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Abstract

We have analysed genetic variation at 23 microsatellite loci in a global sample of 16 ethnically and geographically diverse

human populations. On the basis of their ancestral heritage and geographic locations, the studied populations can be divided

into five major groups, viz. African, Caucasian, Asian Mongoloid, American Indian and Pacific Islander. With respect to the

distribution of alleles at the 23 loci, large variability exists among the examined populations. However, with the exception of

the American Indians and the Pacific Islanders, populations within a continental group show a greater degree of similarity.

Phylogenetic analyses based on allele frequencies at the examined loci show that the first split of the present-day human

populations had occurred between the Africans and all of the non-African populations, lending support to an African origin

of modern human populations. Gene diversity analyses show that the coefficient of gene diversity estimated from the 23 loci

is, in general, larger for populations that have remained isolated and probably of smaller effective sizes, such as the

American Indians and the Pacific Islanders. These analyses also demonstrate that the component of total gene diversity,

which is attributed to variation between groups of populations, is significantly larger than that among populations within

each group. The empirical data presented in this work and their analyses reaffirm that evolutionary histories and the extent of

genetic variation among human populations can be studied using microsatellite loci.

[Deka R., Shriver M. D., Yu L. M., Heidreich E. M., Jin. L., Zhong Y. et al. 1999 Genetic variation at twentythree microsatellite loci in

sixteen human populations. J. Genet. 78, 99±121]

Introduction

In recent years a large volume of genetic data has been

generated on a global scale in efforts to understand the

evolutionary histories and relationships of contemporary

human populations. This has primarily been facilitated by

the advent of PCR technology and molecular characteriza-

tion of a large number of polymorphic loci in the human

genome. Among these loci, the `microsatellites' or `short

tandem repeats' (STR), characterized by length variation in

tandem arrays of simple repeat sequences ranging from two

to five nucleotides, are the most abundant in the genome.
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Their associated hypervariability has been the key in the

success of the human genome project. Although these loci

are subject to recombination and high mutation rates

associated with a convergent nature of mutational process

(Shriver et al. 1993; Weber and Wong 1993; Di Rienzo et al.

1994), recent studies have shown that microsatellites are

also powerful tools in inferring evolutionary relationships

and demographic histories of human populations (Bowcock

et al. 1994; Deka et al. 1995a, 1995b, 1998; Jorde et al.

1995; PeÂrez-Lezaun et al. 1997; Shriver et al. 1997; Calafell

et al. 1998; Kimmel et al.1998) and in the determination of

parentage and relatedness of individuals (Chakraborty and

Jin 1993). In this context it should be noted that the stepwise

nature of mutations at microsatellite loci is amenable to

rigorous mathematical and simulation studies for assessing

evolutionary histories of populations (Kimmel and Chakra-

borty 1996; Kimmel et al. 1996; Shriver et al. 1997). In the

study reported here we have analysed genetic variation at 23

microsatellite loci in 16 diverse human populations to

examine the key issues of phylogenetic relationships of

modern human populations and the extent of genetic

diversity among these extant populations. In appendix we

have provided the allele frequency data at the examined

loci, which could be used by other investigators.

Materials and methods

Population samples: Blood or DNA samples were collected

from about 800 individuals representing 16 ethnically and

geographically diverse human populations. On the basis of

their ancestral heritage and geographical locations, these

populations can be divided into five major groups: (i)

Africans, represented in this study by two populations from

West Africa, namely Nigerian and Benin, both belonging to

the Hausa group of tribes from Nigeria, and a third popula-

tion from Brazil, whom we have named Brazilian Black; (ii)

Caucasians, represented by a German sample from northern

Germany, unrelated parents of the CEPH (Centre d'Etude

du Polymorphisme Humain) cohort, a sample of unrelated

whites from Brazil, the Brazilian White, and a caste

population from northern India, the Brahmin; (iii) Asian

Mongoloids, represented by a Chinese sample of Han

origin, a Japanese population from Osaka, and a tribal

population from northeast India, the Kachari; (iv) American

Indians, consisting of the Dogrib Indian from the Northwest

Territories of Canada, the Pehuenche Indian from southern

Chile, and the Cabecar from Costa Rica; (v) The Pacific

Islanders, represented by two groups of Samoans, American

and Western, drawn from villages distributed throughout

Table 1. Summary of the 23 microsatellite loci.

Locus Chromosomal Repeat motif CEPH reference genotypea

location 133101 133102

Dinucleotide repeats
D13S71 13q32-q33 CA 75/75 (17/17) 75/75 (17/17)
D13S118 13q14 CA 190/194 (17/19) 190/190 (17/17)
D13S121 13q31 CA 168/170 (20/21) 162/170 (17/21)
D13S122 13q31-q32 CA 87/97 (10/15) 87/107 (10/20)
D13S124 13q21 CA 185/191 (15/18) 185/185 (15/15)
D13S193 13q31-q32 CA 147/147 (22/22) 145/147 (21/22)
D13S197 13q31-q32 CA(GC)CA 97/97b 126/128
FLT1 13q12 CA 170/182 (16/22) 168/168 (15/15)
Trinucleotide repeats
PLA2A1 12q23-qter AAT 130/133 (14/15) 121/121 (11/11)
D20S473 20p13 ATA 181/181 (12/12) 181/181 (12/12)
Tetranucleotide repeats
TH01 11p15.5 AATG 184/199 (6/9.3) 184/199 (6/9.3)
CSF1R 5q33.3-q34 AGAT 311/323 (11/14) 315/315 (12/12)
F13A1 6p24-p25 AAAG 283/295 (4/7) 287/295 (5/7)
CYP19 15q21.1 AAAT 173/197 (5/11) 173/193 (5/10)
LPL 8p22 AAAT 123/131 (10/12) 123/127 (10/11)
D20S604 20p11.2-12 GATA 135/147 (13/16) 139/139 (14/14)
D20S481 20q11.2-12 GATA 237/241 (15/16) 233/245 (14/17)
D21S1435 21q21 GATA 171/179 (10/12) 175/175 (11/11)
D21S1446 21q22 GATA 209/223c 223/223
Disease-associated trinucleotide repeats
DM 19q13.3 CTG 78/111 (5/16) 78/78 (5/5)
SCA1 6p22-23 CAG(CAT)CAG 217/217 (30/30) 223/223 (32/32)
DRPLA 12pter-12 CAG 143/146 (15/16) 143/146 (15/16)
HD 4p16.3 CAG 122/140 (18/24) 113/137 (15/23)

a Genotype of CEPH individuals 133101 and 133102 are given as reference markers in terms of the fragment sizes in base pairs and the
corresponding repeat numbers in parentheses; bfragment sizes at D13S197 do not always correspond to a two-base-pair increment and
therefore the corresponding repeat sizes could not be deduced; cfragment sizes at D21S1446 also do not correspond to four-base-pair
increment and therefore repeat numbers could not be deduced. See text for details.

100 Journal of Genetics, Vol. 78, No. 2, August 1999

Ranjan Deka et al.



American and Western Samoa, and the New Guinea

Highlander from the northern fringes of Papua New Guinea.

Laboratory analysis: A summary of the microsatellite loci is

presented in table 1. Of the 23 loci, eight are dinucleotide

repeats, six are trinucleotides, and nine are tetranucleotide

repeats. Four (DM, SCA1, DRPLA and HD) of the trinu-

cleotide repeats are associated with human diseases. The

details of the PCR amplification and analysis of the

dinucleotide repeats are given in Deka et al. (1995a). Eleven

of the trinucleotide and tetranucleotide repeat loci were

analysed in four standard multiplex PCR reactions: (i)

CSF1R, TH01 and PLA2A; (ii) F13A1, CYP19 and LPL;

(iii) D21S1446 and D21S1435; and (iv) D20S481, D20S473

and D20S604. The four disease-associated trinucleotide

repeats, viz. DM, SCA1, DRPLA and HD, were amplified

individually. Twentyfive to fifty nanograms of DNA was

amplified in a total volume of 25 ml reaction mixture

containing standard PCR buffer (10 mM Tris-HCl, pH 8.3;

50 mm KCl; 1.5 mM MgCl2), 200 mM each dNPT, one unit of

Taq DNA polymerase, unlabelled (1 mM) and labelled

primers. The forward primers were end-labelled using

[
-33P] ATP and polynucleotide kinase T4. The amplified

products were separated on 6% denaturing polyacrylamide

gels. Following electrophoresis, the gels were dried and

allelic fragments were visualized by autoradiography.

An M13 sequence ladder was run on each gel as a size

standard. Finally, the repeat sizes were determined by

sequencing a subset of alleles (CSF1R, TH01, PLA2A,

F13A1, CYP19, LPL, D20S473) and from published

sequences (DM, SCA1, DRPLA, HD) or inferring from

Genbank sequences (FLT1, D13S118, D13S121, D13S71,

D13S122, D13S193, D13S124, D21S1435, D20S481 and

D20S604). Alleles at these loci have been designated by

the size (in base pairs) of their PCR product and their

corresponding repeat numbers (see table 1 and appendix).

Fragment sizes at the D13S197 (a dinucleotide repeat) and

D21S1446 (a tetranucleotide repeat) loci do not always

correspond to two-bp and four-bp increments, respectively.

Therefore, alleles at these two loci could not be assigned

repeat numbers.

Data analysis: As all the examined loci are autosomal and

detect codominant alleles, allele frequencies were calcu-

lated by the gene counting method (Li 1976). The appor-

tionment of genetic variability in the total data set was done

by the method of Chakraborty (1980), following the concept

of gene diversity of Nei (1973). Genetic distances were

estimated by using the modified Cavalli-Sforza distance

measure (DA, Nei et al. 1983) and the stepwise-weighted

DSW measure (Shriver et al. 1995). DSW is essentially a

modification of Nei's minimum distance measure, which

takes into account both allele frequency differences as well

as allele size differences. Neighbour-joining trees (Saitou

and Nei 1987) were constructed on the basis of both these

distance measures, and the degree of support of the

branches was evaluated by a bootstrap analysis based on

1000 replications.

Results

Allelic distributions

Allele frequencies at the 23 microsatellite loci in the 16

studied populations are presented in the appendix. The

number of chromosomes examined from each population is

shown in the last row for each locus. For example, 220

chromosomes from the Nigerian population were analysed

at the D13S71 locus. Although a comprehensive locus by

locus discussion of the allelic distributions is not the objec-

tive of this report, a few salient features are noteworthy. The

spectrum of allelic distributions across the populations is

quite broad and significant interpopulation variation at these

loci is often observed. The tetranucleotide repeat loci TH01

and CSF1R are two illustrative examples of contrasting

patterns of such variations. At the TH01 locus, the allele

frequency distributions are quite varied across populations.

However, a distinctive feature emerges when observations

are made with respect to the groupings of the major popula-

tions. In general, populations within a major group show a

greater degree of similarity. For example, repeat 9 is the

predominant allele in every Asian Mongoloid population

with frequencies of 40±52%, while this allele is present at

considerably lower frequencies in all of the African and the

Caucasian populations with a range between 5 and 20%. On

the other hand, repeat 9.3 is the predominant allele among

the Caucasians (35±40%), with the exception of the

Brahmin population from India (13%). This allele is present

at much lower frequencies in all of the Asian Mongoloid

and African populations (1±13%). In contrast, at the CSF1R

locus allele frequencies are more uniform across popula-

tions irrespective of their geographic or ethnic ancestry.

There are three major alleles (repeats 10, 11 and 12) in all

populations.

Clustering of populations within a major group as noted

above, however, is not evident among populations classified

under the major groups of American Indians and Pacific

Islanders. For instance, at the TH01 locus again, repeat 6 is

the predominant allele (68%) among the Cabecar. In contrast,

its frequency is 34% among the Pehuenche Indians, and

among the Dogribs it is rare, with a frequency of just about

2%. The Pacific Island populations, the New Guinea

Highlanders and the two Samoan groups show significantly

different allele frequencies at all loci. It should also be

noted that the New Guinea Highlanders and the Cabecars

from Costa Rica are also characterized by presence of a few

high-frequency alleles at several loci. For example, among

the New Guinea Highlander the frequency of the pre-

dominant allele at five loci (PLA2A, CYP19, F13A1,

D20S473 and HD) is �80%. Similarly, the Cabecars

have such high-frequency (�80%) alleles at four loci

(FLT1, D13S197, D20S473 and DM). In fact, they are
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monomorphic at the FLT1 locus. In general, however, the

FLT1 locus shows a reduced level of variation in most

populations (see discussion section).

As noted above, four of the studied loci have been impli-

cated in human diseases, viz. myotonic dystrophy (DM),

spino-cerebellar ataxia type 1 (SCA1), dentatorubral pallido-

luysian atrophy (DRPLA) and Huntington disease (HD).

The trinucleotide repeats associated with these loci are

normally polymorphic in human populations. They result in

disease when the repeat length exceeds a certain threshold.

In our sample of populations, we have not observed any

allele in the disease-causing range. Therefore the distribu-

tion of alleles is reflective of normal polymorphism at these

loci in human populations. In general, we have observed a

higher level of genetic variation at these four loci than at the

other microsatellites. The number of alleles across the non-

disease associated loci (with the exception of D13S197,

which has 30 different alleles) ranges between 9 and 16

(average 11:2� 0:64). At the four disease-associated loci,

this range is 19 to 28 (average 23:0� 2:12). As discussed

below, this observation is also apparent in the analysis of

gene diversity.

Evolutionary relationships

To assess the evolutionary relationships of the 16 popula-

tions, using the allele frequency data at the 23 loci we

have constructed a neighbour-joining tree (Saitou and Nei

1987) based on the DA distance measure (Nei et al. 1983).

Although not proportional to evolutionary time, DA is an

efficient and robust measure suitable for the reconstruction

of the correct phylogenetic tree using loci evolving via

either infinite-allele or stepwise mutational mechanisms

(Takezaki and Nei 1996; Rao et al. 1997). The neighbour-

joining method is used for dendrogram construction

because, unlike the UPGMA method, it does not assume

that the rate of evolution in human populations is constant

(Livshits and Nei 1990). The tree shown in figure 1a has

several interesting features. First, populations within a

major group cluster together. For example, the Asian

populations (with the exception of the North Indian

Brahmins) together with the American Indians form one

cluster, so do the Caucasians and the African populations.

Second, as evident from the bootstrap values, the statistical

supports for these clusters are strong. Third, when rooted by

the mid-point of the longest branch, the tree shows that the

first separation of human populations occurred between the

Africans and all the other, non-African populations.

Another way of rooting phylogenetic trees is by using an

out-group population. Nei and Takezaki (1996) have shown

that the root can be determined by using the chimpanzee as

an out-group population. We have analysed an unrelated

sample of chimpanzees at the same microsatellite loci [data

not shown; allele frequencies at a subset of loci are

presented elsewhere (Deka et al. 1994, 1995a)]. Interest-

ingly, the chimpanzees are polymorphic at all but one locus,

and at several loci the level of polymorphism is comparable

to that of humans in terms of both size and number of

alleles. The neighbour-joining tree based on the DA distance

measure, shown in figure 1b, with the chimpanzees as the

out-group population, places the root between the African

populations as a whole and all the other non-African

populations. This placement of the root reaffirms the diver-

gence of the African populations before the formation of the

other populations. The bootstrap value of 99% shows very

strong statistical support that all the non-African popula-

tions cluster together.

Although the DA trees provide accurate topologies,

they result in longer branch lengths for recently diverged

Figure 1. Phylogenetic trees of 14 human populations based on
23 microsatellite loci: (a) neighbour-joining tree based on DA

distance; (b) neighbour-joining tree based on DA distance with
chimpanzees as the out-group population; (c) neighbour-joining
tree based on DSW distance with chimpanzees as the out-group
population. Bootstrap values, indicating the degree of support for
each branch point, are shown as the percentage of all replicates
consistent with each branch point.
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populations and shorter branch lengths for populations that

diverged earlier. This is because DA is not proportional to

evolutionary time. On the other hand, the stepwise-weighted

genetic distance DSW is linear with respect to time, and

therefore provides better estimates of branch lengths

(Shriver et al. 1995). The DSW tree shown in figure 1c also

validates the hypothesis of the African ancestry of modern

human populations. Branch lengths of the recently diverged

populations are also relatively shorter in this tree. There are,

however, some apparent inconsistencies in the topologies;

for example, the location of the American Indians in the tree

does not agree with their known phylogenetic position.

The positions of the two Asian Indian populations, viz.

the Brahmin and the Kachari, in the phylogenetic trees are

worth noting. The North Indian Brahmins belong to a cluster

together with three other geographically diverse Caucasian

populations (Brazilian White, German, unrelated CEPH

parents), showing their affinity with the Caucasian

gene pool. The Kachari, a distinct Mongoloid group from

northeast India, on the other hand, form a cluster with the

other Asian (Chinese and Japanese) and the Amerindian

populations, reaffirming their position within the Mongo-

loid gene pool.

A point to be noted in the context of the above phylo-

genetic analyses is that the Papua New Guinea Highlanders

and the Cabecars have been excluded from the dendrograms.

Inclusion of these two populations substantially distorted

the known and expected relationships of populations in the

trees (not shown). This is due primarily to the allelic

distributions in these two populations, which are markedly

different from those observed in the remaining populations.

We have noted that they have several high-frequency alleles,

a possible signature of past population bottleneck or effect

of drift operating on these populations. Relative isolation of

the New Guinea Highlanders reflected in reduced variability

has been observed earlier (Nei and Roychoudhury 1993;

Deka et al. 1995a). Similarly, the Amerindian Cabecar

population of Costa Rica has a very reduced population size

(Barrantes et al. 1990).

Gene diversity analysis

The results of the gene diversity analysis are summarized in

table 2, in which the total gene diversity (HT) is decom-

posed into gene diversity between groups (Gg; between

Caucasians, Africans, Asians, American Indians and Pacific

Islanders) and that between populations within each group

(Gp�g�). As the groups of populations show somewhat

different within-group gene diversity (HG), such analyses

were also repeated for each group of populations separately

to estimate the within population gene diversity (HP) and

the coefficient of gene diversity between populations within

groups (Gp�g�). Further, to examine whether the pattern of

gene diversity depends on the repeat motifs of loci, in addi-

tion to the combined analyses of the 23 loci computations

were also done for the eight dinucleotide, two trinucleotide

(without any disease implications), nine tetranucleotide and

four disease-causing trinucleotide loci separately.

Overall, at a global level the total diversity (HT) for the

pooled loci is 74.9%, of which 90.6% is attributable to

genetic variation within populations (resulting in HP�
67:9%). This is in agreement with observations that, of the

total diversity, the maximum genetic variation is accounted

for by interindividual differences within a population (Deka

et al. 1995b; Barbujani et al. 1997). For the pooled data, the

coefficient of gene diversity between groups of populations

(Gg � 5:3%) is larger than that among populations within

groups (Gp�g� � 4:1%). However, the latter is not uniform

among all groups of populations. The smaller and isolated

populations, such as the American Indians and the Pacific

Islanders, show a somewhat smaller within-population (HP)

gene diversity and correspondingly a larger gene diversity

between populations (9.5% and 9.1%, respectively, as

opposed to a Gp�g� of 1.5% to 1.8% for the Caucasians,

Africans and Asians). This relationship between within-

population heterozygosity and gene diversity follows the

predictions of the mutation±drift model of microsatellite

variation (Jin and Chakraborty 1995).

In general, the patterns of decomposition of gene diversity

are similar for all repeat motifs, as seen from the analysis of

dinucleotide, trinucleotide, tetranucleotide, and disease-

causing trinucleotide loci separately. While the repeat motif

types apparently do not show significantly different patterns

(at 5% level of significance), the disease-causing trinucleo-

tides show a somewhat larger level of within-population

gene diversity (75%) compared with the other loci (62.9%

to 67.8%). This is consistent with the hypothesis that even

within the normal allele size ranges the disease-causing

trinucleotides have a higher mutation rate than the other

groups of loci (Chakraborty et al. 1997).

Since the loci grouped by their repeat motif types did

not show any detectably different patterns of gene diversity,

the results of interlocus variation of gene diversity analyses

for individual loci are summarized in figures 2 and 3. In

figure 2, we show the distributions of the coefficient of gene

diversity between populations within groups (Gp�g� in per

cent) in five panels (a through e) for the five groups. Of

course, these distributions are dependent on the choice of

loci as well as populations. The three larger groups of

populations (Caucasians, Africans and Asian Mongoloids)

show a narrow range of variation of gene diversity between

populations (Gp�g� not exceeding 4% for any locus), whereas

for the two isolated and smaller groups (American Indians

and Pacific Islanders) the distributions are quite dispersed

[Gp�g� varied from 1.7% to 22.4% for the American Indians

and from 0.5% to 31.4% for the Pacific Islanders]. In part,

as discussed later, these differences are contributed by our

sampling of populations. Nevertheless, given the average

gene diversity between populations (1.5% for the Africans

to 9.5% for the American Indians), the shapes of the distribu-

tions are consistent with that expected under a mutation±

drift model (Nei and Chakravarti 1977). Incidentally, the
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largest gene diversity in all population groups was observed

at the dinucleotide repeat locus FLT1 located at the human

fms-related tyrosine kinase gene (Polymeropoulos et al.

1991). This locus has the lowest within-population diversity,

accompanied by the largest gene diversity across popula-

tions. Most populations have a single predominant allele at

this locus. Frequency of the 15-repeat allele exceeds 80% in

nine populations (see appendix). While a balancing selec-

tion can explain such observations, the effect of low

mutation rate at this locus and=or more restricted allele size

constraints cannot be distinguished from such data.

To further examine the differences of levels of gene

diversity among groups of populations and those between

populations within groups, we present in figure 3 the

interlocus variation of these two coefficients of gene

diversity (Gg in panel a and Gp�g� in panel b). As shown

in table 2, the average coefficient of gene diversity between

groups of populations (5.3%) is larger than that between

populations within groups (4.1%), but this difference is

statistically not significant. However, a comparison of

the interlocus distribution of Gg (panel a) with that of

Gp�g� (panel b) shows that the between-group variation is

indeed significantly larger than variation among populations

within the groups. The Wilcoxon's signed rank test for

paired samples (Sokal and Rohlf 1981) shows that the

distribution in panel a is significantly shifted towards the

right compared to the one shown in panel b at the level

P � 0:0149. In other words, the 23 loci together show that

the genetic variation among populations within the five

major groups is statistically smaller than the variation

among the groups. It is interesting, however, that some loci

have a tendency to produce smaller levels of gene diversity

Table 2. Apportionment of genetic variation in 16 populations based on 23 microsatellite loci.

Heterozygosity (%)� SE Gene diversity (%)� SE
Group of
populations and Total Within groups Within population Among Among populations
locus type (HT) (HG) (HP) groups (Gg) within group (Gp�g�)

Caucasians (four populations)

Di- ± 69:06� 6:23 67:86� 6:08 ± 1:72� 0:31
Tri- ± 63:95� 5:83 65:24� 5:90 ± 1:06� 0:20
Tetra- ± 74:46� 1:47 73:43� 1:39 ± 1:79� 0:24
Disease-associated ± 78:18� 1:47 77:43� 1:45 ± 0:97� 0:08
Pooled ± 72:61� 2:34 71:48� 2:29 ± 1:55� 0:16

Africans (three populations)

Di- ± 79:40� 1:69 78:26� 1:51 ± 1:43� 0:32
Tri- ± 78:58� 1:27 77:20� 1:61 ± 1:76� 0:45
Tetra- ± 77:03� 2:32 75:85� 2:26 ± 1:53� 0:16
Disease-associated ± 84:19� 0:72 82:95� 0:98 ± 1:45� 0:49
Pooled ± 79:23� 1:18 78:04� 1:15 ± 1:50� 0:15

Asians (three populations)

Di- ± 69:65� 2:35 68:39� 2:25 ± 1:81� 0:30
Tri- ± 70:57� 9:16 69:37� 9:23 ± 1:69� 0:32
Tetra- ± 68:96� 2:29 67:84� 2:20 ± 1:52� 0:20
Disease-associated ± 76:43� 5:95 74:68� 6:04 ± 2:28� 0:36
Pooled ± 70:64� 1:69 69:35� 1:65 ± 1:82� 0:14

American Indians (three populations)

Di- ± 55:73� 8:19 50:35� 7:28 ± 9:66� 1:79
Tri- ± 51:93� 22:91 49:12� 21:68 ± 5:41� 0:02
Tetra- ± 69:06� 3:11 63:04� 2:89 ± 8:71� 1:70
Disease-associated ± 72:66� 3:14 63:56� 5:73 ± 12:53� 4:23
Pooled ± 63:56� 3:71 57:51� 3:41 ± 9:52� 1:20

Paci®c Islander (three populations)

Di- ± 65:81� 6:11 62:68� 5:54 ± 4:76� 1:23
Tri- ± 57:38� 15:25 52:69� 12:41 ± 6:17� 2:79
Tetra- ± 65:49� 3:51 57:09� 4:22 ± 12:82� 3:72
Disease-associated ± 83:61� 2:57 75:49� 6:02 ± 9:72� 4:44
Pooled ± 68:05� 3:09 61:85� 3:10 ± 9:10� 1:78

Total (16 populations)

Di- 72:19� 4:24 67:32� 4:24 65:66� 4:13 5:81� 0:74 3:24� 0:55
Tri- 69:44� 10:80 64:50� 11:30 62:88� 9:90 6:47� 0:67 2:98� 0:50
Tetra- 74:61� 2:05 71:27� 2:04 67:82� 1:95 4:45� 0:98 4:64� 0:79
Disease-associated 83:67� 1:07 78:99� 1:30 74:99� 1:71 5:63� 0:92 4:75� 0:71
Pooled 74:90� 1:96 70:65� 2:00 67:89� 1:66 5:30� 0:46 4:06� 0:40
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across populations, as reflected in these computations.

Whether or not this is due to homogenization of populations

by forward±backward mutations of high rate, or due to more

stringent allele size constraints at such loci, cannot be

assessed from this analysis, and will be a subject for future

study.

Discussion and conclusion

The goal of this study is to analyse the extent of genetic

variation at a number of microsatellite loci in a sample of

diverse human populations worldwide and to reassess the

relationships of these populations in terms of the genetic

affinity and diversity among them. With respect to the

distribution of alleles at the 23 studied loci, although large

variability exists among the examined populations, in

general, populations within a continental group tend to

show a higher degree of similarity. However, the American

Indians and the Pacific Island populations show exceptions

to this general observation. Historically it is known that the

American Indians and the Pacific Islanders are isolated

populations with smaller effective sizes. It is reasonable to

speculate that population bottlenecks and genetic drift have

been important factors in generating dramatic allele

frequency differences in these populations and in extreme

cases have resulted in near fixation of particular alleles in

some populations, such as the New Guinea Highlander and

the Cabecar. Furthermore, the three American Indian

populations belong to different ethnic and linguistic stocks;

the Dogrib are members of the Na-Dene groups, the

Pehuenche Indians are Amerinds, and the Cabecars are

linguistically Chibcha speakers. Similarly, the Pacific Island

Samoans and New Guinea Highlanders are distinctly

different populations except for being located in closer

geographic proximity. As discussed below, the impact of

such nonrandom sampling is also reflected in the extent of

gene diversities among populations.

Phylogenetic analyses based on allele frequencies at 23

microsatellite loci show that the populations of African

descent are the most diverse. We have employed two different

genetic distance measures to reconstruct the phylogenetic

Figure 2. Interlocus distribution of coef®cient of gene diversity
among populations (Gp�g� in per cent) within ®ve major human
population groups (shown separately in panels a±e) based on 23
microsatellite loci.

Figure 3. Interlocus distribution of coef®cient of gene diversity
in 16 populations: (a) gene diversity among the major groups of
populations (Gg); (b) gene diversity among populations within the
major population groups (Gp�g�).

Journal of Genetics, Vol. 78, No. 2, August 1999 105

Microsatellite variation in human populations



relationships of the examined populations. In spite of their

inherent limitations, both the DA and the DSW trees indicate

that the first separation of present-day humans took place

between the Africans and all of the non-African popula-

tions. It adds to the already existent genetic evidence

lending support to an African origin of all modern human

populations (e.g. Cann et al. 1987; Bowcock et al. 1994;

Nei 1995; Tishkoff et al. 1996; Shriver et al. 1997).

The gene diversity analyses show that the coefficient of

gene diversity estimated from the 23 microsatellite loci is,

in general, larger for populations that have remained isolated

and probably small (such as the American Indians and

Pacific Islanders; see table 2), among which the interlocus

variation of gene diversity is also larger (figure 2). Further,

the 23 loci in aggregate also show that the component of

total gene diversity that can be ascribed to variation between

groups of populations is significantly larger than that among

populations within each major group. However, the absolute

values of coefficient of gene diversity are to be interpreted

with some caution, as these are dependent on the choice of

loci as well as populations. Gene diversities between popula-

tions within the smaller groups (American Indians and Pacific

Islanders) are probably overestimated because of their non-

random sampling (noted above). Nevertheless, the inverse

relationship between within-population gene diversity (HP)

and the coefficient of gene diversity between populations

within groups (Gp�g�), namely that Gp�g� is smaller as HP

becomes larger, is consistent with the mutation±drift

expectations of gene diversity under the stepwise mutation

model (Jin and Chakraborty 1995; Kimmel et al. 1996).

In the context of the objectives of this study, a brief

discussion on the selection of loci should also be in place. In

particular, all of the eight dinucleotide repeat loci are

located on human chromosome 13, and therefore they are a

nonrandom selection of dinucleotide repeats in the genome.

We should like to note that originally these eight loci were

selected from the same chromosome to examine how

chromosomal linkage affects genotypic dependence

between loci in unrelated individuals within populations

(Deka et al. 1995a). This study demonstrated that, in spite

of the presence of allelic association among a few closely

linked loci (located within a genetic distance of 7 cM), these

syntenic loci adequately revealed expected evolutionary

relationships of the studied populations. Secondly, we should

also like to comment on the inclusion of the four trinucleo-

tide repeats which have been implicated in human diseases.

We have noted that in terms of both number of alleles and

heterozygosity these loci demonstrate a greater diversity.

However, we have not observed any expanded alleles in the

disease-causing range. Therefore the variation observed at

these loci is representative of the total genomic variation

reflective of the evolutionary histories of the examined

populations. It is clearly evident from the distribution of

allele frequencies at these loci (see appendix) that the

populations of smaller effective sizes (such as the American

Indians and the Pacific Islanders) have generally reduced

levels of variability even at these loci compared to the other

populations, although these loci are under some degree of

selective pressure because of their genomic location and

functional constraints. On the same token, at least seven

other loci in this study, viz. FLT1, CSF1R, TH01, PLA2A1,

F13A1, CYP19 and LPL, are located in or around functional

genes. Further, although most microsatellite loci are

expected to be located in the noncoding regions of the

genomes, it is not unequivocally known which of them are

associated with genes and which are not. Taking all of these

facts into consideration, at this time it is reasonable to state

that studies of human genetic variation and phylogenetic

relationships using microsatellites or other DNA markers

are not necessarily based on a complete set of neutral loci.

It is therefore not surprising that the observed relationships

of human populations based on such markers and traditional

serum protein loci are in general congruent. Long-term

evolutionary history is a product of mutation, selection

and drift operating on these diverse sets of genomic

sequences, and their study in conjunction will be essential

in assessing the past relationships of contemporary humans

accurately.

It is now well established that the mutational mechanisms

at microsatellites are different from those of traditional

serum protein markers. There is empirical evidence that

mutations at microsatellite loci cause contraction as well as

expansion of allele size (Weber and Wong 1993). A stepwise

mutation±drift model has been advocated to account for this

phenomenon (Shriver et al. 1993; Di Rienzo et al. 1994).

Thus, genetic variation at these loci described by frequency

distribution of alleles distinguished by their repeat lengths

could be affected by the convergent features of the forward±

backward stepwise mutational process, mathematical details

of which are discussed elsewhere (e.g. see Kimmel and

Chakraborty 1996; Kimmel et al. 1996). However, it has

been shown that contraction or expansion bias of stepwise

mutations does not affect the expectations of within-popula-

tion heterozygosity or gene diversity between populations.

Finally, the empirical data presented in this work and their

analyses are in agreement with such theoretical predictions

and reaffirm that examination of the major features of

microevolutionary divergence of human populations is not

compromised by these characteristics of the microsatellite

loci.
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Appendix. Allele frequencies at 23 microsatellite loci in 16 human populations.

Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D13S71

65 12 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
67 13 3.6 8.0 2.0 8.7 9.4 0.0 8.0 17.4 16.7 12.3 0.0 0.6 0.0 26.0 13.9 9.1
69 14 10.5 7.0 6.0 0.0 0.0 0.0 2.0 1.0 6.3 0.0 0.0 0.6 1.9 0.0 0.8 0.0
70 14.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0
71 15 5.9 5.0 2.0 0.0 0.0 2.8 0.0 2.0 0.0 0.9 3.7 0.6 1.9 0.0 0.0 0.0
72 15.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0
73 16 19.6 22.0 18.0 33.7 27.5 20.8 32.0 18.4 29.2 9.4 5.9 24.1 13.0 40.0 44.3 61.9
74 16.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.8 0.0 0.0 0.0 0.0
75 17 41.4 39.0 48.0 32.7 37.0 38.9 42.0 44.9 33.3 37.7 77.2 65.9 66.7 13.0 18.0 15.1
77 18 13.2 13.0 22.0 19.9 19.6 25.0 12.0 13.3 10.4 35.9 0.7 6.5 1.7 15.0 17.2 6.6
79 19 4.6 3.0 2.0 5.1 6.5 12.5 4.0 1.0 4.2 1.9 2.2 0.0 0.0 2.0 4.9 7.2
81 20 1.4 3.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.9 8.8 0.0 0.0 4.0 0.8 0.0
# Chr 220 100 50 196 138 72 50 98 48 106 136 170 54 100 122 318

D13S118

184 14 4.8 5.6 0.0 0.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
186 15 3.5 0.0 2.6 1.6 3.9 0.0 4.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.9
188 16 15.8 16.7 10.5 10.4 13.0 23.6 2.2 11.1 0.0 15.7 6.9 2.9 0.0 0.0 0.0 0.0
190 17 46.9 46.3 26.3 22.4 23.4 37.5 32.6 46.3 42.0 44.1 26.9 50.0 0.0 64.9 64.8 75.0
192 18 3.5 5.6 13.2 0.0 2.0 0.0 2.2 0.0 4.0 1.0 4.6 1.9 1.9 1.1 0.0 4.9
194 19 4.0 0.0 23.7 42.7 44.2 15.3 37.0 29.6 26.0 16.7 30.0 11.5 37.0 13.8 13.1 2.6
196 20 3.5 5.6 7.9 3.1 1.3 2.8 2.2 0.0 12.0 1.0 9.2 10.6 0.0 5.3 11.5 0.0
198 21 14.9 16.7 10.5 18.2 11.7 20.8 13.0 13.0 6.0 17.7 21.5 23.1 57.4 10.6 6.6 6.9
200 22 3.1 3.7 5.3 1.6 0.7 0.0 4.4 0.0 8.0 3.9 0.8 0.0 0.0 4.3 4.1 1.6
202 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0
204 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0
# Chr 228 54 38 192 154 72 46 54 50 102 130 208 54 94 122 304

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D13S121

158 15 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0
160 16 10.8 11.5 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
162 17 3.6 1.9 2.0 7.3 8.3 14.1 6.0 8.0 12.0 7.1 0.0 0.0 0.0 0.0 0.0 0.0
164 18 9.5 5.8 14.0 3.7 3.2 10.9 0.0 4.0 2.0 1.0 5.3 0.5 0.0 0.0 0.0 0.3
166 19 32.0 38.5 38.0 49.5 43.0 43.8 50.0 46.0 40.0 42.9 69.7 78.9 74.1 68.0 56.6 66.8
168 20 6.8 3.9 16.0 8.9 10.3 4.7 10.0 6.0 14.0 11.2 2.3 1.8 9.3 4.0 18.0 5.6
170 21 5.9 9.6 0.0 5.2 7.1 9.4 10.0 22.0 24.0 25.5 6.8 9.2 0.0 18.0 19.7 6.6
172 22 14.9 19.2 20.0 7.3 5.8 7.8 6.0 8.0 8.0 4.1 0.8 4.1 9.3 5.0 0.8 2.6
174 23 8.6 5.8 4.0 11.5 14.1 6.3 6.0 4.0 0.0 8.2 15.2 4.6 7.4 2.0 1.6 3.0
176 24 3.6 0.0 2.0 6.8 8.3 3.1 8.0 0.0 0.0 0.0 0.0 0.0 0.0 3.0 3.3 10.5
178 25 0.9 1.9 0.0 0.0 0.0 0.0 4.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.6
180 26 3.6 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 222 52 50 192 156 64 50 50 50 98 132 218 54 100 122 304

D13S122

83 8 0.4 0.0 0.0 1.1 3.3 1.5 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0
85 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
87 10 4.0 0.0 6.0 15.4 12.3 27.3 14.0 3.7 0.0 14.0 0.0 3.6 1.9 11.2 12.7 0.0
89 11 3.1 1.9 4.0 0.0 0.0 3.0 0.0 5.6 0.0 1.0 0.0 0.5 0.0 0.0 0.0 7.6
91 12 2.2 0.0 2.0 5.0 4.6 0.0 4.0 1.9 20.0 7.0 0.0 0.0 9.6 4.1 6.8 0.0
93 13 15.9 9.3 14.0 14.3 9.1 18.2 4.0 13.0 10.0 11.0 0.0 0.0 0.0 12.2 5.9 4.1
95 14 6.2 7.4 12.0 36.8 35.1 15.2 36.0 44.4 44.0 44.0 11.1 56.4 34.6 22.4 22.9 9.0
97 15 6.6 11.1 24.0 2.2 7.1 3.0 4.0 9.3 0.0 2.0 28.6 11.4 32.7 12.2 10.2 0.0
99 16 13.7 13.0 6.0 2.2 3.9 0.0 6.0 0.0 2.0 0.0 0.0 0.0 17.3 5.1 1.7 0.0
101 17 21.7 25.9 4.0 4.4 4.6 7.6 14.0 1.9 4.0 5.0 11.9 19.1 1.9 0.0 5.1 7.9
103 18 18.6 24.1 16.0 11.5 9.1 13.6 10.0 9.3 6.0 6.0 42.9 7.3 1.9 11.2 16.9 10.7
105 19 6.2 7.4 8.0 4.4 7.1 9.1 0.0 5.6 12.0 0.0 1.6 0.0 0.0 15.3 9.3 25.5
107 20 0.9 0.0 4.0 1.1 3.3 0.0 6.0 3.7 2.0 4.0 4.0 1.8 0.0 3.1 6.8 20.7
109 21 0.0 0.0 0.0 1.1 0.6 0.0 0.0 0.0 0.0 5.0 0.0 0.0 0.0 2.0 0.8 10.3
111 22 0.4 0.0 0.0 0.5 0.0 1.5 0.0 1.9 0.0 0.0 0.0 0.0 0.0 1.0 0.8 2.4
# Chr 226 66 50 182 154 66 50 54 50 100 126 220 52 98 118 290

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D13S124

173 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
175 10 0.0 0.0 2.1 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
177 11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 6.6 0.0
179 12 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
181 13 4.3 1.0 0.0 0.0 0.6 0.0 2.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
183 14 18.0 21.0 29.2 0.5 0.0 2.8 4.0 25.5 13.6 10.4 0.0 0.0 0.0 36.5 34.4 6.9
185 15 47.1 42.0 31.3 46.9 44.2 36.1 44.0 16.3 15.9 29.3 8.8 15.5 14.8 45.8 45.9 38.4
187 16 18.4 25.0 25.0 41.8 35.3 55.6 42.0 53.1 59.1 56.6 88.2 83.9 33.3 12.5 13.1 54.7
189 17 3.2 8.0 0.0 1.5 3.2 1.4 0.0 1.0 2.3 0.0 2.9 0.0 29.6 0.0 0.0 0.0
191 18 6.1 2.0 10.4 5.1 10.3 4.2 6.0 0.0 0.0 0.9 0.0 0.6 22.2 0.0 0.0 0.0
193 19 2.2 0.0 0.0 4.1 6.4 0.0 2.0 0.0 9.1 2.8 0.0 0.0 0.0 0.0 0.0 0.0
195 20 0.0 1.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 278 100 48 196 156 72 50 98 44 106 136 168 54 96 122 318

D13S193

127 12 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
129 13 8.0 11.5 12.0 1.1 4.6 0.0 0.0 0.0 0.0 1.3 0.0 0.9 1.9 0.0 0.0 0.0
131 14 23.6 23.1 24.0 17.0 15.1 28.6 18.0 7.4 8.0 21.8 26.5 23.8 22.2 34.0 29.5 14.3
133 15 35.4 34.6 32.0 13.3 13.2 17.1 16.0 51.9 46.0 42.3 32.6 17.3 7.4 21.0 29.5 54.5
135 16 12.7 13.5 12.0 0.0 0.7 1.4 0.0 0.0 2.0 2.6 6.1 0.0 0.0 0.0 0.0 5.2
137 17 2.8 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
139 18 0.9 0.0 0.0 1.1 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
141 19 0.5 0.0 0.0 2.1 2.6 0.0 2.0 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0
143 20 0.0 0.0 0.0 3.7 1.3 1.4 0.0 0.0 2.0 1.3 0.0 0.5 7.4 8.0 3.3 2.8
145 21 2.4 3.9 4.0 6.4 5.3 12.9 10.0 16.7 10.0 5.1 18.9 16.4 42.6 9.0 11.5 21.3
146 21.1 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
147 22 10.9 11.5 14.0 41.0 45.4 28.6 42.0 24.1 26.0 23.1 14.4 37.9 1.9 13.0 7.4 0.7
149 23 1.4 0.0 2.0 12.2 11.2 7.1 10.0 0.0 2.0 1.3 0.0 3.3 16.7 15.0 18.9 1.0
151 24 0.9 0.0 0.0 1.1 0.0 0.0 0.0 0.0 4.0 0.0 1.5 0.0 0.0 0.0 0.0 0.0
153 25 0.0 0.0 0.0 0.0 0.0 1.4 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
155 26 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 212 52 50 188 152 70 50 54 50 78 132 214 54 100 122 286

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D13S197

87 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
97 0.0 0.0 0.0 11.7 16.2 8.6 10.0 0.0 0.0 1.0 2.3 0.0 0.0 0.0 0.9 6.5
98 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
99 0.0 0.0 0.0 0.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0
101 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0
112 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
118 3.2 0.0 10.9 0.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
119 0.0 0.0 0.0 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
120 8.3 14.8 2.2 0.0 0.7 2.9 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 1.7 0.4
121 1.4 0.0 0.0 3.2 1.3 0.0 0.0 0.0 0.0 2.0 7.6 0.0 0.0 0.0 0.0 0.0
122 27.8 27.8 32.6 31.9 23.4 35.7 40.0 44.2 36.5 41.2 27.3 61.4 82.7 39.8 38.1 0.4
123 1.9 1.9 0.0 0.0 9.1 0.0 0.0 0.0 0.0 0.0 8.3 0.0 0.0 0.0 0.0 0.0
124 25.0 14.8 17.4 31.9 17.5 37.1 26.0 42.3 26.9 29.4 35.6 25.9 0.0 34.7 35.6 14.4
125 0.9 5.6 0.0 0.0 5.2 0.0 0.0 1.9 7.7 0.0 6.1 0.0 13.5 0.0 0.0 0.0
126 12.0 13.0 6.5 2.7 5.8 4.3 6.0 1.9 0.0 12.8 12.9 11.8 0.0 0.0 0.0 4.7
127 3.2 0.0 0.0 0.0 0.7 1.4 2.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
128 2.8 5.6 2.2 3.7 5.2 8.6 6.0 1.9 0.0 2.0 0.0 0.0 0.0 0.0 0.9 0.4
129 0.0 0.0 4.4 0.0 1.3 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
130 0.5 1.9 8.7 1.6 0.7 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 6.1 5.9 0.4
131 3.7 3.7 2.2 0.0 0.0 0.0 2.0 0.0 0.0 3.9 0.0 0.0 0.0 2.0 2.5 0.0
132 2.8 1.9 2.2 2.7 2.6 0.0 4.0 1.9 0.0 2.9 0.0 0.9 0.0 9.2 9.3 11.9
133 1.9 5.6 0.0 1.1 0.7 1.4 0.0 0.0 0.0 1.0 0.0 0.0 0.0 2.0 1.7 0.0
134 2.3 1.9 8.7 2.1 1.3 0.0 2.0 1.9 19.2 2.0 0.0 0.0 1.9 5.1 3.4 34.9
135 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
136 0.5 1.9 0.0 0.0 0.7 0.0 0.0 0.0 3.9 0.0 0.0 0.0 0.0 0.0 0.0 26.3
138 0.0 0.0 0.0 0.0 3.9 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
139 0.0 0.0 0.0 4.8 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
140 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
142 0.0 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
145 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 216 54 46 188 154 70 50 52 52 102 132 220 52 98 118 278

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

FLT1

156 9 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
166 14 2.6 1.9 6.0 3.2 0.7 0.0 2.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.7
167 14.1 0.0 0.0 0.0 0.5 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
168 15 38.9 35.2 46.0 83.7 89.0 80.6 84.0 53.7 67.3 55.9 89.2 94.4 100.0 81.0 80.3 71.0
170 16 4.3 1.9 4.0 3.7 3.3 9.7 0.0 1.9 1.9 5.9 0.0 0.0 0.0 2.0 0.0 2.8
172 17 6.0 9.3 2.0 1.6 0.0 0.0 0.0 0.0 3.9 0.0 5.4 0.0 0.0 0.0 0.0 0.0
174 18 9.0 11.1 12.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 3.2 0.0 0.0 0.0 0.0
176 19 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
178 20 3.4 3.7 6.0 0.0 0.7 0.0 0.0 5.6 1.9 4.9 0.0 0.0 0.0 0.0 0.0 0.0
179 20.1 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
180 21 4.7 5.6 2.0 0.0 0.0 0.0 2.0 1.9 0.0 1.0 5.4 0.0 0.0 0.0 0.8 1.7
182 22 9.0 20.4 6.0 5.8 4.6 9.7 8.0 31.5 21.2 26.5 0.0 2.3 0.0 17.0 18.9 23.1
184 23 13.3 7.4 6.0 0.5 0.0 0.0 0.0 3.7 3.9 2.9 0.0 0.0 0.0 0.0 0.0 0.7
186 24 7.3 3.7 8.0 0.5 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
188 25 0.4 0.0 0.0 0.5 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
190 26 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
200 27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 234 54 50 190 154 72 50 54 52 102 130 216 54 100 122 290

PLA2A

115 9 0.0 0.0 0.0 0.0 0.0 0.0 0.8 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
118 10 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
121 11 4.8 1.0 15.7 46.1 44.9 54.3 37.9 28.4 27.1 23.0 17.0 28.4 4.9 28.0 31.0 80.4
124 12 2.9 9.2 12.9 12.8 13.3 12.9 16.1 2.0 0.0 8.0 2.0 2.0 5.9 11.0 9.0 12.7
127 13 18.3 13.3 8.6 2.0 2.0 0.0 3.2 19.6 27.1 9.0 15.0 15.7 10.8 19.0 17.0 0.0
130 14 28.9 23.5 17.1 14.7 14.3 11.4 23.4 28.4 26.0 25.0 30.0 21.6 7.8 16.0 12.0 4.9
133 15 26.0 28.6 28.6 15.7 19.4 14.3 13.7 12.8 7.3 18.0 31.0 28.4 60.8 14.0 16.0 2.0
136 16 19.2 24.5 17.1 6.9 4.1 5.7 4.8 6.9 9.4 17.0 5.0 3.9 8.8 12.0 15.0 0.0
139 17 0.0 0.0 0.0 1.0 0.0 1.4 0.0 2.0 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
# Chr 104 98 70 102 98 70 124 102 96 100 100 102 102 100 100 102

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D20S473

166 7 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
169 8 1.7 0.0 0.0 6.7 5.0 0.0 3.7 0.0 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0
172 9 0.0 1.7 3.3 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 7.7 0.0 0.0 0.0 0.0
175 10 21.7 20.0 13.3 0.0 0.0 2.2 3.7 1.9 0.0 1.7 0.0 3.9 0.0 0.0 0.0 1.7
178 11 30.0 15.0 30.0 28.3 15.0 30.4 25.9 13.0 20.7 19.0 1.7 3.9 7.4 7.1 10.0 6.9
181 12 36.7 25.0 36.7 56.7 60.0 52.2 57.4 61.1 46.6 63.8 95.0 69.2 87.0 67.9 70.0 84.5
184 13 6.7 23.3 10.0 6.7 20.0 13.0 9.3 9.3 19.0 15.5 3.3 13.5 5.6 25.0 20.0 0.0
187 14 1.7 13.3 6.7 1.7 0.0 0.0 0.0 14.8 10.3 0.0 0.0 1.9 0.0 0.0 0.0 6.9
190 15 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 60 60 60 60 60 46 54 54 58 60 60 52 54 28 30 58

TH01

180 5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
184 6 12.8 14.3 12.5 20.6 18.4 24.3 19.5 15.7 26.0 15.0 2.0 34.3 67.7 5.0 9.0 16.7
188 7 52.9 57.1 48.4 15.7 23.5 17.1 21.2 19.6 27.1 30.0 54.0 33.3 13.7 55.0 40.0 0.0
192 8 15.7 20.4 21.9 8.8 9.2 25.7 10.2 2.9 4.2 7.0 6.0 0.0 0.0 12.0 21.0 78.4
196 9 13.7 5.1 4.7 16.7 8.2 20.0 14.4 52.0 40.6 40.0 31.0 2.0 1.0 7.0 3.0 3.9
199 9.3 4.9 2.0 12.5 36.3 39.8 12.9 34.8 3.9 1.0 8.0 7.0 30.4 17.7 21.0 26.0 1.0
200 10 0.0 0.0 0.0 2.0 0.0 0.0 0.0 5.9 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
204 11 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
# Chr 102 98 64 102 98 70 118 102 96 100 100 102 102 100 100 102

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).

1
1
2

J
o

u
rn

a
l

o
f

G
en

etics,
V

o
l.

7
8
,

N
o
.

2
,

A
u
g
u
st

1
9
9
9

R
a

n
ja

n
D

eka
et

a
l.



Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

CSF1R

291 6 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
295 7 9.8 6.1 1.5 0.0 0.0 0.0 0.0 1.0 2.0 0.0 0.0 1.0 2.0 0.0 0.0 0.0
299 8 7.8 3.1 4.4 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0
303 9 4.9 4.1 1.5 2.0 0.0 7.6 3.4 3.9 3.1 5.1 9.0 3.9 0.0 0.0 1.0 2.5
307 10 30.4 31.6 25.0 25.5 32.7 21.2 22.0 17.7 22.9 22.5 39.0 27.5 13.7 16.0 13.0 15.0
311 11 16.7 23.5 42.7 33.3 25.5 24.2 32.2 26.5 16.7 36.7 14.0 19.6 30.4 42.0 39.0 38.8
315 12 28.4 25.5 19.1 28.4 34.7 36.4 38.1 40.2 46.9 29.6 29.0 41.2 25.5 33.0 35.0 42.5
319 13 1.0 5.1 4.4 9.8 5.1 10.6 1.7 7.8 7.3 6.1 6.0 5.9 26.5 8.0 10.0 1.3
323 14 0.0 0.0 1.5 0.0 1.0 0.0 1.7 2.9 0.0 0.0 0.0 1.0 0.0 0.0 2.0 0.0
327 15 0.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 1.0 0.0 3.0 0.0 0.0 1.0 0.0 0.0
# Chr 102 98 68 102 98 66 118 102 96 98 100 102 102 100 100 80

F13A1

281 3.2 26.9 7.0 19.1 6.1 4.3 11.1 9.0 34.3 40.4 23.3 48.0 33.0 48.0 7.0 6.0 3.6
283 4 7.7 7.0 7.1 6.1 2.9 5.6 4.0 13.7 6.4 15.6 8.0 18.0 18.6 3.0 2.0 0.0
287 5 30.8 40.0 25.0 18.4 11.4 34.7 20.0 10.8 7.5 8.9 17.0 3.0 30.4 26.0 20.0 90.9
291 6 14.1 5.0 14.3 26.5 34.3 22.2 28.0 41.2 45.7 34.4 24.0 11.0 1.0 61.0 69.0 5.5
295 7 12.8 16.0 19.1 34.7 40.0 20.8 32.0 0.0 0.0 10.0 2.0 35.0 2.0 2.0 3.0 0.0
299 8 5.1 8.0 8.3 1.0 1.4 0.0 0.0 0.0 0.0 1.1 1.0 0.0 0.0 0.0 0.0 0.0
303 9 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
307 10 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
311 11 1.3 2.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
315 12 1.3 3.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0
319 13 0.0 5.0 3.6 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
323 14 0.0 2.0 1.2 5.1 1.4 1.4 1.0 0.0 0.0 3.3 0.0 0.0 0.0 1.0 0.0 0.0
327 15 0.0 2.0 1.2 1.0 4.3 4.2 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
331 16 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 2.2 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 78 100 84 98 70 72 100 102 94 90 100 100 102 100 100 110

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).

J
o

u
rn

a
l

o
f

G
en

etics,
V

o
l.

7
8
,

N
o
.

2
,

A
u
g
u
st

1
9
9
9

1
1
3

M
icro

sa
tellite

va
ria

tio
n

in
h
u
m

a
n

p
o
p
u

la
tio

n
s



Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

CYP19

173 5 26.7 30.0 34.5 37.8 37.5 27.8 28.6 34.3 39.6 20.8 38.0 69.2 25.5 53.0 61.0 11.0
177 6 41.4 56.0 44.1 15.6 19.4 27.8 24.5 22.6 29.2 40.6 37.0 6.4 65.7 7.0 8.0 80.5
178 6.1 0.0 0.0 4.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
181 7 8.6 1.0 3.6 7.8 11.1 8.3 6.1 0.0 0.0 2.1 0.0 0.0 0.0 5.0 4.0 0.8
185 8 0.0 0.0 0.0 0.0 1.4 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
189 9 0.9 0.0 1.2 1.1 0.0 1.4 4.1 1.0 1.0 2.1 4.0 0.0 0.0 0.0 0.0 0.0
193 10 15.5 9.0 6.0 35.6 29.2 31.9 34.7 33.3 26.0 30.2 21.0 24.5 8.8 35.0 27.0 5.9
197 11 6.0 2.0 6.0 2.2 1.4 2.8 2.0 7.8 4.2 3.1 0.0 0.0 0.0 0.0 0.0 1.7
201 12 0.9 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 116 100 84 90 72 72 98 102 78 96 100 94 102 100 100 118

LPL

115 8 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
119 9 10.0 23.9 10.7 2.4 4.2 1.4 4.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0
123 10 34.0 42.4 45.2 41.7 31.9 56.9 46.0 63.7 62.8 58.0 65.0 71.3 74.5 84.0 88.0 47.5
127 11 12.0 9.8 9.5 22.6 27.8 18.1 34.0 9.8 14.1 5.7 19.0 4.3 6.9 2.0 3.0 2.5
131 12 29.0 18.5 32.1 31.0 33.3 20.8 14.0 23.5 21.8 33.0 14.0 24.5 18.6 11.0 4.0 22.9
135 13 14.0 5.4 2.4 2.4 2.8 1.4 2.0 2.9 1.3 3.4 0.0 0.0 0.0 3.0 5.0 27.1
139 14 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 100 92 84 84 72 72 100 102 78 88 100 94 102 100 100 118

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D20S604

115 8 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
119 9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0
123 10 10.0 10.0 5.0 0.0 0.0 0.0 1.9 5.4 0.0 0.0 0.0 0.0 0.0 3.6 3.3 0.0
127 11 13.3 0.0 15.0 0.0 1.7 2.2 1.9 8.9 12.1 6.7 0.0 1.9 0.0 0.0 0.0 6.9
131 12 5.0 3.3 6.7 1.7 1.7 8.7 5.6 0.0 8.6 8.3 30.0 15.4 0.0 7.1 3.3 29.3
135 13 11.7 10.0 15.0 10.0 8.3 10.9 11.1 3.6 3.5 5.0 6.7 13.5 0.0 14.3 6.7 8.6
139 14 18.3 28.3 13.3 16.7 31.7 23.9 29.6 28.6 44.8 33.3 23.3 25.0 68.5 21.4 46.7 22.4
143 15 25.0 23.3 21.7 56.7 40.0 37.0 31.5 37.5 15.5 31.7 10.0 28.9 29.6 35.7 33.3 29.3
147 16 13.3 23.3 18.3 13.3 13.3 13.0 18.5 12.5 12.1 13.3 28.3 15.4 1.9 14.3 6.7 3.4
151 17 1.7 1.7 5.0 1.7 3.3 4.4 0.0 3.6 3.5 1.7 0.0 0.0 0.0 3.6 0.0 0.0
# Chr 60 60 60 60 60 46 54 56 58 60 60 52 54 28 30 58

D20S481

213 9 0.0 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
217 10 1.7 0.0 0.0 3.3 0.0 2.2 1.9 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0
221 11 6.7 1.7 3.3 3.3 5.0 0.0 3.7 0.0 0.0 3.3 0.0 1.9 1.9 3.6 0.0 8.6
225 12 11.7 18.3 15.0 8.3 11.7 2.2 3.7 5.4 0.0 3.3 0.0 0.0 0.0 3.6 0.0 22.4
229 13 3.3 0.0 6.7 5.0 5.0 0.0 5.6 1.8 1.7 1.7 1.7 0.0 0.0 0.0 0.0 12.1
233 14 3.3 5.0 16.7 21.7 25.0 10.9 18.5 1.8 1.7 5.0 35.0 34.6 66.7 17.9 6.7 17.2
237 15 26.7 16.7 15.0 18.3 11.7 23.9 20.3 12.5 5.2 21.7 21.7 7.7 7.4 21.4 0.0 13.8
241 16 23.3 23.3 23.3 10.0 26.7 39.1 24.1 42.9 39.7 45.0 26.7 30.8 1.9 42.9 80.0 15.5
245 17 16.7 23.3 18.3 18.3 8.3 19.6 14.8 33.9 43.1 16.7 10.0 23.1 22.2 10.7 13.3 8.6
249 18 6.7 11.7 1.7 10.0 6.7 2.2 5.6 1.8 6.9 1.7 5.0 1.9 0.0 0.0 0.0 1.7
253 19 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 60 60 60 60 60 46 54 56 58 60 60 52 54 28 30 58

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

D21S1435

159 7 0.0 3.3 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
163 8 3.5 1.7 3.3 3.3 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
167 9 5.2 11.7 6.7 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
171 10 12.1 11.7 21.7 20.0 21.7 10.9 16.0 6.7 10.3 5.0 26.7 16.7 8.0 23.1 10.0 1.7
175 11 29.3 28.3 13.3 35.0 35.0 34.8 34.0 38.3 31.0 43.3 1.7 42.6 42.0 34.6 53.3 33.3
179 12 19.0 15.0 35.0 13.3 20.0 17.4 32.0 18.3 29.3 20.0 36.7 20.4 42.0 11.5 6.7 35.0
183 13 24.1 25.0 15.0 25.0 18.3 34.8 14.0 25.0 22.4 23.3 35.0 14.8 8.0 23.1 23.3 28.3
187 14 3.5 3.3 3.3 3.3 3.3 2.2 2.0 11.7 5.2 8.3 0.0 1.9 0.0 7.7 6.7 1.7
191 15 3.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 3.7 0.0 0.0 0.0 0.0
# Chr 58 60 60 60 60 46 50 60 50 60 60 54 50 26 30 60

D21S1446

201 8.6 8.3 13.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 1.9 0.0 0.0 0.0 0.0
205 0.0 1.7 1.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7
209 25.9 18.3 14.8 45.0 36.7 43.8 46.0 55.2 51.7 60.0 34.5 33.3 39.6 53.9 70.0 48.3
211 0.0 3.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
213 6.9 5.0 13.0 15.0 10.0 10.4 16.0 20.7 6.9 13.3 1.7 7.4 0.0 34.6 26.7 23.3
215 1.7 0.0 0.0 3.3 1.7 2.1 0.0 3.5 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0
217 0.0 3.3 9.3 11.7 8.3 4.2 10.0 0.0 1.7 1.7 6.9 9.3 0.0 0.0 0.0 1.7
219 15.5 18.3 9.3 0.0 3.3 4.2 0.0 0.0 1.7 3.3 27.6 1.9 0.0 0.0 0.0 0.0
221 5.2 6.7 3.7 3.3 6.7 0.0 4.0 0.0 0.0 0.0 0.0 0.0 16.7 0.0 0.0 0.0
223 36.2 31.7 33.3 18.3 31.7 27.1 24.0 20.7 31.0 20.0 29.3 46.3 39.6 11.5 3.3 25.0
225 0.0 0.0 0.0 0.0 0.0 2.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
227 0.0 3.3 1.9 3.3 1.7 4.2 0.0 0.0 6.9 1.7 0.0 0.0 0.0 0.0 0.0 0.0
229 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 58 60 54 60 60 48 50 58 58 60 58 54 48 26 30 60

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

DM

75 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
78 5 26.4 32.0 19.1 32.7 40.0 33.3 39.0 29.4 19.0 30.2 31.0 6.5 0.0 31.6 35.0 0.0
81 6 0.0 2.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
84 7 2.8 2.0 2.4 0.0 0.0 0.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
87 8 1.9 3.0 3.6 0.0 1.3 0.0 1.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
90 9 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.1 4.0 8.0
93 10 11.3 7.0 2.4 0.0 2.5 1.4 3.0 1.0 1.0 12.8 2.0 8.7 0.0 0.0 0.0 4.0
96 11 17.9 15.0 11.9 9.6 13.1 19.4 10.0 6.9 18.0 16.3 26.0 45.7 5.0 4.1 9.0 34.0
99 12 17.9 16.0 17.9 12.5 11.9 8.3 10.0 26.5 22.0 18.6 15.0 3.3 12.0 2.0 9.0 12.0
102 13 8.5 9.0 22.6 15.4 14.4 13.9 24.0 14.7 20.0 11.6 21.0 26.1 83.0 29.6 28.0 23.0
105 14 5.7 12.0 13.1 6.7 3.8 4.2 2.0 8.8 2.0 5.8 0.0 1.1 0.0 9.2 6.0 12.0
108 15 2.8 0.0 0.0 0.0 0.0 4.2 3.0 4.9 6.0 0.0 0.0 0.0 0.0 18.4 8.0 1.0
111 16 0.0 1.0 1.2 1.0 5.6 5.6 0.0 2.0 4.0 1.2 0.0 2.2 0.0 0.0 0.0 1.0
114 17 0.0 0.0 0.0 1.0 0.0 2.8 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 3.0
117 18 0.0 1.0 0.0 0.0 0.0 0.0 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
120 19 0.9 0.0 0.0 2.9 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0
123 20 0.0 0.0 0.0 1.9 1.3 0.0 1.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
126 21 0.0 0.0 2.4 5.9 2.5 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
129 22 0.0 0.0 0.0 5.8 1.9 0.0 2.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
132 23 0.0 0.0 1.2 1.0 0.6 2.8 1.0 1.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
135 24 0.0 0.0 1.2 1.0 0.6 0.0 0.0 0.0 1.0 1.2 0.0 5.4 0.0 0.0 0.0 0.0
138 25 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
141 26 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 1.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0
144 27 0.0 0.0 0.0 1.9 0.0 1.4 0.0 0.0 0.0 0.0 2.0 1.1 0.0 0.0 0.0 0.0
147 28 0.0 0.0 1.2 0.0 0.6 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
159 32 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
162 33 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
165 34 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
# Chr 100 100 84 100 100 72 100 102 100 86 100 92 100 98 100 100

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

SCA

184 19 0.0 0.0 3.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
190 21 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
193 22 0.0 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
196 23 0.0 0.0 2.5 0.0 0.0 0.0 0.0 0.0 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0
199 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.0 1.4 1.4 0.0 0.0 0.0 0.0 0.0 0.0
202 25 1.2 1.0 0.0 0.0 0.0 3.9 0.0 2.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
205 26 9.3 24.5 7.5 0.0 1.1 0.0 0.0 10.0 13.9 20.0 1.1 8.6 29.0 9.2 13.3 1.3
208 27 12.8 9.2 7.5 0.0 2.1 1.9 2.1 2.0 0.0 1.4 0.0 0.0 0.0 1.0 0.0 1.3
211 28 7.0 7.1 8.8 1.1 3.2 11.5 5.2 48.0 33.3 20.0 34.0 30.0 17.0 38.8 25.5 0.0
214 29 10.5 5.1 7.5 41.3 31.9 32.7 29.2 16.0 16.7 18.6 10.6 1.4 0.0 15.3 16.3 17.9
217 30 29.1 25.5 26.3 31.5 38.3 34.6 37.5 16.0 33.3 20.0 22.3 25.7 15.0 24.5 23.5 9.0
220 31 9.3 13.3 17.5 10.9 5.3 11.5 10.4 2.0 1.4 5.7 22.3 21.4 38.0 7.1 7.1 0.0
223 32 10.5 9.2 5.0 10.9 12.8 1.9 9.4 0.0 0.0 4.3 0.0 2.9 1.0 1.0 4.1 0.0
226 33 3.5 2.0 8.8 1.1 2.1 1.9 2.1 0.0 0.0 2.9 9.6 8.6 0.0 0.0 3.0 15.4
229 34 1.2 2.0 2.5 0.0 0.0 0.0 0.0 2.0 0.0 2.9 0.0 0.0 0.0 2.0 7.1 25.6
232 35 1.2 0.0 1.3 2.2 3.2 0.0 4.2 0.0 0.0 1.4 0.0 1.4 0.0 0.0 0.0 19.2
235 36 3.5 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 9.0
238 37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 1.3
250 41 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 86 98 80 92 94 52 96 50 72 70 94 70 100 98 98 78

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

DRPLA

116 6 1.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 5.0
119 7 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 2.0
122 8 4.1 3.0 7.1 10.0 16.3 11.8 12.0 0.0 1.1 7.1 0.0 1.1 0.0 18.4 14.0 16.0
125 9 14.3 13.0 3.6 0.0 0.0 0.0 0.0 2.0 1.1 0.0 0.0 0.0 0.0 2.0 6.0 5.0
128 10 1.0 1.0 1.2 9.0 7.6 7.4 5.0 17.0 18.9 10.7 67.4 0.0 6.3 15.3 9.0 42.0
131 11 6.1 5.0 4.8 0.0 0.0 0.0 1.0 0.0 6.7 0.0 0.0 7.8 0.0 6.1 5.0 2.0
134 12 24.5 26.0 22.6 1.0 1.1 7.4 4.0 1.0 2.2 9.5 0.0 3.3 1.0 2.0 4.0 0.0
137 13 32.7 32.0 13.1 1.0 1.1 0.0 9.0 3.0 3.3 3.6 5.1 7.8 12.5 6.1 7.0 3.0
140 14 6.1 6.0 7.1 9.0 3.3 13.2 3.0 1.0 3.3 3.6 0.0 1.1 14.6 11.2 7.0 4.0
143 15 6.1 12.0 31.0 38.0 37.0 35.3 40.0 28.0 21.1 31.0 24.5 74.4 61.5 9.2 12.0 8.0
146 16 1.0 1.0 7.1 24.0 18.5 20.6 17.0 1.0 4.4 16.7 3.1 3.3 4.2 7.1 9.0 0.0
149 17 0.0 1.0 1.2 5.0 6.5 2.9 4.0 23.0 15.6 6.0 0.0 1.1 0.0 9.2 9.0 0.0
152 18 3.1 0.0 0.0 0.0 2.2 1.5 2.0 15.0 13.3 8.3 0.0 0.0 0.0 1.0 4.0 12.0
155 19 0.0 0.0 0.0 2.0 1.1 0.0 2.0 5.0 6.7 3.6 0.0 0.0 0.0 1.0 1.0 1.0
158 20 0.0 0.0 0.0 1.0 3.3 0.0 0.0 1.0 1.1 0.0 0.0 0.0 0.0 3.1 6.0 0.0
161 21 0.0 0.0 0.0 0.0 2.2 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 5.1 4.0 0.0
164 22 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 2.0 0.0
167 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 1.0 0.0
170 24 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
176 26 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 98 100 84 100 92 68 100 100 90 84 98 90 96 98 100 100

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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Locus Populations*
Fragment Repeat
size (bp) size NI BE BB GR CP BR BW CH JP KA DG PH CA AS WS NG

HD

89 7 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
95 9 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0
98 10 0.0 0.0 0.0 0.0 0.6 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
101 11 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
104 12 2.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 5.2 2.0 0.0
107 13 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
110 14 4.2 1.0 0.0 1.0 0.6 1.4 1.0 0.0 0.9 1.1 0.0 0.0 8.2 7.3 8.0 79.5
113 15 34.2 33.0 28.6 7.3 9.5 9.7 12.0 2.0 3.6 3.3 27.1 26.1 5.1 4.2 2.0 0.0
116 16 7.5 11.0 13.1 9.4 4.4 5.6 3.0 4.0 7.1 2.2 0.0 2.3 0.0 6.3 4.0 0.0
119 17 11.7 10.0 14.3 40.6 38.0 47.2 37.0 72.0 44.6 65.6 52.1 56.8 18.4 55.2 49.0 0.0
122 18 7.5 14.0 10.7 7.3 12.0 19.4 8.0 14.0 26.8 14.4 3.1 4.6 3.1 8.3 16.0 0.0
125 19 13.3 13.0 14.3 6.3 7.0 6.9 13.0 2.0 7.1 2.2 0.0 2.3 0.0 1.0 2.0 0.0
128 20 9.2 7.0 3.6 6.3 10.8 0.0 9.0 0.0 3.6 1.1 0.0 1.1 1.0 1.0 0.0 2.3
131 21 0.8 4.0 2.4 1.0 6.3 2.8 1.0 1.0 0.9 1.1 0.0 0.0 13.3 2.1 6.0 6.1
134 22 0.0 3.0 1.2 3.1 2.5 0.0 0.0 0.0 0.0 1.1 1.0 0.0 0.0 1.0 6.0 3.0
137 23 3.3 0.0 2.4 4.2 1.9 0.0 6.0 3.0 0.9 3.3 8.3 1.1 18.4 0.0 0.0 0.8
140 24 1.7 0.0 1.2 4.2 1.3 6.9 4.0 1.0 2.7 1.1 2.1 4.6 21.4 6.3 1.0 0.0
143 25 0.8 0.0 1.2 1.0 0.6 0.0 0.0 0.0 0.0 1.1 0.0 0.0 2.0 1.0 4.0 1.5
146 26 0.0 2.0 1.2 3.1 0.6 0.0 0.0 0.0 0.9 0.0 0.0 0.0 0.0 1.0 0.0 3.8
149 27 0.8 0.0 0.0 1.0 0.0 0.0 0.0 1.0 0.0 1.1 2.1 0.0 9.2 0.0 0.0 0.0
152 28 0.8 0.0 0.0 0.0 0.6 0.0 1.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 0.0 0.8
155 29 0.8 1.0 3.6 0.0 0.6 0.0 2.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.8
158 30 0.0 0.0 1.2 2.1 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.5
167 33 0.8 0.0 0.0 0.0 0.6 0.0 1.0 0.0 0.0 1.1 0.0 0.0 0.0 0.0 0.0 0.0
170 34 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
# Chr 120 100 84 96 158 72 100 100 112 90 96 88 98 96 100 132

� NI (Nigerian), BE (Benin), BB (Brazilian Black), GR (German), CP (CEPH parents), BR (Brahmin), BW (Brazilian White), CH (Chinese), JP (Japanese), KA (Kachari), DG (Dogrib),
PE (Pehuenche), CA (Cabecar), AS (American Samoan), WS (Western Samoan), NG (New Guinea Highlander).
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