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We apply a quasi-model-independent strategy~‘‘ SLEUTH’’ ! to search for new highpT physics in'100 pb21

of pp̄ collisions atAs51.8 TeV collected by the DØ experiment during 1992–1996 at the Fermilab Tevatron.
Over 32emX, W1 jets-like, Z1 jets-like, and (l /g)( l /g)( l /g)X exclusive final states are systematically ana-
lyzed for hints of physics beyond the standard model. Simultaneous sensitivity to a variety of models predict-
ing new phenomena at the electroweak scale is demonstrated by testing the method on a particular signature in
each set of final states. No evidence of new highpT physics is observed in the course of this search, and we
find that 89% of an ensemble of hypothetical similar experimental runs would have produced a final state with
a candidate signal more interesting than the most interesting observed in these data.

DOI: 10.1103/PhysRevD.64.012004 PACS number~s!: 13.90.1i

I. INTRODUCTION

The standard model is an impressive theory, accurately
predicting, or at least accommodating, the results of nearly
all particle physics experiments to date. It is generally ac-
cepted, however, that there is good reason to believe that
hints of new physics are likely to appear at or around the
energy scale of 1 TeV.

Electroweak symmetry is broken in the standard model
when a scalar field~the Higgs field! acquires a vacuum ex-
pectation value. Since the quantum corrections to the renor-
malized mass squared of a scalar field grow as the square of
the heaviest energy scale in the theory~naively the Planck
scale, of order 1019GeV!, and since the mass of the standard
model Higgs boson is of the order of a few hundred GeV, a
fine-tuning at the level of 1 part in 1016 appears to be re-
quired to keep the Higgs boson mass at the electroweak
scale.

Two of the most popular solutions to this hierarchy prob-
lem are supersymmetry@1# and strong dynamics@2#. In their
most general form these classes of models are capable of
‘‘predicting’’ any of many different signatures, depending
upon the values that are chosen for the model’s parameters.
Previous searches for these signals have fought to strike a
balance between the simultaneous desires to assume as little
as possible about the signal and yet achieve ‘‘optimal sensi-
tivity’’ to more specific signals. These are necessarily con-
tradictory objectives.

Many new phenomena have been predicted in addition to
those resulting from these proposed solutions to the hierar-
chy problem. Among them are leptoquarks, proposed in an
attempt to explain the relationship between quarks and lep-
tons in the standard model and appearing in many grand
unified theories; composite quarks and leptons, in case the
‘‘fundamental’’ particles of the standard model turn out not
to be fundamental at scales&10218 meters; a fourth genera-
tion of quarks or leptons; excited quarks and leptons, in anal-
ogy to the excited states of hadrons observed at much lower
energies; new heavy gauge bosons, arising from additional
gauge symmetries in models extending the SU(3)c
3SU(2)L3U(1)Y of the standard model; and many others.
Of course, nature may have other ideas. The Collider Detec-
tor at Fermilab~CDF! and DØ Collaborations have per-
formed many searches on the data collected during Run I of
the Fermilab Tevatron, but have we looked in all the right
places?

Figure 1 diagrams the final states that are populated~i.e.,
that contain events! in the DØ Run I data. In this article we

undertake a systematic and quasi-model-independent analy-
sis of many of these exclusive final states, in the hope of
finding some evidence for physics beyond the standard
model.

In Refs. @3,4# we introduced a quasi-model-independent
search strategy~‘‘ SLEUTH’’ !, designed to systematically
search for new highpT physics at any collider experiment
sensitive to physics at the electroweak scale, and applied it to
all events in the DØ data containing one or more electrons
and one or more muons (emX). Considering again Fig. 1,
we see that the number of final states withinemX is a small
fraction of the total number of final states populated by the
DØ Run I data. If there is indeed a signal in the data, our
chances of finding it grow proportionally to the number of
final states considered.

In this article we present a systematic analysis of 32 of
these final states—those marked with a solid circle in Fig. 1.
A large number of unpopulated final states with additional

FIG. 1. A diagram showing the final states populated in DØ data
in Run I. Each row in a given column represents the final state
defined by the objects in that row; to reduce clutter, jets are repre-
sented by an open rectangle, rather than by a rectangle containing
‘‘ j.’’ Reading down the left column are the final statesemE” T ,
emE” Tj , emE” T 2 j , emE” T 3 j , W, Wj, W 2 j , and so on. Rows with
triangles~e.g.,W andWj! indicate final states analyzed previously
by DØ in a manner similar to the strategy we use here, but without
usingSLEUTH; rows with solid circles indicate final states analyzed
with SLEUTH. The remaining rows show populated final states not
discussed in this article.
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objects are analyzed implicitly; e.g.,eemE” T andemE” Tg are
among a host of unpopulated final states analyzed within the
context ofemX.

The notation we use to label final states may require ex-
planation. Electrons and muons are confidently identified
with the DØ detector on an event-by-event basis, but taus are
not; l and the word ‘‘lepton’’ will therefore denote an elec-
tron ~e! or a muon~m! in this article. We use the composite
symbol (l /g) to denote an electron, muon, or photon.X will
denote zero or more objects, and~nj! will denote zero or
more jets. Any inclusive final state@i.e., any state whose
label includes the symbolX or ~nj!# will refer to the physics
objects actually reconstructed in the detector. Thus
ee2 j (n j) denotes the set of all events with two electrons
and two or more jets. Any exclusive final state is defined
according to the rules in Appendix A. For example, since
these rules include a prescription for identifying aZ boson
from two charged leptons of the same flavor, we useee2 j to
denote the set of all events with two electrons and two jets
having mee substantially different fromMZ , while events
with two electrons and two jets havingmee'MZ fall within
the final stateZ 2 j .

We begin in Sec. II by providing a brief review of the
SLEUTH search strategy and algorithm, and describing a
slight change from the method advanced in Ref.@3#. In Sec.
III we discuss eight final states already analyzed by DØ in a
manner similar toSLEUTH, and motivate the final states to be
considered in this article. In Sec. IV we describe the analysis
of the W1 jets-like final states—events containing a single
lepton, missing transverse energy (E” T), and two or more
jets. In Sec. V we present the analysis of theZ1 jets-like
final states—events containing two leptons and two or more
jets. In Sec. VI we analyze the final states containing several
objects, at least three of which are either an electron, muon,
or photon@( l /g)( l /g)( l /g)X#. In Sec. VII we present the
combined results of all of these final states. Section VIII
contains our conclusions.

II. SLEUTH

In this section we provide for completeness a brief over-
view of theSLEUTH algorithm, which is described in detail in
Ref. @3#, and its application to the final statesemX.

A. Search strategy

We partition our data into exclusive final states, using
standard identification criteria to identify electrons, muons,
photons, jets, missing transverse energy, andW and Z
bosons. Although experimental realities will occasionally
force slight modifications to these criteria, a set of standard
definitions determineda priori is used wherever possible.

The production and subsequent decay of massive, non-
standard-model particles typically results in events contain-
ing objects with large transverse momentum (pT). For each
exclusive final state we therefore consider the small set of
variables defined by Table I. In order to reduce backgrounds
from QCD processes that produce extra jets from gluon ra-
diation, or two energetic jets through at-channel exchange

diagram, the notation(8pT
j is shorthand forpT

j i if the final

state contains only one jet,( i 52
n pT

j i if the final state contains

n>2 jets, and( i 53
n pT

j i if the final state containsn jets and
nothing else, withn>3. Leptons and missing transverse en-
ergy that are reconstructed as decay products ofW or Z
bosons are not considered separately in the left-hand column.
Thus the variables corresponding to the final stateWjj, for
example, arepT

W and (8pT
j ; pT

l and E” T are not used, even
though the events necessarily contain a lepton and missing
transverse energy, since the lepton and missing transverse
energy have been combined into theW boson. Since DØ’s
muon momentum resolution in Run I was modest, we define
(pT

l 5(pT
e for events with one or more electrons and one or

more muons, and we determine the missing transverse en-
ergy from the transverse energy summed in the calorimeter,
which includes thepT of electrons, but only a negligible
fraction of the pT of muons. When there are exactly two
objects in an event~e.g., oneZ boson and one jet!, their pT
values are expected to be nearly equal, and we therefore use
the averagepT of the two objects. When there is only one
object in an event~e.g., a singleW boson!, we use no vari-
ables, and simply perform a counting experiment. We expect
evidence for new physics to appear in the high tails of these
distributions.

B. Algorithm

Although the details of the algorithm are complicated, the
concept is straightforward. What is needed is a data sample,
a set of events modeling each background processi, and the
number of background eventsb̂i6db̂i from each background
process expected in the data sample. From these we deter-
mine the region of greatest excess and quantify the degree to
which that excess is interesting.

The algorithm, applied to each individual final state, con-
sists of seven steps.

~i! We begin by constructing a mapping from the
d-dimensional variable space defined by Table I into the
d-dimensional unit box~i.e., @0,1#d! that flattens the back-
ground distribution, and we use this to map the data into the
unit box. This change of variable space greatly simplifies the
subsequent analysis.

~ii ! Central to this algorithm is the notion of a ‘‘region’’
about a set of 1<N<Ndatadata points, defined as the volume
within the unit box closer to one of the data points in the set
than to any of the other data points in the sample. The ar-

TABLE I. A quasi-model-independently motivated list of inter-
esting variables for any final state. The set of variables to consider
for any particular final state is the union of the variables in the
second column for each row that pertains to that final state.

If the final state includes then consider the variable

E” T E” T

one or more charged leptons SpT
l

one or more electroweak bosons SpT
g/W/Z

one or more jets S8pT
j
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rangement of data points themselves thus determines the re-
gions. A region containingN data points is called an
N-region.

~iii ! Each regionR contains an expected number of back-

ground eventsb̂R , equal to the volume of the region3 the
total number of background events expected, and an associ-

ated systematic errordb̂R , which varies within the unit box
according to the systematic errors assigned to each contribu-
tion to the background estimate. We can therefore compute
the probabilitypN

R that the background in the region fluctu-
ates up to or beyond the observed number of events. This
probability is our first measure of the degree of interest of a
particular region.

~iv! The rigorous definition of regions reduces the number
of candidate regions from infinity to'2Ndata. Imposing ex-
plicit criteria on the regions that the algorithm is allowed to
consider further reduces the number of candidate regions.
~See Sec. II D.! Our assumption that new physics is most
likely to appear at highpT translates to a preference for
regions in a particular corner of the unit box; criteria are thus
constructed to define ‘‘reasonable’’ discovery regions. The
number of remaining candidate regions is still sufficiently
large that an exhaustive search is impractical, and a heuristic
is employed to search for regions of excess. In the course of
this search theN-region RN for which pN

R is minimum is
determined for eachN, andpN5minR(pN

R) is noted.
~v! In any reasonably sized data set, there will always be

regions in which the probability forbR to fluctuate up to or
above the observed number of events is small. The relevant
issue is how often this will happen in an ensemble ofhypo-
thetical similar experiments~hse’s!. This question can be
answered by performing these hse’s, i.e., generating random
events drawn from the background distribution and comput-
ing pN by following steps~i!–~iv!. The most interesting re-
gions selected in these hse’s will in most cases differ from
the regions selected in the data. Generating many such hse’s,
we can determine the fractionPN of hse~s! in which thepN
found for the hse is smaller than thepN observed in the data.

~vi! We defineP and Nmin by P5PNmin
5minN(PN), and

identify R5RNmin
as the most interesting region in this final

state.
~vii ! We use a second ensemble of hse’s to determine the

fraction P of hse’s in whichP found in the hse is smaller
than P observed in the data. The most important output of
the algorithm is this single numberP, which may loosely be
said to be the ‘‘fraction of hypothetical similar experiments
in which you would see something as interesting as what you
actually saw in the data.’’P takes on values between zero
and one, with values close to zero indicating a possible hint
of new physics. In computingP we have rigorously taken
into account the many regions that have been considered
within this final state.

The smallestP found in the many different final states
considered (Pmin) determinesP̃, the ‘‘fraction of hypotheti-
cal similar experimental runs~hser’s! that would have pro-
duced an excess as interesting as actually observed in the
data,’’ where an hser consists of one hse for each final state

considered.P̃ is calculated by simulating an ensemble of
hypothetical similar experimental runs, and noting the frac-
tion of these hser’s in which the smallestP found is smaller
thanPmin . The correspondence betweenP̃ andPmin is deter-
mined to zeroth order by the number of final states consid-
ered in which the expected number of background events is
*1, with ‘‘smaller’’ final states contributing first order cor-
rections.P̃ also takes on values between zero and one, and
the potential presence of new highpT physics would be in-
dicated by findingP̃ to be small. The difference betweenP̃
andP is that in computingP̃ we account for the many final
states that have been considered.P̃ can be translated into
units of standard deviations (P̃@s#) by solving the unit con-
version equation

P̃5
1

A2p
E

P̃@s#

`

e2t2/2dt ~1!

for P̃@s# . A similar equation relatesP andP@s# .

C. eµX

In Ref. @3# we appliedSLEUTH to the emX final states,
using a data set corresponding to 10866 pb21 of integrated
luminosity. We summarize those results here. Appendix B 1
contains examples of the types of new physics that might be
expected to appear in these final states.

Events containing one or more isolated electrons and one
or more isolated muons, each withpT.15 GeV, are selected.
Global cleanup cuts are applied to remove events in which
there was activity in the Main Ring, the accelerator that feeds
the Tevatron, reducing the total number of events by 30%.
The dominant standard model and instrumental backgrounds
to this data set are the following:

~i! top quark pair production witht→Wb, and with both
W bosons decaying leptonically, one toen ~or to tn
→ennn! and one tomn ~or to tn→mnnn!;

~ii ! W boson pair production with bothW bosons decaying
leptonically, one toen ~or to tn→ennn! and one tomn ~or
to tn→mnnn!;

~iii ! Z/g* →tt→emnnnn; and
~iv! instrumental~‘‘fakes’’ !: W production with theW bo-

son decaying tomn and a radiated jet or photon being mis-
taken for an electron, orbb̄/cc̄ production with one heavy
quark producing an isolated muon and the other being mis-
taken for an electron@5#.

The numbers of events expected for the various samples and
data sets in the populated final states withinemX are given in
Table II.

Among the systematic errors in these and other final states
is an uncertainty in the modeling of additional radiated jets.
Our consideration of exclusive final states makes this error
more important than if inclusive final states were considered.
An uncertainty of'20% in the number of expected events,
obtained by comparing the jets radiated by various Monte
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Carlo programs, is added in quadrature to systematic errors
from other sources to obtain the total systematic error quoted
in Table II and elsewhere. Because final states are analyzed
independently, and because the definition ofP̃ depends only
on the smallestP found, we can, to first order, ignore the
correlations of uncertainties among different final states.

We demonstratedSLEUTH’s sensitivity to new physics by
showing that the method is able to find indications of the
existence ofWWandt t̄ production in these final states when
the backgrounds are taken to include onlyZ/g* →tt and
fakes. Figure 2 shows our sensitivity tot t̄ in an ensemble of
mock data samples when the backgrounds includeWW in
addition to Z/g* →tt and fakes. All samples withP̃@s#

.2.0 appear in the rightmost bin. We see thatSLEUTH, with
no knowledge of the top quark’s existence or characteristics,
findsP̃@s#.2.0 in over 25% of the mock samples.~For mock
samples containing onlyZ/g* →tt, fakes, andWW, the dis-
tribution is roughly Gaussian and centered at zero with unit
width.! After performing these sensitivity checks, we added
all known standard model processes to the background esti-
mate and searched for evidence of new highpT physics. The

result of this analysis is summarized in Table III. No evi-
dence of new physics is observed.

D. Region criteria

Use of SLEUTH requires the specification of criteria that
define the regions thatSLEUTH is allowed to consider. In the
analysis ofemX we imposed two criteria:AntiCornerSphere
(cA), which restricts the allowed region to be defined by
those data points greater than a distancer from the origin of
the unit box, wherer is allowed to vary, andIsolation (cI),
which requires that there exist no data points outside the
region that are closer thanj to any data point inside the
region, wherej51/(4Ndata

1/d ) is a characteristic distance be-
tween theNdata data points in thed-dimensional unit box.

For the analysis described in this article we useHyper-
planes (cH), a criterion defined but not used in Ref.@3#.
Hyperplanes is less restrictive than AntiCornerSphere, in the
sense that any region satisfying AntiCornerSphere will also
satisfy Hyperplanes. Hyperplanes has the advantage of al-
lowing regions that lie in the high tails of only a subset of the
variables considered. A regionR in a d-dimensional unit box
is said to satisfy Hyperplanes if, for each data pointp inside
R, one can draw a (d21)-dimensional hyperplane throughp
such that all data points on the side of the hyperplane con-
taining the point 1W ~the ‘‘upper right-hand corner of the unit
box’’ ! are insideR. An example of a region satisfying Hy-
perplanes is shown in Fig. 3.

We continue this Boolean criterion to the unit interval
@0,1# in order to ensure the continuity of the final result under
small changes in the background estimate. For each data
point i inside the candidate regionR and each hyperplanehi

FIG. 2. Distribution ofP̃@s# in an ensemble of mock experimen-
tal runs on the four exclusive final statesemE” T , emE” Tj , emE” T 2 j ,
and emE” T 3 j . The background includesZ/g* →tt, fakes, and

WW. The mock samples making up the distributions containt t̄ in
addition toZ/g* →tt, fakes, andWW.

TABLE II. The numbers of expected background events for the populated final states withinemX. The uncertainties inemX are smaller
than in the sum of the individual background contributions obtained from Monte Carlo simulations because of an uncertainty in the numbers
of extra jets arising from initial and final state radiation in the exclusive channels.

Data set Fakes Z→tt g* →tt WW t t̄ Total Data

emE” T 18.461.4 25.666.5 0.560.2 3.961.0 0.01160.003 48.567.6 39
emE” Tj 8.761.0 3.060.8 0.160.03 1.160.3 0.460.1 13.261.5 13

emE” T 2 j 2.760.6 0.560.2 0.01260.006 0.1860.05 1.860.5 5.260.8 5
emE” T 3 j 0.460.2 0.0760.05 0.00560.004 0.03260.009 0.760.2 1.360.3 1

emX 30.261.8 29.264.5 0.760.1 5.260.8 3.160.5 68.365.7 58

TABLE III. Summary of results on all final states withinemX

when all standard model backgrounds, includingt t̄ , are included.
We note thatall final states withinemX have been analyzed, in-
cluding ~for example! eemE” T and emE” Tg. All final states within
emX but not listed here are unpopulated and haveP51.00.

Data set P
emE” T 0.14
emE” Tj 0.45

emE” T 2 j 0.31
emE” T 3 j 0.71
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through i, we definedjhi
to be the distance between a data

point j lying outsideR and the hyperplanehi . This quantity

is taken to be positive ifj and the point 1W are on the same
side ofhi , and negative otherwise. Letting

u~x!5H 0, x,0,

x, 0<x<1

1, 1,x

, ~2!

we define

cR
H5)

i ¹R
u~12min

hi

max
j ¹R

djhi
/j!. ~3!

Loosely speaking, the introduction ofcR
H corresponds to wid-

ening the lines drawn in Fig. 3 into bands of widthj, choos-
ing cR

H51 if all data points ‘‘up and to the right’’ of these
bands are insideR, finding cR

H50 if there is a point ‘‘up and
to the right’’ that is not insideR, and choosingcR

H between 0
and 1 if there are one or more points not insideR lying on
the bands. Note thatcR

H reduces to the Boolean operator of
the preceding paragraph in the limitj→0, corresponding to
the squeezing of the bands back into the lines in Fig. 3.

We also impose the criterionConnectivity(cC) to ensure
connected regions, and the criterionReasonableSize(cR) to
limit the size of the regions we consider to that expected for
a typical signal and to reduce the computational cost of find-
ing the most interesting region. A regionR is said to satisfy
Connectivity if, given any two pointsa andb within R, there
exists a list of pointsp15a,p2 ,...,pn21 ,pn5b such that all
the pi are inR, and the 1-region aboutpi 11 shares a border
with the 1-region aboutpi . A region is said to satisfy Rea-

sonableSize if it contains fewer than 50 data points. These
criteria are summarized in Table IV.

In Ref. @3# we demonstratedSLEUTH’s ability to find indi-
cations oft t̄ in the emX final states using the criteriacAcI .
Figure 2 shows that the combinationcHcCcR ~solid line! per-
forms similarly to those criteria~dashed line! in this test.

III. CHARTED AND UNCHARTED TERRITORY

The DØ experiment@6# began collecting data atAs
51.8 TeV in 1992, and completed its first series of runs in
1996. These data have been carefully scrutinized by the DØ
Collaboration. Nonetheless, the incredible richness of these
data, which probe fundamental physics at the highest energy
scales currently achievable, allows for the possibility that
something there may yet remain undiscovered.

A. Final states already considered by DØ

Some portions of these data have been more comprehen-
sively scrutinized than others. In particular, there are eight
final states—those marked with triangles in Fig. 1—that DØ
has already analyzed in a manner similar to theSLEUTH pre-
scription.

FIG. 3. An example of a region satisfying Hyperplanes. The
boundary of the figure is the unit box; open squares represent data
points outside the regionR; solid squares represent data points in-
side the regionR. The three dashed lines indicate hyperplaneshi

~which are lines in this two-dimensional case! that can be drawn
through the points at (x,y) i5(0.34,0.96), ~0.74, 0.95!, and
~0.935, 0.515! with the property that all of the data points ‘‘up and
to the right’’ of hi are insideR.

TABLE IV. Summary of the region criteria imposed in our pre-
vious analysis ofemX ~above middle line! and those imposed in the
analyses described in this article~below middle line!. j
51/(4Ndata

1/d ) is a characteristic distance between theNdata data
points in thed-dimensional unit box.

Symbol Name A region satisfies this criterion if

cA AntiCornerSphere One can draw a sphere cen-
tered on the origin of the

unit box containing all data
events outside the region and

no data events inside the region.
cI Isolation There exist no data points

outside the region that are
closer thanj to any data

point inside the region.

cH Hyperplanes For each data pointp in-
sideR, one can draw a

(d21)-dimensional hyper-
plane throughp such that
all data points on the side

of the hyperplane containing

the point 1W are insideR.
cC Connectivity Given any two pointsa

andb within the region,
there exists a list of points
p15a,p2 ,...,pn21 ,pn5b

such that all thepi are in the
region andpi 11 is a neighbor

of pi .
cR ReasonableSize The region contains fewer

than 50 data points.
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In final states that contain only a single object~such as a
W or Z boson!, there are no nontrivial momentum variables
to consider, and theSLEUTH search strategy reduces in this
case to a counting experiment. In final states containing ex-
actly two objects~such asee, Zj, or Wg), the single momen-
tum variable available to us is the average~scalar! transverse
momentum of the two objects, assuming that both are suffi-
ciently central. DØ has analyzed eight final states in these
limiting cases. These analyses do not precisely follow the
SLEUTH prescription—they were performed beforeSLEUTH

was created—soP is not calculated for these final states.
Nonetheless, they are sufficiently close to our prescription
~and therefore sufficiently quasi-model-independent! that we
briefly review them here, both for completeness and in order
to motivate the final states that we treat in Secs. IV–VI.
Examples of the types of new physics that could be expected
to appear in a few of these final states are provided in Ap-
pendix B 2.

~a! 2 j . DØ has performed an analysis of the dijet mass
spectrum@7# and angular distribution@8# in a search for
quark compositeness. We note that the dijet mass and the
polar angle of the jet axis~in the center-of-mass frame of the
system! together completely characterize these events, and
that two central jets with large invariant mass also have large
averagepT . No compelling evidence of an excess at large jet
transverse momentum is seen in either case.

~b! W. The SLEUTH-defined W final state contains all
events with either: one muon and no second charged lepton,
or one electron, significant missing transverse energy, and
transverse mass 30,mT

en,110 GeV. TheSLEUTH prescrip-
tion reduces to a cross section measurement in this case. DØ
has measured the inclusiveW boson cross section@9#, and
finds it to be in good agreement with the standard model
prediction.

~c! eE” T . Events that contain one electron, no second
charged lepton, substantialE” T , and have transverse mass
mT

en.110 GeV belong to theeE” T final state. This final state
contains two objects~the electron and the missing transverse
energy!, so we consider the average objectpT , which is
approximately equal in this case tomT

en/2. DØ has performed
a search for right-handedW bosons and heavyW8 bosons in
79 pb21 of data@10#, looking for an excess in the tail of the
transverse mass distribution. No such excess is observed.

~d! Wj. In the two-object final stateWj, the average trans-
verse momentum of the two objects is essentiallypT

W , the
transverse momentum of theW boson. DØ has measured the
W bosonpT distribution@11#, and finds good agreement with
the standard model.

~e! Wg. Similarly, the transverse momentum distribution
of the photon inWgX events has been analyzed by DØ in a
measurement of theWWg gauge boson coupling parameters
@12#. No excess at largepT

g is observed.~The SLEUTH pre-
scription for defining final states is less well satisfied in DØ’s
corresponding measurement ofpT

g in ZgX events@13#.!
~f! Z. As in the case of theW final state, our prescription

reduces to a counting experiment in theZ final state. DØ has
published a measurement of the inclusiveZ boson cross sec-

tion @9#, and finds it to be in good agreement with the stan-
dard model prediction.

~g! ee. Events containing two electrons and nothing else
fall into the final stateee if the invariant massmee is outside
theZ boson mass window of~82,100! GeV. The single vari-
able we consider in this two-object final state is the average
scalar transverse momentum of the two electrons, which is
simply related to the invariant massmee for sufficiently cen-
tral electrons. DØ has analyzed the high mass Drell-Yan
cross section in a search for indications of quark-lepton com-
positeness with the full data set@14#, and has analyzed theee
invariant mass distribution in the context of a search for ad-
ditional neutral gauge bosons in a subset of those data@15#.
No discrepancy between the data and expected background
is observed.

~h! Zj. In the two-object final stateZj, the average trans-
verse momentum of the two objects is essentially the trans-
verse momentum of theZ boson. DØ’s published measure-
ment of the Z boson pT distribution @16# is in good
agreement with the standard model prediction.

B. Final states considered in this article

The decision as to which of the remaining final states
should be subjected to aSLEUTH analysis was made on the
basis of our ability to estimate the standard model and instru-
mental backgrounds in each final state, and the extent to
which a systematic analysis for new physics is lacking in
each final state. The final states we chose to analyze arranged
themselves into four ‘‘classes’’:emX, W1 jets-like final
states,Z1 jets-like final states, and (l /g)( l /g)( l /g)X. The
first of these classes has been analyzed in Ref.@3# and sum-
marized in Sec. II C. A systematicSLEUTH analysis of the
remaining three classes of final states is the subject of the
next three sections.

IV. W¿JETS-LIKE FINAL STATES

In this section we analyze theW1 jets-like final states—
events containing a single lepton, missing transverse energy,
and two or more jets. In Sec. IV A we describe the
eE” T 2 j (n j) andmE” T 2 j (n j) data sets and background esti-
mates, and in Sec. IV B we present the results. After this, we
feign ignorance of the heaviest quark in the standard model
and check the sensitivity of our method to top quark pair
production in Sec. IV C. A few of the many signals that
might appear in these final states are described in Appendix
B 3.

A. Data sets and background estimates

1. eE”T 2j(nj)

The eE” T 2 j (n j) data set@17# comprises 11566 pb21 of
collider data, collected with triggers that require the presence
of an electromagnetic object, with or without jets and miss-
ing transverse energy. Offline event selection requires: one
electron with transverse energypT

e.20 GeV and pseudora-
pidity uhdetu,1.1 or 1.5,uhdetu,2.5 @18#, E” T.30 GeV, and
two or more jets withpT

j .20 GeV anduhdetu,2.5. Effects of
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jet energy mismeasurement are reduced by requiring theE” T
vector to be separated from the jets byDf.0.25 rad ifE” T
,120 GeV. To reduce background from a class of events in
which a fake electron’s energy is overestimated, leading to
spuriousE” T , we reject events withpT

W,40 GeV. Events
containing isolated muons appear in a sample analyzed pre-
viously with this method (emX), and are not considered
here.

The dominant standard model and instrumental back-
grounds to theeE” T 2 j (n j) final states are from~i! W1 jets
production, withW→en; ~ii ! multijet production, with mis-
measuredE” T and one jet faking an electron; and~iii ! t t̄ pair
production, witht→Wb and with at least oneW boson de-
caying to an electron or to a tau that in turn decays to an
electron.

TheW1 jets background is simulated usingVECBOS @19#,
with HERWIG @20# used for fragmenting the partons. The
background from multijet events containing a jet that is misi-
dentified as an electron, and withE” T arising from the mis-
measurement of jet energies, is modeled using multijet data.
The probability for a jet to be misidentified as an electron is
estimated@21# to be (3.5060.35)31024. The background
from t t̄ decays into an electron plus two or more jets is
simulated usingHERWIG with a top quark mass of 170 GeV.
All Monte Carlo event samples are processed through the
DØ detector simulation based on theGEANT @22# package.

We estimate the number oft t̄ events in theW1 jets-like
final states to be 1866 using the measuredt t̄ production
cross section of 5.561.8 pb@23#. The multijet background is
estimated to be 2167 events, using a sample of events with
three or more jets withE” T.30 GeV. This is done by multi-
plying the fake probability by the number of ways the events
satisfy the selection criteria with one of the jets passing the

electronpT andh requirements. After the estimated numbers
of t t̄ and multijet background events are subtracted, the
number of events with transverse mass of the electron and
neutrino (mT

en) below 110 GeV is used to obtain an absolute
normalization for theW1 jets background.

Following theSLEUTH prescription, we combine the elec-
tron and missing transverse energy into aW boson if 30
,mT

en,110 GeV, and reject events withmT
en,30 GeV. The

expected numbers of background events for the exclusive
final states within thiseE” T 2 j (n j) sample are provided in
Table V. The uncertainties quoted in the number of expected
background events in this article include both systematic and
statistical sources.

2. µE” T 2j(nj)

The mE” T 2 j (n j) data set @24# corresponds to 94
65 pb21 of integrated luminosity. The initial sample is com-
posed of events passing any of several muon1jets triggers
requiring a muon withpT

m.5 GeV within uhdetu,1.7 and one
or more jets withpT

j .8 GeV anduhdetu,2.5. Using standard
jet and muon identification criteria, we define a final sample
containing one muon withpT.25 GeV anduhdetu,0.95, two
or more jets withpT

j .15 GeV anduhdetu,2.0 and with the
most energetic jet withinuhdetu,1.5, and missing transverse
energyE” T.30 GeV. Because an energetic muon’s momen-
tum is not well measured in the detector, we are unable to
separate ‘‘W-like’’ events from ‘‘non-W-like’’ events using
the transverse mass, as we have done above in the electron
channel. The muon and missing transverse energy are there-
fore always combined into aW boson.

The dominant standard model and instrumental back-
grounds to these final states are from~i! W1 jets production
with W→mn; ~ii ! Z1 jets production withZ→mm, where

TABLE V. Expected backgrounds to theeE” T 2 j (n j) final states. The final states labeled ‘‘W(→eE” T)’’ have mT
en,110 GeV; the final

states labeled ‘‘eE” T’’ have mT
en.110 GeV. We have extrapolated our background estimates to final states with five or more jets. Berends

scaling and the data in this table suggest that a factor of'7 in cross section is the price to be paid for an additional radiated jet with
transverse energy above 20 GeV.

Final state W1 jets QCD fakes t t̄ Total Data

eE” T 2 j 6.761.4 3.360.9 1.760.6 11.661.7 7
eE” T 3 j 1.060.4 0.4860.22 1.060.4 2.560.6 5
eE” T 4 j 0.1560.11 0.3860.19 0.2660.09 0.8060.24 2
W(→eE” T) 2 j 334651 12.062.6 4.061.4 350651 387
W(→eE” T) 3 j 5769 3.460.9 6.062.1 6669 56
W(→eE” T) 4 j 5.961.3 1.160.4 3.961.4 10.961.9 11
W(→eE” T) 5 j 0.860.3 0.1960.12 0.7360.26 1.860.4 1
W(→eE” T) 6 j 0.1260.06 0.03060.015 0.1060.04 0.2560.07 1

TABLE VI. Expected backgrounds for theW(→mE” T) 2 j (n j) final states.

Final state W1 jets Z1 jets WW t t̄ Total Data

W(→mE” T) 2 j 48615 1.660.4 0.560.3 0.4260.14 50615 54
W(→mE” T) 3 j 1063 0.2760.08 0.4160.26 0.5860.20 1163 11
W(→mE” T) 4 j 2.861.3 0.02260.011 - 0.6160.21 3.561.3 4
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one of the muons is not detected;~iii ! WW pair production
with oneW boson decaying to a muon or to a tau that in turn
decays to a muon; and~iv! t t̄ pair production witht→Wb
and with at least oneW boson decaying to a muon or to a tau
that in turn decays to a muon.

Samples ofW1 jets andZ1 jets events are generated us-
ing VECBOS, employing HERWIG for parton fragmentation.
Background due toWW pair production is simulated with
PYTHIA @25#. Background fromt t̄ pair production is simu-
lated usingHERWIG with a top quark mass of 170 GeV. All
Monte Carlo samples are again processed through a detector
simulation program based on theGEANT package.

The expected backgrounds for the exclusive final states
within mE” T 2 j (n j) are listed in Table VI. These
W(→mE” T) 2 j (n j) final states are combined with the
W(→eE” T) 2 j (n j) final states described in Sec. IV A 1 to
form the W 2 j (n j) final states treated in Sec. IV A 3. For
consistency in this combination, we also requirepT

W

.40 GeV for theW(→mn) 2 j (n j) final states.

3. W 2j(nj)

Combining the results in Tables V and VI gives the ex-
pected backgrounds for theW 2 j (n j) final states shown in
Table VII. We note the good agreement in all final states
between the total number of background events expected and
the number of data events observed. This of course is due in
part to the method of normalizing theW1 jets background.
The agreement in the final states containing additional jets is
also quite good. A more detailed comparison between data
and background in the more heavily populated final states
~W 2 j , W 3 j , andW 4 j ! is provided in Appendix C.

Monte Carlo programs suitable for estimating back-
grounds to final states with many additional jets are not
readily available. It has been observed that the rate of a pro-

cess may be related to the rate of the process with an addi-
tional radiated jet by a multiplicative factor of 1/4–1/7, de-
pending upon thepT andh thresholds used to define a jet—
this phenomenological law is known as Berends scaling@19#.
We estimate that this factor is'1/5 for jets withuhdetu,2.5
and pT.15 GeV, and that it is'1/7 for jets with uhdetu
,2.5 andpT.20 GeV. This will be used to estimate particu-
lar background contributions to final states in which the ex-
pected background is&1 event.

B. Results

The results of applyingSLEUTH to the eE” T 2 j (n j) and
W 2 j (n j) data sets are summarized in Table VIII and in
Figs. 4 and 5. Recall from Sec. II B that the positions of the
data points within the unit box are determined by the back-
ground distribution, which defines the transformation from
the original variable space, in addition to the location of the
data points in that original space. We observe quite good
agreement with the standard model in theW1 jets-like final
states.

C. Sensitivity check: t t̄\ l¿ jets

In this section we checkSLEUTH’s sensitivity tot t̄ in the
final statesW 3 j , W 4 j , W 5 j , andW 6 j . After briefly put-
ting this signal into context, we testSLEUTH’s ability to find
t t̄ in the data, and then in an ensemble of mock experiments.

In 1997 DØ published a measurement of the top quark
production cross section@23# based on events in the dilepton,

FIG. 4. The positions of the transformed data points in the final
stateseE” T 2 j , eE” T 3 j , andeE” T 4 j . The data points inside the re-
gion chosen bySLEUTH are shown as solid circles; those outside the
region are shown as open circles. For these final states the variables
pT

e , E” T , andS8pT
j are considered, and the unit box is in this case a

unit cube. The two-dimensional views shown here are the projec-
tions of that cube onto three orthogonal faces. Although not obvious
from these projections, the regions selected bySLEUTH do satisfy
the criteria of Table IV in the full three-dimensional space.

TABLE VII. Expected backgrounds to theW 2 j (n j) final states.

Final state Total Data

W 2 j 400653 441
W 3 j 77610 67
W 4 j 14.362.3 15
W 5 j 1.860.4 1
W 6 j 0.2560.07 1

TABLE VIII. Summary of results oneE” T 2 j (n j) andW 2 j (n j).

Data set P
eE” T 2 j 0.76
eE” T 3 j 0.17
eE” T 4 j 0.13
W 2 j 0.29
W 3 j 0.23
W 4 j 0.53
W 5 j 0.81
W 6 j 0.22
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l 1 jets, l 1 jets(/m), and ‘‘en ’ ’ channels, where ‘‘/m’’ indi-
cates that one or more of the jets contains a muon, and hence
is likely to be the product of ab quark. Nineteen events with
no b-quark tag are observed inl 1 jets ~nine events in the
electron channel and ten events in the muon channel! with an

expected background of 8.761.7. An additional 11 events
are observed with ab-quark tag~five events in the electron
channel and six events in the muon channel! with an ex-
pected background of 2.560.5 events. Three or more jets
with pT.15 GeV are required in both cases. The number of
events observed in all four channels is 39 with an expected
background of 1362.2 events. The probability for 1362.2 to
fluctuate up to or above 39 is 631027, or 4.8 standard de-
viations. In thel 1 jets channel alone, the probability that
8.761.7 fluctuates to the 19 events observed is 0.005, corre-
sponding to a ‘‘significance’’ of 2.6s. The importance of
b-quark jet tagging to the top discovery putsSLEUTH at a
large disadvantage for this particular test of sensitivity, on
final states in which nob tagging has been applied.

Figures 6~a! and 6~c! show wheret t̄ Monte Carlo events
fall in the unit box in the final statesW 3 j and W 4 j . The
distribution of these events is quite diffuse in the case of
W 3 j , sincet t̄ is similar to the background in the variables
pT

W and(8pT
j in this channel. In theW 4 j final statet t̄ tends

to populate regions of large(8pT
j , but the signal is nearly

indistinguishable from background in the variablepT
W . A

check of SLEUTH’s ability to find t t̄ in the W 3 j (n j) final
states tests how wellSLEUTH performs when the signal
shows up in a subset of the variables we choose to consider.

Figures 6~b! and 6~d! show DØ data in the final states
W 3 j andW 4 j , when t t̄ is not included in the background
estimate used to define the transformation into the unit box.
Notice that the region chosen bySLEUTH in the W 3 j final
state in Fig. 6~b! is very similar to the region populated byt t̄
in Fig. 6~a!. In theW 4 j final state~d!, the region chosen by
SLEUTH is nearly the entire unit box. Comparison with Fig. 5
shows how the absence oft t̄ in the background estimate in
this figure affects the transformation from the original vari-

FIG. 5. The positions of the transformed data points in the final
statesW 2 j , W 3 j , W 4 j , and W 5 j . The data points inside the
region chosen bySLEUTH are shown as solid circles; those outside
the region are shown as open circles. The single event in theW 5 j
final state is in the lower right-hand corner of the unit square, hav-
ing S8pT

j 5300 GeV.

FIG. 6. Scatter plot of wheret t̄ Monte Carlo events fall in the
unit box in the final statesW 3 j ~a! and W 4 j ~c!. Although top
quark events appear in the high tails ofS8pT

j , the variablepT
W is not

particularly discriminating. The locations of the data points are
shown in ~b! and ~d!. The backgrounds are taken to include all
standard model processes except top quark pair production.

FIG. 7. Histogram ofPmin5min(PW 3 j ,PW 4 j ,PW 5 j ,PW 6 j ) for
an ensemble of mock experimental runs in which the backgrounds
include W1 jets and QCD events, and the mock samples include

~solid line! or do not include~dashed line! t t̄ in addition to the
expected background. All experimental runs withPmin.3s are in
the rightmost bin.
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able space into the unit box. ApplyingSLEUTH to these

data while continuing to feign ignorance oft t̄ , we find
PW 3 j50.12, PW 4 j50.18, PW 5 j50.37, and PW 6 j50.09.
Upon combining these results, we findPmin
5min(PW 3 j ,PW 4 j ,PW 5 j ,PW 6 j )50.09(1.3s).

Figure 7 shows a histogram ofPmin for a sample of mock
experimental runs in which the backgrounds includeW

1 jets and QCD events, and the mock samples includet t̄ in
addition to the expected background. The number of back-
ground andt t̄ events in the mock samples are allowed to
vary according to statistical and systematic errors. Note that
since four final states are considered, the distribution ofPmin
for an ensemble of experiments including background only
has a median of'1s. We see thatSLEUTH is able to find
indications of the presence oft t̄ in these final states, return-
ing Pmin@s#.3 in 30% of an ensemble of mock experimental
runs containingt t̄ events, compared to only 0.5% of an en-
semble of mock experimental runs containing background
only.

We conclude from this sensitivity check thatSLEUTH

would not have been able to ‘‘discover’’t t̄ in the DØ W
1 jets data, but that in 30% of an ensemble of mock experi-
mental runsSLEUTH would have foundPmin@s#.3.

V. Z¿JETS-LIKE FINAL STATES

In this section we analyze theZ1 jets-like final states. We
first describe the data sets and background estimates for the
dielectron1jets channels, and we then discuss the
dimuon1jets channels. After presenting our results, we
check the sensitivity of our method to the presence of first
generation scalar leptoquarks. Appendix B 4 describes sig-
nals that might appear in these final states.

A. Data sets and background estimates

1. ee2j(nj)

The ee2 j (n j) data set@21#, corresponding to an inte-
grated luminosity of 12367 pb21, is collected with triggers
requiring the presence of two electromagnetic objects. Of-
fline event selection requires two electrons passing standard
identification criteria with transverse momentapT

e.20 GeV
and pseudorapidityuhdetu,1.1 or 1.5,uhdetu,2.5, and two or
more jets withpT

j .20 GeV anduhdetu,2.5. At least one elec-
tron is required to have a matching track in the central track-
ing detectors and to satisfy ionization requirements in the
tracking chambers and transition radiation detector. For these
data the trigger energy threshold forces a transverse momen-
tum cut of 20 GeV, rather than theSLEUTH-preferred require-
ment of 15 GeV. We cut on a likelihood described in Ap-
pendix D in order to correctly identify any events with
significant missing transverse energy. Electron pairs are
combined into aZ boson if 82,mee,100 GeV, unless the
event contains significantE” T ~in which case it falls within
eeE” TX, discussed in this section! or a third charged lepton
@in which case it falls within (l /g)( l /g)( l /g)X, discussed in
Sec. VI#.

The dominant standard model and instrumental back-
grounds to this data set are~i! Drell-Yan1jets production,
with Z/g* →ee; ~ii ! QCD multijets, with two jets faking

electrons; and~iii ! t t̄ pair production witht→Wb and with
eachW boson decaying to an electron or to a tau that in turn
decays to an electron.

Monte Carlo samples for the Drell-Yan events are gener-
ated usingISAJET @26#. The Drell-Yan cross section normal-
ization is fixed by comparing the Monte Carlo events with
Z1>2 jets data in theZ boson region. Top quark events are
generated usingHERWIG at a top quark mass of 170 GeV

with all dilepton final states included. The DØ measuredt t̄
production cross section of 5.561.8 pb at a top quark mass
of 173.3 GeV was used@23#. The multijet background is
estimated from a sample of events with four or more jets in
which the probability for two jets or photons to be misiden-
tified as electrons is weighted by the number of jets in the
event that passed the electronpT and h requirements. This
misidentification probability is calculated from a sample of
events with three jets to be (3.5060.35)31024 for an elec-
tron with a reconstructed track and (1.2560.13)31023 for
an electron without a reconstructed track. The uncertainties
in these probabilities reflect a slight dependence on the jetpT
and h. The expected backgrounds for the exclusive final
states withinee2 j (n j) are listed in Table IX.

2. µµ 2j(nj)

The mm 2 j (n j) data set@27# corresponds to 9465 pb21

of integrated luminosity. The initial sample is composed of
events passing any of several muon1jets triggers requiring a
muon with pT

m.5 GeV within uhdetu,1.7 and one or more
jets with pT

j .8 GeV anduhdetu,2.5. Using standard jet and
muon identification criteria, we define a final sample contain-
ing two or more muons withpT.20 GeV anduhdetu,1.7 and
at least one muon in the central detector (uhdetu,1.0), and
two or more jets withpT

j .20 GeV anduhdetu,2.5.
We combine amm pair into aZ boson if the muon mo-

menta can be varied within their resolutions such thatmmm
'MZ and the missing transverse energy becomes negligible.
More specifically, we combine a muon pair into aZ boson if

TABLE IX. Expected backgrounds to theee2 j (n j),
eeE” T 2 j (n j), andZ(→ee) 2 j (n j) final states.

Final state Z/g* 1 jets QCD fakes Total Data

ee2 j 2064 12.261.8 3264 32
ee3 j 2.660.6 1.8560.28 4.560.6 4
ee4 j 0.4060.20 0.2460.04 0.6460.20 3
eeE” T 2 j 3.760.8 - 3.760.8 2
eeE” T 3 j 0.4560.13 - 0.4560.13 1
eeE” T 4 j 0.06160.028 - 0.06160.028 1
Z(→ee) 2 j 94619 1.8860.28 96619 82
Z(→ee) 3 j 12.762.7 0.2760.04 13.062.7 11
Z(→ee) 4 j 1.860.5 0.03460.006 1.860.5 1
Z(→ee) 5 j 0.2660.10 0.002560.0009 0.2660.10 0
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x5min
a,b

S 1/a21/pm1

d~1/pm1!
%

1/b21/pm2

d~1/pm2!
%

mab2MZ

GZ
%

E” Tab

d~E” T!
D

,20, ~4!

where d(1/p)50.18(p22)/p2
% 0.003 is the uncertainty in

the reciprocal of the muon momentum;d(E” T)
50.7 GeVASpT

j /GeV is the error on the missing transverse
energy measured in the calorimeter;mab and E” Tab

are the
muon pair invariant mass and missing transverse energy,
computed taking the muons to have scalar momentaa andb;
MZ and GZ are the mass and width of theZ boson; and%

means addition in quadrature. The cut ofx,20 is chosen so
that Z(→mm) is not the dominant background to the
mm 2 j (n j) final states.

The most significant standard model and instrumental
backgrounds to this data set are~i! Z1 jets production with
Z→mm, ~ii ! WWpair production with eachW boson decay-
ing to a muon or to a tau that in turn decays to a muon, and
~iii ! t t̄ pair production witht→Wb and with eachW boson
decaying to a muon or to a tau that in turn decays to a muon.

A sample ofZ1 jets events was generated usingVECBOS,
employing HERWIG for parton fragmentation. Background
due toWWpair production is simulated withPYTHIA. Back-
ground fromt t̄ pair production is simulated usingHERWIG

with a top quark mass of 170 GeV. All Monte Carlo samples
are processed through a detector simulation program based
on theGEANT package.

The expected backgrounds for the exclusive final states
within mm 2 j (n j) are listed in Table X. The
Z(→mm) 2 j (n j) final states are combined with the
Z(→ee) 2 j (n j) final states described in Sec. V A 1 to form
the Z 2 j (n j) final states treated in Sec. V A 3.

3. Z 2j(nj)

Combining the results in Tables IX and X gives the ex-
pected backgrounds for theZ 2 j (n j) final states, shown in
Table XI. The number of dimuon events in these tables is

significantly smaller than the number of dielectron events
due to especially tight identification requirements on the
muons.

Z/g* is the dominant background to nearly all final states
discussed in this section, although other sources of back-
ground contribute significantly when the dilepton mass is
outside theZ boson mass window. The agreement between
the total number of events expected and the number observed
in the data is quite good, even for final states with several
jets. While any analysis ofZ1 jets-like states will need to
rely to some degree on an accurateZ/g* 1 jets Monte Carlo
simulation, having a reliable estimate of the jet distributions
in such events is especially important when exclusive final
states are considered. We anticipate that this will become
increasingly important in the next Tevatron run. Differential
agreement between data and the expected background may
be seen by considering a comparison of various kinematic
quantities in Appendix C.

B. Results

The results of applyingSLEUTH to the Z 2 j (n j) and
l l 2 j (n j) data sets are summarized in Table XII and Figs. 8
and 9. Figure 8 shows the location of the data within the unit
box for those final states in which the two leptons are not
combined into aZ boson, while Fig. 9 displays the data for
those final states in which aZ boson has been identified.
LargeP’s are found for most final states, as expected. The
smallestP’s in this class of final states are observed in the
ee4 j and eeE” T 4 j final states. Although the number of
events is small, it is interesting to compare the number of
events observed in theZ12, 3, and 4 jet final states~show-

TABLE X. Expected backgrounds to theZ(→mm) 2 j (n j) andmm 2 j (n j) final states.

Final state Z1 jets WW t t̄ Total Data

mm 2 j 0.11260.029 0.2560.13 0.1460.05 0.5060.15 2
mm 3 j 0.00760.004 0.0660.04 0.06560.025 0.1360.05 0
Z(→mm) 2 j 2.260.4 - 0.05060.020 2.360.4 3
Z(→mm) 3 j 0.2460.05 - 0.01860.009 0.2660.06 1

TABLE XI. Expected backgrounds to theZ 2 j (n j) final states.

Final state Total Data

Z 2 j 98619 85
Z 3 j 13.262.7 12
Z 4 j 1.960.5 1
Z 5 j 0.2660.10 0

TABLE XII. Summary of results on theZ1 jets-like final states.

Data set P
ee2 j 0.72
ee3 j 0.61
ee4 j 0.04

eeE” T 2 j 0.68
eeE” T 3 j 0.36
eeE” T 4 j 0.06
mm 2 j 0.08
mm 3 j 1.00
Z 2 j 0.52
Z 3 j 0.71
Z 4 j 0.83
Z 5 j 1.00
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ing good agreement with expected backgrounds! with the
number of events observed in theee12, 3, and 4 jet and
eeE” T12, 3, and 4 jet final states. There is a small but statis-
tically insignificant excess in final states with four jets—we
find in Sec. VII that we expect to find at least oneP&0.04 in
the analysis of so many final states. Additionally, one of the
threeee4 j events has anee invariant mass barely outside
the Z boson mass window. The kinematics of the events in
the ee4 j andeeE” T 4 j final states are provided in Appendix
E.

C. Sensitivity check: Leptoquarks

As a sensitivity check in theZ1 jets-like final states we
consider a scalar, first generation leptoquark@28# of mass
mLQ5170 GeV, and assume a branching fraction to charged
leptons of b51.0. The cross section for the processqq̄
→LQLQ with these parameters is 0.54 pb. The overall effi-
ciency for this type of event is (2464)% @21#, including
trigger and object requirement efficiencies and geometric and
kinematic acceptances. If such a leptoquark were to exist, we
would expect 11.261.5 events of signal in the inclusive
sampleee2 jX, of which 5.960.8 events would fall in the
exclusive final stateee2 j , on a background of 3264 events.
Figure 10 shows the result ofSLEUTH applied to an ensemble
of mock experiments in this final state. We see thatSLEUTH

finds P larger than 3.5 standard deviations in over 80% of
these mock samples.

VI. „ l Õg…„ l Õg…„ l Õg…X

In this section we analyze the (l /g)( l /g)( l /g)X final
states. After describing the data sets and background esti-
mates, we provide the results obtained by applyingSLEUTH

to these channels. We conclude the section with a sensitivity
check @X8→( l /g)( l /g)( l /g)X# that is more general in na-
ture than those provided for theemX, W1 jets-like, andZ
1 jets-like final states above. Examples of a few of the many
signals that might appear in these final states are provided in
Appendix B 5.

A. Data sets and background estimates

The (l /g)( l /g)( l /g)X data set corresponds to an inte-
grated luminosity of 12367 pb21. Global cleanup cuts are
imposed as above. In this section we strictly adhere to stan-

FIG. 8. The positions of the transformed data points in the final
statesee2 j , ee3 j , ee4 j , andmm 2 j . The data points inside the
region chosen bySLEUTH are shown as solid circles; those outside
the region are shown as open circles.

FIG. 9. The positions of the transformed data points in the final
statesZ 2 j , Z 3 j , andZ 4 j . The data points inside the region cho-
sen bySLEUTH are shown as solid circles; those outside the region
are shown as open circles.

FIG. 10. Histogram ofP for an ensemble of mock experiments
in which the backgrounds includeZ/g* 1 jets and QCD fakes, and
the mock samples include leptoquark pair production~with an as-
sumed leptoquark mass of 170 GeV andb51! in addition to the
expected background. All samples withP.3.5s are in the right-
most bin.SLEUTH findsP larger than 3.5 standard deviations in over
80% of these mock samples.
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dard particle identification criteria. All objects~electrons,
photons, muons, and jets! are required to have transverse
momentum>15 GeV, to be isolated, to be within the fidu-
cial volume of the detector, and to be central. For electrons
and photons the fiducial requirement isuhdetu,1.1 or 1.5
,uhdetu,2.5; for muons it isuhdetu,1.7. For the case of had-
ronic jets our centrality requirement ofuhu,2.5 is more
stringent than the fiducial requirement ofuhdetu&4. We re-
quire electrons, photons, and muons to be separated by at
least 0.4 inDR5A(Dh)21(Df)2. E” T is identified as an
object if its magnitude is larger than 15 GeV. The selection
of events is facilitated by use of the database described in
Ref. @29#.

We make frequent use of the~mis!identification probabili-
ties determined for these identification criteria, which are
summarized in Table XIII.

1. eegX

The dominant background toeegX is the standard model
processZ/g* (→ee)g. We use a matrix element Monte
Carlo program@31# to estimate this background. Thepp̄
→Z/g* (→ee)g cross section, multiplied by our kinematic
and geometric acceptance, is 0.5060.05 pb. From Table
XIII, the probability for two true electrons and one true pho-
ton to be reconstructed as two electrons and one photon is
0.33. From these numbers we estimate the expected back-
ground from this process into theeegX final states to be
14.362.9 events. Of these, 7.661.5 events satisfy@~mee
,82 GeV ormee.100 GeV! and 82,meeg,100 GeV#. Fol-
lowing the prescription in Appendix A, such events are
placed in theZ final state, and are not considered in this
section.

A smaller background in these final states isZ1 jets pro-
duction, with the jet faking a photon. From Ref.@16#, we
expect 11006200 Z(→ee)1 jets events in our data; the
probability that a jet will fake a photon is given in Table
XIII. Using PYTHIA to simulateZ1 jets events, we expect
from this source 0.9960.27 events of background in

Zg, 0.1360.04 events ineeg, and 0.2360.06 events in
Zg j , plus smaller contributions toeeg j andeegE” T .

The dominant background to theeegE” T final state comes
from W(→en)Z(→ee), in which one of the three electrons
is reconstructed as a photon. TheWZ production cross sec-
tion in the standard model is calculated to be 2.5 pb@32#;
DØ’s geometric acceptance for these events is determined
using PYTHIA. Using the~mis!identification probabilities in
Table XIII, we estimate the contribution from standard
model WZ production to this final state to be 0.2360.10
events.

The numbers of expected background events in final
states with additional jets are obtained by multiplying by a
factor of 1/5 for each additional jet. The number of events
expected in each final state, together with the number of
events observed in the data, is given in Table XIV. We find
good agreement between the expected background and the
numbers of events observed in the data.

2. µµgX

The dominant background to themmgX final states is
standard modelZ/g* (→mm)g. The matrix element Monte
Carlo program used to estimate the backgrounds toeegX is
also used for this final state. The normalization is determined
by multiplying the number of expectedZ/g* (→ee)g events
by the square of the ratio of efficiency3acceptance for
muons and electrons. For muons, the efficiency3acceptance
is roughly 0.530.5; for electrons, the number is approxi-
mately 0.630.8. The number of expected events inmmg is
thus 3.960.9. No events are seen in this final state. The
probability of seeing zero events when 3.960.9 are expected
is 2.8%.

3. eggX

The dominant background toeggX is the standard model
processZ/g* (→ee)g, where one of the electrons is recon-
structed as a photon. From Table XIII and theZ(→ee)g
estimate in Sec. VI A 1, we determine the number of ex-
pected events in theegg final state to be 10.762.1 events.
Twelve eggX events are seen in the data, appearing in the
final states shown in Table XV. We model theegg back-
grounds with the Monte Carlo program used for theeegX
final states above.

Three of the events in theegg j final state havemeg1g2

595.8 GeV, meg1g2
585.9 GeV, andmeg1

597.9 GeV, re-

spectively, and are consistent withZg production with a ra-
diated jet. The invariant masses of the objects in the fourth

TABLE XIII. ~Mis!identification probabilities. The number at
~row i, columnj! is the probability that the object labeling rowi will
be reconstructed as the object labeling columnj.

e g

e 0.6160.04 @17# 0.2860.03 @30#

g 0.1660.016@30# 0.7360.012@30#

j 0.0003560.000035@17# 0.0012560.00013@17#

TABLE XIV. Expected backgrounds for theeegX final states.

Final state Zg Zj WZ Total Data

Zg 3.360.7 0.9960.27 - 4.360.7 3
eeg 2.160.4 0.1360.04 - 2.260.4 1
Zg j 0.8060.30 0.2360.06 - 1.0360.31 1
eeg j 0.5060.25 0.03360.009 - 0.5360.25 0

eegE” T 0.01060.005 0.02460.007 0.2360.10 0.2660.10 1
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event all lie substantially outside theZ boson mass window.
Lacking an adequateZ(→ee)g j Monte Carlo simulation,
we simply calculate the probability that the expected back-
ground fluctuates up to or above the observed number of
events in this final state. The single event in theegg 2 j final
state hasmeg1g2

592.4 GeV; this appears to be aZ boson
produced in association with two jets.

One event in this sample contains significantE” T in addi-
tion to one electron and two photons. In this eventmeg1

595.9 GeV, but the missing transverse energy in the event is
large, and directly opposite the electron inf. The transverse
massmT

en571.9 GeV, so this event falls in theWgg final
state. The dominant background to this final state is
W(→en)Z(→ee), in which two electrons are reconstructed
as photons; the number of such events expected in this final
state is determined to be 0.1160.05. W(→en)gg is a
slightly smaller but comparable background to this final
state, which we estimate using a matrix element Monte Carlo
program@33#. The total cross section forW(→en)gg with
all three detected objects in the fiducial region of the detector
and E” T.15 GeV is determined to be 0.7760.08 fb. The
number ofW(→en)gg events in our data is therefore ex-
pected to be 0.02660.010. Backgrounds fromWg j and
W 2 j , where the jets fake photons, are comparable but
smaller. This event will be combined in the next section with
any events containing one muon and two photons to form the
Wgg final state.

4. µE” TggX

The dominant backgrounds to themE” TggX final states,
like those from theeE” TggX final states, come fromWZand
from a W boson produced in association with two photons.
The number of expected events fromWZ is determined as
above to be 0.0560.02. The background from standard
model Wgg is estimated by multiplying the number of ex-
pected W(→en)gg events above by the ratio of
efficiency3acceptance for electrons and muons.

Adding the number of events expected from
W(→en)gg to the number of events expected from
W(→mn)gg, we find the total number of expected back-
ground events in theWgg final state to be 0.2160.08. No
events are seen in the muon channel, so the only event in this
final state is the event in the electron channel described
above.

5. gggX

The dominant background toggg is the standard model
processZ/g* (→ee)g, where both of the electrons are re-

constructed as photons. Taking the probability of an electron
faking a photon from Table XIII and using the number of
Z/g* (→ee)g events determined above, we find the number
of expected events in this final state from this process to be
2.560.5 events. The contributions from 3j , g 2 j , andgg j
are smaller by an order of magnitude.

Two events are seen in the data, both in the final state
ggg. One of these events has a three-body invariant mass
mggg5100.4 GeV, consistent with the expectation that it is
truly a Zg event. The other has a three-body invariant mass
mggg5153 GeV, but two photons may be chosen whose
two-body invariant mass ismgg590.3 GeV. This event also
appears to fit theZg hypothesis.

6. eeeX

The dominant background to the final stateeeeis again
Z/g* (→ee)g, where this time the photon is reconstructed
as an electron. The cross section quoted above for
Z/g* (→ee)g, folded with the~mis!identification probabili-
ties from Table XIII, predicts 2.661.0 events expected in the
final stateeee. One event is seen in the data. Theeeeinvari-
ant mass in this event is 87.6 GeV, consistent with the stan-
dard model processZ/g* (→ee)g, where the photon is re-
constructed as an electron.

7. µµµX

The dominant background tommm is standard modelWZ
production. We use theWZ production cross section above
and take our efficiency3acceptance for picking up all three
muons in the event to be roughly (0.530.5)350.02. The
total number of expected background events inmmm from
WZ production is thus 0.02060.010 events. Zero events are
seen in the data.

TABLE XV. Population of final states withineggX.

Final state Bkg Data

egg 10.762.1 6
W(→en)gg 0.1460.05 1

egg j 2.360.7 4
egg 2 j 0.3760.15 1

TABLE XVI. Population of final states with three like objects.

Final state Bkg Data

ggg 2.560.5 2
eee 2.661.0 1

TABLE XVII. Summary of results on the (l /g)( l /g)( l /g)X fi-
nal states.

Data set P
ggg 0.41
eee 0.89
Zg 0.84
Zg j 0.63
eeg 0.88

eegE” T 0.23
egg 0.66
egg j 0.21

egg 2 j 0.30
Wgg 0.18
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The only populated final states withingggX, eeeX, and
mmmX are ggg and eee; these are summarized in Table
XVI.

B. Results

Having estimated the backgrounds to each of these final
states, we proceed to applySLEUTH to the data. LargeP’s are
determined for all final states, indicating no hints of
new physics within (l /g)( l /g)( l /g)X. Table XVII summa-
rizes the results. We note thatall final states within
( l /g)( l /g)( l /g)X have been analyzed, including~for ex-
ample! eeggE” T and mmgg 2 j . All final states within
( l /g)( l /g)( l /g)X not listed in Table XVII are unpopulated,
and haveP51.00.

C. Sensitivity check:X8\„ l Õg…„ l Õg…„ l Õg…X

The backgrounds to the (l /g)( l /g)( l /g)X final states are
sufficiently small that a signal present even at the level of
one or two events can be significant. Due to the variety of
final states treated in this section and the many processes that
could produce signals in one or more of these final states, our
sensitivity check for this section is the general processX8
→( l /g)( l /g)( l /g)X, rather than a specific process such as
pp̄→x̃2

0x̃1
6→ l l l 8E” T . We ~pessimistically! take the kinemat-

ics of the final state particles to be identical to the kinematics
of the standard model background. In reality the final state
objects in the signal are expected to have significantly larger
momenta than those in the backgrounds, and the calculatedP
will be correspondingly smaller. With this minimal assump-
tion about the kinematics of the signal, the details of the
SLEUTH algorithm are irrelevant, andP is given on average
by the probability that the background fluctuates up to or
above the number of expected background events plus the
number of expected signal events.

The quantityP̃ obtained by combining theP’s calculated
in all final states is a very different measure of ‘‘signifi-
cance’’ than the measure familiar to most high energy physi-
cists. The fact that a ‘‘significance’’ of five standard devia-
tions is unofficially but generally accepted as the threshold
for a discovery results from a rough collective accounting of
the number of different places such an effect could appear.
We can better understand this accounting by first noting that
five standard deviations corresponds to a~one-sided! prob-
ability of 331027. We then estimate that there areat least
53103 distinct regions in the many variable spaces that are
considered in a multipurpose experiment such as DØ in
which one could realistically claim to see a signal. A prob-
ability of 1.531023, in turn, corresponds to three standard
deviations. We can therefore understand the desire for a ‘‘5s
effect’’ in our field to really be a desire for a ‘‘3s effect’’
~one time in one thousand!, after a rigorous accounting for
the number of places that such an effect might appear.

One of the advantages ofSLEUTH is that this rigorous
accounting is explicitly performed. The final output of
SLEUTH takes the form of single number,P̃, which is ‘‘the
fraction of hypothetical similar experimental runs in which
you would see something as interesting as what you actually

saw in the data.’’ The discussion in the preceding paragraph
suggests that findingP̃>3s is as improbable~if not more
so! as finding a ‘‘5s effect.’’

The number of final states that we consider, together with
the number of background events expected in each, defines
the mapping betweenPmin ~the smallestP found in any final
state! and P̃. For the final states that we have considered in
this article, this mapping is shown in Fig. 11. We see that
finding P̃>3s requires findingP>4.2s in some final state.

Let NY be the smallest integer for which the probability
that the background in the final stateY fluctuates up to or
above the expected backgroundb̂ plus NY is <1.5
31025 (4.2s). This is the number of events which, if ob-
served inY, would correspond to a discovery. This number
can be related to the most probable cross sectionsq of the
new processq into the final stateY through

sq5
NY

aqeYL , ~5!

FIG. 11. Correspondence betweenPmin andP̃ for the final states
we have considered.

TABLE XVIII. The number of signal eventsN required in some

of the final states within (l /g)( l /g)( l /g)X in order to findP̃>3s
~see the discussion in the text!. This number is pessimistic, as it
assumes that the signal is distributed identically to the backgrounds
in the variables of interest. Most tenable models predict events con-
taining final state objects that are significantly more energetic than
the backgrounds, and in this caseN decreases accordingly.

Final state b̂ N

eeg jE” T 0.05960.020 4
eeg 2 j 0.1060.05 4
Zg 2 j 0.1360.05 5
Zg 3 j 0.02560.010 3
Zg 4 j 0.004960.0020 3
eemE” T 0.1060.05 4
emm 0.04060.020 4
mmm 0.02060.010 3
Wgg 0.2160.08 5
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whereaq are the appropriate kinematic and geometric accep-
tance factors for the processq and the DØ detector,eY is the
probability that the objects in the true final stateY will be
correctly reconstructed~which can be determined using
Table XIII!, and L'85 pb21 is the effective luminosity
of the DØ data after application of global cleanup cuts.
The numbersNY for some of the final states within

( l /g)( l /g)( l /g)X are given in Table XVIII. ~These final
states are all unpopulated in the DØ data.! Even with our
pessimistic assumptions, using theSLEUTH strategy but set-
ting aside the sophisticatedSLEUTH algorithm, we see that a
discovery could have been made had even a few signal
events populated one of these channels.

VII. SUMMARY

Table XIX summarizes the values ofP obtained for all
populated final states analyzed in this article. Taking into
account the many final states~both populated and unpopu-
lated! that have been considered in this analysis, we findP̃
50.89 (21.23s). Figure 12 shows a histogram of theP’s
computed for the populated final states analyzed in this ar-
ticle, together with the distribution expected from a simula-
tion of many mock experimental runs. Good agreement is
observed.

Although no statistically significant indications of new
physics are observed in this analysis, some final states appear
to hold greater promise than others. The smallestP’s ~0.04
and 0.06! are found in the final statesee4 j and eeE” T 4 j .
The kinematics of the events in these final states are pro-
vided in Appendix E.

It is very difficult to quantify the sensitivity ofSLEUTH to
arbitrary new physics, since the sensitivity necessarily de-
pends on the characteristics of that new physics. We have
provided examples ofSLEUTH’s performance on ‘‘typical,’’
particular signatures. This function is served by the sensitiv-
ity checks provided at the end of each of Secs. IV–VI. In the
analysis of theemX data in Ref.@3#, our signal was firstWW

andt t̄ together, and then onlyt t̄ . This was a difficult signal
to find, for although bothWW and t t̄ cluster in the upper
right-hand corner of the unit box, as desired, we expect only
3.9WW events inemE” T ~with a background of 45.6 events!

and 1.8t t̄ events inemE” T 2 j ~with a background of 3.4
events!. We were able to consistently find indications of the

FIG. 12. Histogram of theP’s computed for the populated final
states considered in this article. The distribution agrees well with
the expectation.

TABLE XIX. Summary of results for populated final states. The
most interesting final state is found to beee4 j , with P50.04.
Upon taking into account the many final states we have considered

using the curve in Fig. 11, we findP̃50.89. The values ofP ob-
tained in these final states are histogrammed in Fig. 12, and com-
pared to the distribution we expect from an ensemble of mock ex-
perimental runs. No evidence for new highpT physics is observed
in these data.

Data set P
emX

emE” T 0.14 ~11.08s!

emE” Tj 0.45 ~10.13s!

emE” T 2 j 0.31 ~10.50s!

emE” T 3 j 0.71 ~20.55s!

W1 jets-like
W 2 j 0.29 ~10.55s!

W 3 j 0.23 ~10.74s!

W 4 j 0.53 ~20.08s!

W 5 j 0.81 ~20.88s!

W 6 j 0.22 ~10.77s!

eE” T 2 j 0.76 ~20.71s!

eE” T 3 j 0.17 ~10.95s!

eE” T 4 j 0.13 ~11.13s!

Z1 jets-like
Z 2 j 0.52 ~20.05s!

Z 3 j 0.71 ~20.55s!

Z 4 j 0.83 ~20.95s!

ee2 j 0.72 ~20.58s!

ee3 j 0.61 ~20.28s!

ee4 j 0.04 ~11.75s!

eeE” T 2 j 0.68 ~20.47s!

eeE” T 3 j 0.36 ~10.36s!

eeE” T 4 j 0.06 ~11.55s!

mm 2 j 0.08 ~11.41s!

( l /g)( l /g)( l /g)X
eee 0.89 ~21.23s!

Zg 0.84 ~20.99s!

Zg j 0.63 ~20.33s!

eeg 0.88 ~21.17s!

eegE” T 0.23 ~10.74s!

egg 0.66 ~20.41s!

egg j 0.21 ~10.81s!

egg 2 j 0.30 ~10.52s!

Wgg 0.18 ~10.92s!

ggg 0.41 ~10.23s!

P̃ 0.89 ~21.23s!
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presence ofWWandt t̄ in an ensemble of mock experiments,
but we would not have been sufficiently sensitive to claim a
discovery.

In the W1 jets-like final states we again choset t̄ for our
sensitivity check. This was both a natural sequel to the sen-
sitivity check in emX and a test ofSLEUTH’s performance
when the signal populates the high tails of only a subset of
the variables considered. We findPmin.3s in 30% of an
ensemble of mock experimental runs containingt t̄ events on
the final statesW 3 j , W 4 j , W 5 j , andW 6 j , compared with
only 0.5% of an ensemble of mock experimental runs con-
taining background only.

In theZ1 jets-like final states we considered a leptoquark
signal. This is in many ways an ideal signature—a relatively
large number of events~about six! are predicted, and the
signal appears in the high tails of both variables under con-
sideration.SLEUTH finds P.3.5s in over 80% of the mock
experiments performed.

Finally, in the final states (l /g)( l /g)( l /g)X we intro-
duced the mapping betweenPmin andP̃ and briefly discussed
its interpretation. The generic sensitivity check we consid-
ered @X8→( l /g)( l /g)( l /g)X# demonstrates the advantages
of considering exclusive final states. While the other sensi-
tivity checks rely heavily upon theSLEUTH algorithm, this
check shows that a careful and systematic definition of final
states by itself can lead to a discovery with only a few
events.

VIII. CONCLUSIONS

We have applied theSLEUTH algorithm to search for new
high pT physics in data spanning over 32 exclusive final
states collected by the DØ experiment during Run I of the
Fermilab Tevatron. A quasi-model-independent, systematic
search of these data has produced no evidence of physics
beyond the standard model.
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APPENDIX A: DEFINITIONS OF FINAL STATES

This appendix reviews the definitions of final states pro-
vided in Ref.@3#. The specification of the final states is based
on the notions of exclusive channels and standard particle

identification. We partition the data into exclusive final states
because the presence of an extra object~electron, photon,
muon, . . . ! in an event often qualitatively changes the prob-
able interpretation of the event and the variables that natu-
rally characterize the final state, and because using inclusive
final states can lead to ambiguities when different channels
are combined.

We attempt to label these exclusive final states as com-
pletely as possible while maintaining a high degree of con-
fidence in the label. We consider a final state to be described
by the number of isolated electrons, muons, photons, and jets
observed in the event, and whether there is a significant im-
balance in transverse momentum. We treatE” T as an object in
its own right, which must pass certain quality criteria. In Run
I DØ was unable to efficiently differentiate among jets aris-
ing from b quarks,c quarks, light quarks, and hadronic tau
decays. We consider final states that are related through glo-
bal charge conjugation to be equivalent inpp̄ or e1e2 ~but
not pp! collisions. Thus in principlee1e2g is a different
final state thane1e1g, but e1e1g and e2e2g together
make up a single final state. DØ lacked a central magnetic
field in Run I, so we choose not to distinguish between
e1/e2 or m1/m2. In events containing two same-flavor lep-
tons, we assume that they are of opposite charge.

We combine ane1e2 pair into aZ boson if their invariant
mass me1e2 falls within a Z boson mass window (82
<me1e2<100 GeV) and the event contains neither signifi-
cant E” T nor a third charged lepton. Am1m2 pair is com-
bined into aZ boson if the event can be fit to the hypothesis
that the two muons are decay products of aZ boson and that
theE” T in the event is negligible and if the event contains no
additional charged lepton. If the event contains exactly one
photon in addition to al 1l 2 pair and contains neither sig-
nificantE” T nor a third charged lepton, and ifml 1 l 2 does not
fall within the Z boson mass window, butml 1 l 2g does, then
the l 1l 2g triplet becomes aZ boson. An electron andE” T

become aW boson if the transverse massmeE” T

T is within aW

boson mass window (30<meE” T

T <110 GeV) and the event

contains no second charged lepton. A muon andE” T in an
event with no second charged lepton are always combined
into a W boson; due to our more modest muon momentum
resolution, no mass window is imposed. Because theW bo-
son mass window is so much wider than theZ boson mass
window, no attempt is made to identify radiativeW boson
decays.

APPENDIX B: EXAMPLES OF SIGNALS THAT MIGHT
APPEAR

In this section we provide a few examples of signals that
might have been discovered in the course of this analysis.
This discussion is provided to give the reader a taste of the
many processes that might appear in the final states we have
analyzed, and is by no means intended to be complete. The
possibility that the correct answer is ‘‘none of the follow-
ing’’ is one of the strongest motivations for pursuing a quasi-
model-independent search.
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1. eµX

In supersymmetric models~denoting the supersymmetric
particles as in Ref.@1#!, the processqq̄→Z/g* →x̃1

6x̃1
7

→emnnx̃1
0x̃1

0 can produce events appearing in theemE” T

final state. More generally, any process involving the pro-
duction of two charginos has the potential for producing a
final state containing an electron, a muon, andE” T . This final
state may also be reached through the leptonic decays of two
taus, obtained~for example! from the production of twot̃
particles that each decay totx̃1

0, or from the production of a
heavyZ-like object that couples strongly to the third genera-
tion. An anomalous correction to the standard modelWWg
vertex or anomalies involving the top quark could also ap-
pear in these final states.

2. Final states already considered

A sampling of the types of new physics that might appear
in a few of the final states described in Sec. III A is provided
here.

2 j . The dijet final state could contain hints of a massive
object ~such as an additional neutral gauge boson! produced
throughqq̄ annihilation and decaying back intoqq̄. It could
also contain indications that quarks are in fact composite
objects, interacting through terms in an effective Lagrangian
of the form (c/L2)qq̄q8q̄8, whereL*1 TeV is a compos-
iteness scale andc is a constant of order unity.

eE” T . Models containing symmetry groups larger than the
SU~3!C3SU~2!L3U~1!Y group of the standard model often
contain an additional SU~2! group, suggesting the existence
of a heavyW-like gauge boson (W8) that would decay into
the eE” T final state, with the transverse mass of the electron
and neutrino greater than that expected for the standard
model W. Production ofl̃ ñ decaying tol x̃1

0nx̃1
0 could also

produce events in this final state, as could production of
x̃1

6x̃2
0 decaying tolnx̃1

0nnx̃1
0.

ee. If both quarks and leptons are composite objects, there
will be four-fermion contact terms of the form
(c/L2)qq̄l 1l 2 in addition to the (c/L2)qq̄q8q̄8 terms pos-
tulated in the discussion of the 2j final state above. Such an
interaction would produce events with large transverse mo-
mentum, opposite-sign leptons, and should appear in theee
andmm final states. Some models that employ a strong dy-
namics to break electroweak symmetry predict the existence
of composite ‘‘techni-’’ particles, such as thevT , rT , and
pT , that are analogous to the compositev, r, andp mesons
that arise from confinement in QCD. The technirho (rT) and
techniomega (vT), if produced, will decay into anl 1l 2 pair
if their preferred decay mode to technipions (pT) is kine-
matically forbidden. Such events will appear as a bump in
the tail of theeeinvariant mass distribution and as an excess
in the tail of the electronpT distribution. Models containing
symmetry groups larger than that of the standard model typi-
cally contain a heavy neutral boson~generically called aZ8!
in addition to theW8 boson described above. If thisZ8 boson
couples to leptons, the processqq̄→Z8→ l l could produce a
signature similar to that expected from the decay of arT or
vT .

3. W¿ jets-like final states

A variety of new signals have been predicted that would
manifest themselves in theW1 jets-like final states—those
final states containing events with a single lepton, missing
transverse energy, and zero or more jets. A plethora of su-
persymmetric signatures could appear in these states. A
chargino and neutralino, produced fromqq̄ through an
s-channelW boson, can proceed to decay asx̃1

6→ lnx̃1
0 and

x̃2
0→qq̄x̃1

0, leaving an event that will be partitioned into ei-
ther theeE” T 2 j or W 2 j final state. Pair production of top
squarks, witht̃→bx̃1

6 and subsequent decays of the chargi-
nos toenx̃1

0 and qq8x̃1
0, will produce events likely to fall

into the eE” T 4 j or W 4 j final states. Depending upon the
particular model, even gluino decays can give rise to leptons.
Events with gluinos that are pair-produced and decay, one
into qq8x̃1

6 and the other intoqq̄x̃1
0, can also find them-

selves in theeE” T 4 j or W 4 j final state. Other possible de-
cays of the supersymmetric spectrum allow many more sig-
nals that might populate these final states.

The decay of arT
1 , produced byqq̄ annihilation, can

produce aW1 boson and apT
0, which in turn may decay to

bb̄ or gg. Such an event should appear in the high tails of the
pT

W andS8pT
j distributions in our analysis of theW 2 j final

state if the technipion is sufficiently massive. The same final
state may also be reached by the processqq̄→rT

0→W2pT
1

→ l 2ncb̄. A neutral color-octet technirho (rT8
0 ) produced by

qq̄ annihilation can decay to two technipions carrying both
color and lepton quantum numbers (pLQ), each of which in
turn decays preferentially into a massive quark and a massive
lepton. If the technipion is heavier than the top quark then
the decaypLQ→tt or tnt is kinematically allowed. Appro-
priate decays of theW bosons from the two top quarks leave
the event containing one high transverse momentum lepton,
substantialE” T , and several energetic jets.

The standard model contains three generations of quarks
and leptons, but there appears to be no fundamental reason
that nature should choose to stop at three. A massive charge
21/3 fourth-generation quark (b8), which could be pair-
produced at the Tevatron, would be apt to decay weakly into
a W boson and a top quark. Events in which one of the four
W bosons then decays leptonically will result in a final state
containing one lepton, substantial missing transverse energy,
and many jets.

Leptoquarks, a consequence of many theories that attempt
to explain the peculiar symmetry between quarks and leptons
in the standard model, could also be pair-produced at the
Tevatron. If their branching ratio to charged leptonsb50.5
then the pair will decay tolnqq̄ 50% of the time, resulting in
events that will be classified either aseE” T 2 j or W 2 j .

Models invoking two Higgs doublets predict a charged
Higgs boson that may appear in occasional decays of the top
quark. In such models a top quark pair, produced byqq̄ or gg

annihilation, can decay intoH1bW2b̄. Depending upon the
mass of the charged Higgs particle, it may decay intoW1bb̄,
cs̄, or t1n. Appropriate decay of theW boson~s! in the
event will result in the event populating one of theW 2 j (n j)
final states. Other predictions abound.
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4. Z¿ jets-like final states

Just as in theW1 jets-like final states, there are a host of
theoretical possibilities for new physics in theZ1 jets-like
final states. Although some of these processes involve the
production of two same-flavor, opposite-sign leptons via the
production of a standard modelZ boson, many others in-
volve particles that decay to leptons of different flavor or
with the same charge. These different possibilities typically
are partitioned into different final states according to our pre-
scription: events that contain leptons of different flavor
~those withinemX! are considered in Sec. II C, events con-
taining leptons of similar charge~e.g., ane1e1 2 j event!
would in principle be partitioned into different final states
than events containing leptons of opposite charge~e.g., an
e1e2 2 j event! if DØ distinguished electron charge, and
events in which the leptons have an invariant mass consistent
with the hypothesis that they are the decay products of aZ
boson are partitioned into different final states than those
with a dilepton invariant mass outside theZ boson mass
window.

Models containing supersymmetry and imposing conser-
vation of R parity predict signatures containing substantial
missing transverse energy. Such events might therefore
populate theeeE” T 2 j (n j) or mmE” T 2 j (n j) channels. Final

state leptons may be obtained in supersymmetric models
from the decays of neutralinos~which can produce two
same-flavor, oppositely charged leptons!, or charginos or
sleptons~which decay into a single charged lepton and miss-
ing transverse energy!. The processqq̄8→W* →x̃1

6x̃2
0, with

subsequent decay of the chargino toqq8x̃1
0 and the neu-

tralino to l 1l 2x̃1
0, results in an event with two same-flavor,

opposite-sign leptons, two jets, and missing transverse en-
ergy, and would appear in oureeE” T 2 j or mm 2 j final states.
Events in which gluinos are pair-produced and decay viag̃
→qq8x̃1

6 will appear in theeeE” T 4 j andmm 4 j final states
when the gaugino decays tolnx̃1

0. Pair production of scalar

top quarks (qq̄/gg→g→ t̃ t̃ * ) that decay viat̃→bx̃1
6 and

x̃1
6→ lnx̃1

0 again produce events that populate theeeE” T 2 j
andmm 2 j final states, in addition to theemE” T 2 j final states
already considered. IfR parity is violated, then supersym-
metric signals could populate final states without missing
transverse energy. Pair production of gluinos decaying to
c̄c̃L could produce events that land in theee4 j final state if
the R-parity-violating decayc̃L→e1d is allowed.

Color-octet models predict the existence of a color-octet
technirho, which can decay topLQpLQ . These technipions
decay preferentially to massive particles, like the color-
singlet pT , but their decay products will carry both color
and lepton quantum numbers. Events in which eachpLQ
decays to ab quark and at lepton will populateeeE” T 2 j and
mm 2 j final states, among others. Leptoquarks motivated by
grand unified theories could be pair-produced at the Tevatron
via qq̄→Z/g* →LQLQ, and might populate the final states
ee2 j andmm 2 j . Again, other examples abound.

5. „ l Õg…„ l Õg…„ l Õg…X

There are few standard model processes that produce
events in which the sum of the numbers of electrons, muons,
and photons is>3. The (l /g)( l /g)( l /g)X final states are
therefore quite clean, and the presence of even a few events
in any of these states could provide a strong indication of
new physics.

Supersymmetric models predict a variety of possible sig-
natures in these states. Those models in whichR parity is
conserved produce events with missing transverse energy in
addition to three (l /g) objects. Models in which the lightest
neutralino (x̃1

0) is the lightest supersymmetric particle~LSP!
usually produce final states without photons. This case oc-
curs for many models in which the supersymmetry is broken

TABLE XX. Kinematic properties of the most interesting events
seen in this analysis.

Run:event Object pT ~GeV! f h

ee4 j
85918:12437 e 58.0 0.74 20.42

e 37.9 0.30 21.51
j 89.0 3.94 20.10
j 26.0 4.20 20.98
j 21.3 2.55 21.25
j 21.2 2.07 0.77

90278:31411 e 53.1 4.15 0.00
e 33.6 0.28 21.85
j 80.2 0.78 1.24
j 39.9 4.46 1.81
j 34.0 2.94 21.55
j 24.2 2.92 0.05

92746:25962 e 64.6 1.99 0.99
e 40.6 5.72 0.55
j 26.8 3.84 22.13
j 25.6 4.83 0.49
j 20.0 5.73 21.12
j 21.5 1.86 2.62

eeE” T 4 j
89815:17253 e 87.7 5.93 1.00

e 22.5 4.19 1.33
E” T 59.8 0.97 -
j 69.8 2.42 21.33
j 53.1 2.88 0.36
j 52.2 4.27 21.30
j 25.4 5.81 20.18

TABLE XXI. Invariant masses~in units of GeV! of objects in
the most interesting events seen in this analysis.

Run:event mee mT
eE” T m 4 j

ee4 j
85918:12437 57.4 149
90278:31411 119.5 342
92746:25962 100.6 323
eeE” T 4 j
89815:17253 69.4 89.0 73.3 239

QUASI-MODEL-INDEPENDENT SEARCH FOR NEW . . . PHYSICAL REVIEW D64 012004

012004-21



in a hidden sector and communicated to the visible sector
through gravitational forces ~gravity-mediated super-
symmetry breaking!. Models in which the gravitino (G̃) is
the LSP often produce final states with photons from the
decay of the next-to-lightest supersymmetric particle via~for
example! x̃1

0→gG̃. This case, in turn, obtains for many
models in which the breaking of the supersymmetry is me-
diated by gauge fields~gauge-mediated supersymmetry
breaking!. For example, the production of a chargino and
neutralino throughqq̄ annihilation into a virtualW boson can
produce events in these final states through the decaysx̃1

6

→ lnx̃1
0 andx̃2

0→ l l x̃1
0 if the lightest neutralino is the LSP, or

through the decaysx̃1
6→enx̃1

0, x̃2
0→qq̄x̃1

0, and x̃1
0→gG̃ if

the gravitino is the LSP.
Charginos can be pair-produced in the reactionqq̄

→Z/g* →x̃1
6x̃1

7 . If they decay toenx̃2
0 and if x̃2

0 in turn
decays togx̃1

0, these events will populate the final state
eeggE” T . The production of slepton pairs can also result in
events falling into the final stateeeggE” T , since a typical
decay of a selectron in a model with gravity-mediated super-
symmetry breaking isẽ→ex̃2

0, with x̃2
0→gx̃1

0. If a pair of

sufficiently massive sleptons are produced, each can decay
into the corresponding standard model lepton and the
second-lightest neutralino (x̃2

0), which in turn could decay

into l l x̃1
0. A similar production of l̃ ñ can easily lead to a

final state with one fewer charged lepton, through the decay
chain ñ→ l x̃1

6 and x̃1
6→ lnx̃1

0. The standard model back-
grounds to such events, containing five or more charged lep-
tons and substantial missing transverse energy, are vanish-
ingly small. Events with four charged leptons and substantial
E” T could result from the decay of ax̃2

0x̃2
0 pair, in which each

x̃2
0 decays tol l x̃1

0. Even pair production of gluinos, each
decaying toqq̄x̃2

0, with one neutralino decaying toeex̃1
0 and

the other togx̃1
0, could produce events in these final states.

With this particular decay, such events would appear in the
final stateeeg 2 j .

If leptons exist in excited states several hundred GeV
above their ground state, just as hadrons exist in excited
states at energy scales a thousand times smaller, they could
be produced in the processqq̄→Z/g* → l * l * or qq̄8→W*
→ l * n* . The excited leptons can decay by emitting a pho-
ton, so thatl * → lg andn* →ng. Such events would popu-

FIG. 13. Comparison of background to data forW 2 j .

FIG. 14. Comparison of background to data forW 3 j .

FIG. 15. Comparison of background to data forW 4 j .

FIG. 16. Comparison of background to data forZ 2 j .
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late thel l gg and lE” Tgg final states. If the technirho exists
and is sufficiently massive, it can decay toWZ. Roughly 1
time in 50 both theW and Z bosons will decay to leptons,
producing al 1l 2l 8E” T event. More generally, any process
producing anomalous triboson couplings will affect the
( l /g)( l /g)( l /g)X final states, and~as we show in Sec. VI C!
our method is likely to be sensitive to such a signal.

APPENDIX C: COMPARISON OF DISTRIBUTIONS

In this appendix we show kinematic distributions of the
data and expected backgrounds for the most heavily popu-
lated final states that we have considered. Figures 13–15
show good agreement between data and the expected back-
ground in a number of distributions for the heavily populated

W1 jets-like final statesW 2 j , W 3 j , andW 4 j . Figures 16
and 17 serve the same function for the final statesZ 2 j and
Z 3 j .

APPENDIX D: E” T SIGNIFICANCE

We determine the significance of any missing transverse
energy in an event in theZ1 jets-like final states by comput-
ing a probability densityp(E” T). This is a true probability
density in the sense that, for a given event, the probability
that the actual missing transverse energy in that event is be-
tweenE” T andE” T1dE” T is given byp(E” T)dE” T . This density
is computed with a Monte Carlo calculation. For each data
event we generate an ensemble of events similar to the origi-
nal but with the energies of the objects smeared according to
their resolutions. Jets are smeared with a Gaussian of width
s580%AE, and electrons are smeared with a Gaussian of
width s520%AE ~a slight inflation of the measured resolu-
tion of 15%AE!, whereE is the energy of the object in GeV.
The component of the missing transverse energyE” Ta

along
the direction of the originalE” T is recalculated for each
smeared event, and the values that are obtained are histo-
grammed. The histogram is then smoothed, and the likeli-
hood

LE” T
5

p~E” Ta
!max

p~E” Ta
50!

~D1!

is calculated. Studies have shown that a cut of log10LE” T

.3 does an excellent job of retaining events with trueE” T
while rejecting QCD background.

APPENDIX E: KINEMATICS OF INTERESTING EVENTS

Table XX provides information about the events in the
most interesting final states seen in the course of this analy-
sis. Invariant masses of objects in these events are given in
Table XXI.
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@25# T. Sjöstrand, Comput. Phys. Commun.82, 74 ~1994!; we used
v5.7.

@26# F. Paige and S. Protopopescu, BNL Report No. 38304 1986;
we used v7.22 with CTEQ2L parton distribution functions.

@27# DØ Collaboration, B. Abbottet al., Phys. Rev. Lett.84, 2088
~2000!.

@28# J. C. Pati and A. Salam, Phys. Rev. D10, 275 ~1974!; H.
Georgi and S. Glashow, Phys. Rev. Lett.32, 438 ~1974!; also,
see J. L. Hewett and T. G. Rizzo, Phys. Rep.183, 193 ~1989!
and references therein.

@29# M. Bowen, G. Landsberg, and R. Partridge, inProceedings of
the International Conference on Computing in High Energy
Physics (CHEP 2000), edited by M. Mazzucato~INFN, Pa-
dova, 2000!, p. 478.

@30# DØ Collaboration, B. Abbottet al., Phys. Rev. Lett.81, 524
~1998!.

@31# U. Baur and E. L. Berger, Phys. Rev. D47, 4889~1993!.
@32# DØ Collaboration, S. Abachiet al., Phys. Rev. Lett.77, 3303

~1996!.
@33# U. Baur and T. Stelzer, Phys. Rev. D61, 073007~2000!.

V. M. ABAZOV et al. PHYSICAL REVIEW D 64 012004

012004-24


