are compared. Further, Ar is in general larger in CsCl type
structures than in NaCl type structures which is explained by the fact that second
neighbour distances are much smaller in the former type (r' = l-154r) than in
the latter (' = 1-414r).

The values of Ag in table |, however, do not show any systematic deviations.
The agreement with eq. (15) is fairly good — Ag which is the difference of two
quantities of the order of 10 is of the order of 0-2. It is not very obvious how
second neighbour repulsion will affect the function Ag (r) and so no explanation
of the deviations is attempted.

Considering the values calculated in table 2, it is seen that they deviate from the
theoretically expected value of 1-0. Again the deviations can be traced to-second
neighbour repulsion which increases f(r) and decreases g (), the changes being
more in CsCl type structures than in NaCl type structures (due to the reason dis-
cussed above). Thus, we expect all the quantities to be less than 1-0 and this is
so. Also, the deviations are proportional to the disparity in the sizes of the ions
as cxpected, being largest for KI and smallest for RbCl. '

As regards the sensitivity of the above tests, we can make the follow%ng remgrk.
[n calculating Ar, we take crystals I to IV at four pressures. The maximum diffe-
rence in pressure, viz., (P — Fp) Is about 10-25 kbar. We could determ}ne the
AP which has to be made on any of the pressures, say P, which will bring Ar
to the expected value of 0. Such a check is meaningfu.l only where the second
neighbour repulsion is minimum since the major deviations haw.a any way been
traced to it. Thus, if we consider the most favourable case of LiCl, LiBr, NaCl,
NaBr, (Py— P) is about 25 kbar whereas a change in P,, of — 1-5 kbar causes

P—2
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Ar to become 0. But, apart from this, the very fact that the deviations are so
systematic and are amenable to a consistent explanation is itself a pointer to the
plausibility of the approach taken in this paper.

Corrections for second neighbour repulsion

It is not possible to develop a theory with a general repulsive function with second
neighbour repulsions also included. However, an approximate correction has
been attempted as follows. In the repulsive potential of Tosi and Fumi (1964),
we note that there are two terms, one for nearest neighbour repulsion and the other
for next nearest neighbour repulsion. It is assumed here that this potential func-
tion does indeed describe how the two contributions are split up [there is no justi-
fication for this, since in the procedure of Tosi and Fumi (1964) it is only the
total function that has been made to fit the experimental data], Then egq. (5)
is modified to

Table 3. Testing relation (7) among lattice spacings and relation (11)
among compressibilities for sets of alkali halides after applying correction
for second neighbour repulsion.

Type Combination of Alkali Ar(A)
of Halides -
structure ( Ar) r.nm.s.
deviation

NaCl LiCl, LiBr, NaCl, NaBr 400127 0-0021
LiCl, Lil, NaCl, Nal +0-0210 0-0010
LiBr, LiI, NaBr, Nal —0-0150 0-0024
NaCl, NaBr, KCl, KBr —0-0003 0-0005
NaCl, Nal, KCl, KI +0-014 .o
NaBr, Nal, KBr, KI +0:0133 0-0013

CsCl KCi, KBr, RbCl, RbBr —0-0025 0-0008
KCl, KI, RDbBCI, Rbl +0-0050 0-0
KBr, KI, RbBr,Rbl +0-0074 0-0005

Table 4. Testing relation (13) (ligancy effect) for potassium and rubidium
halides after applying correction for second neighbour repulsion.

nyfy (r) nafy (1)
nfa(r) nyfa(r)
Crystals Crystals —
/nafL (NN T.m.s. / naf1 (1N I.m.s.
N\, fo(r)/  deviation N7ufa(r)/ deviation
KCl 1-06 0-0 RbC1 1-12
KBr 1-03 0-006 RbBr 1-08

KI 0:99 0-006 Rbl 1-04
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2
W) =Wy =S -2 0 80 e (20)
where dW,,.,/dr, the derivative of the second neighbour repulsive energy, is calcu-
lated from the potential of Tosi and Fumi (1964).

Table 3 shows the mean values of Ar calculated after applying this correction.
All the combinations in table 1 could not be corrected since Tosi and Fumi (1964)
have not given their repulsive potential for the caesium halides. It is seen that
Ar in table 3 has become positive in most cases showing that the correction for
second neighbour repulsion is in the right direction. There is, however, an over-
correction in most cases which is probably due to our questionable procedure of
splitting the potential of Tosi and Fumi (1964) into two parts and attaching a physi-
cal significance to each.

Table 4 shows the values of nyf; (r)/mf, (r) calculated after applying the correc-
tion (20). Again it is seen that the values are pulled towards the expected value
of 1:0, although over corrected in some cases.

The above corrections for second neighbour repulsion are not meant as any
quantitative checks. Their chief function is to illustrate that corrections for second
neighbour repulsion do alter the values in tables | and 2 in the required direction.

Conclusion

Starting from the physically pleasing postulate [equation (1)] that the repulsive
potential is the sum of two contributions, one from each ion, we have derived
certain results which have been verified numerically for the family of alkali halides.
It has been possible to explain the deviations consistently in terms of second neigh-
bour repulsions. By putting in an explicit functional form for the individual ionic
repulsive potentials, it would then be possible to include second neighbour repul-
sions directly in the theory.

If we introduce two parameters for each repulsive function (as has been done
by most earlier workers) then, in the above approach, we would require sixteen
parameters to describe the set of alkali halides considered. For the same alkali
halides, the original approach of Born requires thirty parameters whereas the Tosi
and Fumi approach requires twenty—-three. Also, some of the above tests seem
to indicate that we might expect the same parameters to describe a crystal over
a range of pressures and even in two different structures. This means we could
do away with the idea of structure-dependent parameters introduced by Tosi and
Fumi (1962).

We should mention that recently Smith (1972) has postulated atom dependent
potentials to account for the repulsive potential of rare-gas atoms in binary colli-
sions, His approach seems to lead to better results in that problem.

Appendix

To facilitate a better appreciation of the quantities entering in the analysis, we
present here a few sample calculations and results. Table 5 shows the quantities
entering in the calculation of £ (r) and g (r) for the crystal LiCl at various pressures
from 0 to 45 kbar. Figure | shows f(r) plotted as a function of r for the four
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Table 5. Details of calculations of f(r) and g (r) for the crystal LiCl.

dw/dr  ae?r? 6c/r’  8D[r®*  [f(r)

P r K B
(kbar) A (10-22cm2. (107*deg™?)

dyne™t) (10-®erg cm™)

0 2-570 3.36 1-22 4-32 61-0 9-16 1-70 —67-5
0 2-545 2-90 1-08 0-456 62-2  9-80 1-86 —73-4
15 2-533 2:73 1-04 —1-37 62-8 10-1 1-94 —76-2
20 2-522 2-59 1-00 —3-21 63-4 10-4 2:02 —79-0
25 2-511 2-46 0-958 —5-04 63-9 10-8 2-10 —81-8
30 2-501 2-33 0-918 —6-82 64-5 11-1 2-17 —84-6
35 2-491 2-21 0-881 —8-58 65-0 11-4 2-25 —87-2
40 2-482 2-11 0-851 —10-3 65-4 11-7 233 —89-7
45 2-473 2-02 0-823 —12:0 65-9 12:0  2-40  —92-3

Tr(kK
P KI\oT d*w/dr? 2ae?/r? 42C/r8 72D/r°
(k bar) " _ﬂ(é{()l’] / ! i (lé:“(’;)nﬁ.
K\ 3P/ 10°erg cm™2 erg™2)
(109
0 —0-805 1-40 0-475 0-249 0-065 4-53
5 —0-759 1-49 0-482 0-260 0-068 4;35

10 —0-713 1-57 0-489 0-270 0-071 4-17

15 —0-686 1-65 0-496 0-280 0-075 4-00

20 —0-660 1-72 0-503 0-290 0-078 3-86

§ 25 —0-632 179 0-509 0-300 0-082 3-73

30 —0-606 1-87 0-515 0-310 0-085 3-60

35 —0-582 1-95 0-522 0-320 0-088 3-47

40 —0-562 9. .

202 0-527 0-330 0-092 3.37

45 —0-543 2-09 0-533 0-339 0-095 . 3.27
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Figure 1. Curves of f(r) vs r for LiCl, LiBr, NaCl and NaBr to test relation
(7) among their lattice spacings.
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Figure 2. Curves of f(r) vs g (r) for LiCl, LiBr, NaCl and NaBr to test relation
(1) among their compressibilities,
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crystals LiCl, LiBr, NaCl, NaBr. With respect to this figure we can distinguish
between our additivity of ionic radii and the classical approach of Pauling (1927)
and Goldschmidt (1926). In the classical approach, the comparison is made among
the lattice spacings corresponding to the circled points in figure 1 (which are the
atmospheric pressure values). In our approach on the other hand we are comparing
r-values at constant f(r) as for instance the set of points marked with a cross in
figure 1. Figure 2 similarly shows g(r) against f(r). Again, the additivity bet-
ween the four values of g () occurs at constant f(r), for instance at the points
marked with a cross. The above comparisons are made at various constant values
of f (r). Table 6 gives the results for the set of crystals LiCl, LiBr, NaCl, NaBr.
The mean values ( Ar), ( Ag) and their root mean square deviations have been

calculated as shown. It is these quantities for various sets of crystals that are
tabulated in table 1.
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