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1. INTRODUCTION

IN this note we consider the following Problem*: Given that the set of
variables (x;, X,,....x,) satisfy the conditions:—

@0< < B ..o X,
(b) The first n — | elementary symmetric functions of the x’s have fixed
values, '

ie.,

1)

X1 Xg. oo Xy = Ky
where &, k,....k,; are fixed, but unspecified, constants.

(c) Maximum and minimum values of successive x’s occur alternately,
L.e., if x, has its minimum value, x, has its maximum value, x, its minimum
value and so on. To find, under the above conditions, the limits of variability
of the x’s, i.e., to find » numbers (ay, ds,....q,) such that

0\<\x1<.a1.<x2<a2<~---<a7z—1‘<xnf< Qyy (2)

By the imposition of the condition (c) we secure the determination not only
of the o’s but also of the initially unspecified constants k;.. . .k,_;.

* This problem was suggested by an example in Goodstein' in which, however, there
are only two constants k£ and they are specified, viz. ky =2 . ky = 1.
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212 G. S. MAHAJANI AND OTHERS

According to condition (c) we have the following two sets of particular
solutions f01 (x1 c X))t

X1 Xo X3 ‘ X4 X
Solution I .. 0 . ) oo ay ay ... (3)
Solution 1I  ..| a; | a, az a;s ag

We shall refer to these two solutions as the two °extreme solutions *’
The condition (b) requires that the elementary symmetric functions of the
quantities in the second row shall be equal to the corresponding functions
of the third row. We show that, under the above conditions, the problem
hasauniquesolution and that the a’s may be determined as the zeros of certain
Tschebyscheff polynomials.

In order to orient ourselves on the problem and gain motivation for the
solution, we first consider some particular cases: n = 3, 4, 5, 6 and then
proceed to the general case of any number of Varlables

2. PARTICULAR CASES

(@) n= 3 0L x1 o< x<a< x;< o Here the two extreme
solutions for the x’s are )
0, as ay .
} @

a3, &y, Ag

The equality of the symmetric functions for the two solutions, imposed by the
condition (b) of §1 may be expressed by the following identity (*the poly-
nomial identity *):

b= 1 —a)=(t —a)? (¢ —ag) + o } ®s)
=13 —kt* 4 kot °
Equating coefficients of powers of ¢ in (P,) we get
20y = ag+ 20, =k,
ay?= a;%4- 2ay05 =k, } ®
whence we find readily that
ajlayta;=1:3:4 : - (6)

and
k12k22a3=6:9:4.
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If we take a; = 4, we have a; = 1, 0y = 3, a; = 4. Even in this simplest case
it 18 worth noting that since, according to (P;),

¢ (1) =1(t —ay)?
b (1) —a)%ay = (f —a)?(t —ay)

¢’ (f) has the roots «,a,, So that we have the identity (“‘derivative
identity )

§O=3 -t + k=30t ~a)(t~a) (D)

This gives
3(a; + ay) = 2k
(“1 1’ } 0
3021(12 = k2
Combining the k;-relation in (5) with the k;- relation in (7) we get at
once

al:a2:03=1:3:4

as before. The relations (5) give 4 equations for determining the 4 quantities
ay, e, Ky, Ky 10 terms of ay, and nothing new is given by (7). Nevertheless
it proves convenient in dealing with higher cases to use the relations corres-
ponding to both (5) and (7). Of course, these relations though redundant
are mutually consistent.

extreme solutions are here
0 az ar) ‘a4

0p 43 Q3 Q&3
and the polynomial identity is
GO= 1=l (r — o))
=(t —a)? (t —ay)® —a,%, (P,)
=t — Ikt 4kt — kgt
Now ¢’ (¢) has the roots a;, a,, as so that the derivative identity is
¢ ()= 41> —3kyt® -+ 2k,t — ks }
=40t —a)(t —ap) (f —ay)

Equating coefficients of powers of ¢ in (P,) and (D,) we get the following
two sets of relations:—

(Dy)
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2(a; + ag) =20y + @y = key
20,05 (ag + a3) = ay’ay = ks
a,? 4+ dajoy + ay2= ay?+ 2aua, = K,

4 (a; + ag + ag) = 3k, J
4 (agay + agag + azay) = 2k, } ©)

4a1a2a3 = k3

(8)

Combining the k;-relations in (8) and (9) we get '
a; +Faglagia,=2:1:2 (10) |
Again, combination of the ky-relations in (8) and (9) gives
a0y = % ay® (11)
Thus a,, o, are the roots of |
f(x) = x? ——a?)C + fa? = : (12)
and a, is the oot of  (x) = 2x —a, =0 | (13)

)n=50< << 5N < Xy K as < Xy < a0, < X5 < as.
The two extreme solutions are now
0: Qg, Qg, a’49 CL4
ay, @y, Qg. a3a as
and the polynomial identity becomes
(D=1t —a)?(t —a,)?
= (t - a1)2 (t — as)z (.t - ‘15) -+ a12a320,5 (Ps)
= t5 '—klt4 + k2t3 o katz + ]C4t
The derivative identity is
¢ (£y= 5t* —4k,13 + 3kyt? —2kot + ky

=50 —oy) (t — ap) (t —ag) (I — ay) } (Ds)
From these we derive the relations:
2zt a) =2(a; + ay) +o;=k, ' %
ap? + daguy + a4 = a;2 - 4oyag + a3 4 205 (0 + ag) = ks, :
2a504 {ay + ay) = 2ai03 (2 + ag) + a5 (0,24 a,%) = ky (14)

2“2“4 (‘12 -+ a;) = 20'10-3 (% + a3) + as (_a12+ a32) = k3

aya,® = o, + 200505 (a; + o) = ky
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52@1 = 4k1
52a0y =3k,
52,0005 = 2k,

Sa,050q0, = K

(13)

- Here the functions on the Lh.s. are the elementary symmetric functions in

(“1: Qq, Qg, a4),

Combining the &,-relations of (14} and (15) we get

3
a + ag= 7%
; (16)
Ay - ay = 3%
while from the k -relations we have
1
“% = 16 a5® 1
Aylly = ~§- a 2 J (17)
244 T 16 5
Thus a,, a4 are the roots of |
f(x)sx2—§a5x+ 11—6%2:0 (18)
and a,, a, are the roots of
g (x)=x* — i agX + "1% as? =0 _ (19)
Observe that
5 d
SF () = xt 2 (i ()
With «¢; = 4, we get:
3 —4/5 5 —4/5 3 5 544/3
o= __._._2..\/5, gy ..231_5, o = _7521/“5, .= ”"‘tz‘ﬁ’ o d

(d) n = 6. With six variables, the polynomial identity is
$(N=1t(t —a)? (t —ag*(t —a)
=(t —a)?(t —ap)?(t — )’ — o a5’ (Pg)
=18 — k4 kott —kyt® + kyt® — kgt



216 | G. S. MAHAJANI AND OTHERS

and the derivative idengity becomes |
¢'(f) = 61° — 5klz4‘ + iyt — 3kqt® + 2kt — Ky Dy
=6(t —a) (t —ay) (t —ag) (f —ag){t —a;)

Equating coefficients of powers of 7 and combining the k-, k- and kg
relations from the two sets so obtained we get

a; + ag -+ ag  a, +v,_aa _ Y%
3 o 2 T2
485 T Gya5 + A58y _ asay — .9‘22 2
9 T3 T U6t (20) i
1
a1a3a5 - “3"2 L7 J

Hence a;, a4, a; are the roots of

flx)=x8 —-%asx2-l~ 19‘6%236 —31§ a3 =0 (2D
while ay, a, are the roots of
§ ()= 5 —agr + > ay? =0 | 22)

It will be noted that here ¢ (x) = 1 £ (x).
With a; =4, we thus have

=2-V3a=1a=20=30=2+v3aq=4

To summarise, we have the following solutions in the particular cases consi-
dered above (taking o, = 4 always):

n = 3, (CLI’ Ao, Cl.a) —_ (1. 3, 4) .
n= 4: (aln A, Qg, a4) = (2 - '\/ia 2> 2 + '\/2_’ 4)
n= 5: (ah Ao, Qgy Oy, a5) = (3 "_‘;?"\/5’ > = \{S‘s 3+ ”35 5"-!_ ’\“/“SM» 4')

2 2 2 i
n =06, (a, as, as, o, aj, ag) =02 —4/3, 1,2, 3,24 4/3, 4). E
It will be observed that for n =4 and n = 6, one of the a’s has the value

2 (= 3q,) and that the remaining o’s apart from o, itself, are symmetrically
situated with respect to this.

We shall see that this is true generally for all even values of a. For
n=3and n = 5, if we omit a,, we notice that, of the remaining o’s the sum
of any pair of quantities equidistant from the two ends is always equal to o,
This will also be found to be true generally for all odd values of n, :
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3. GENERAL CASE OF n VARIABLES

In dealing with the general case it is convenient to consider the cases
of n odd and n even separately.

Case 1—0Odd number of variables, n =2m + 1
0 < << 6 o K Xy, S g, < Xy < Ay (= €).

The two extreme solutions for the x’s are

0, ay, Gy, Ogy Qyy. .o . Ooyyy Qo
0y, Ogy Og, Qs v v . By 1y Qopyqs & }
We have therefore, on account of the condition (b) in § 1, the polynomial
identity
p(N=1(t —a)*(t — ag)? .. (F— ay,)?
=(t —a)2(t — g .. 0t —ap ) (t — &)+ orag? ““22m—1} (Pgmia)

=y ik 2 gyt
For the derivative identity we have
&= @m+ 1) 17" = 2mk, =14 (2m —1) k-2 —. ...

—————

o —2kypqt + kzm (D2m+1)
= (2m + 1),(’ —ap) (t —ag) (t —ag)....(F—ag,y) (f —agy) )
Let
f(t) = (t —al) (t - ‘13)- o '(t"" a2m—-1) = (" — S1tm—1’l" Sztm-,z""- |
—1)
A @)
A=t —a)(t—ag....(t—ay,) =" —oyf" Mot 2~
. -+ (=1, J
Introducing (23) in (Py,,.1) and (D,,,41) We get
" =yt oyt = A (— Dot + (= 1), )
= [1" —s " st —. A (= 1)t ’ >
m. 18 s (P 2)
+ (— ]) Sﬂl] (t —5) + me |
B e S N oY }
(2m + 1) [tm -01'tm“1+ Gzt’”‘“z—— o + (__ l)m'lo'm.,lf + (__ l)mo.m]
138 e o P (=D syt + (= 1)7s,, /
(D 2m+1)

= (2m + 1) 12" = 2mhy ™"+ Qm — 1) ko™ 2 — .
| —~kopr t+ Koy
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Equating coefficients of #2”, 1¥”-1, . ... ¢"+1in (P's,,,1) and (D',,,+1) We obtain
the two sets of relations:

20'1:25'1"]'"' f=k1
0'12—'}" 20'2 - S12+ 252 + 2§S1 = k2
20’3 -+ 20’10'2 = 253 + 251S2 = §(2S2 + 312) = k3 f

. (24)
20’4 + 20'10'3 + 0'22: 2S4 + 2S1S,5 ‘1"‘ S22+ 25 (.5'3 + S].S2) F— k4

+ 258, 0t ... )=k,
@2m—+ 1) (o + 5,) = 2mk, A
@m 4 1) (05 + 0,8, + 52) = @m — Dk, (25)
2m + 1) (o5 + 0185 + 008y + 53) = Cm —2) k,

--------------

(2m + 1) (Gm+ O-m—lsl + U?ﬂ—2S2+ e + Ulsm-l—l_ Sm) = (m + 1) km.

These constitute 3m relations for determining the 3m quantities (a,, as,. - ..
Qopis G2p)s (K1, koo ... k,,) in terms of §*. By combining corresponding
relations from (24) and (25) (conveniently labelled by the k’s on the r.h.s.),
we can solve for the o; and s; in terms of é&. Thus, by combining the ,-
relations from (24) and (25) we get

Ll‘:%f

Next combining the k,-relations and using the values of o,, 5, we get

0y

2m+1~ 2m

O3

— S £\?
2m+1—2mi3“@”””(ﬂ~

Proceeding like this we get the following solution:

T3 AP 1

6
1= g s = 3 =2 2m —3) (§)’, etc

* If we equate the coefficients of all powers of 7 in (P'am +1) & (D'am + 1) we obtain 3 m

further relations, some of which determine the ini g i
: lations, som remaining &’s, while t i i
satisfied in virtue of the rest, E ; ile the others are identically
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These give

sand

------------

----------------

-------

Hence, by (23), (o, a,, .. .. @y, 1) are the roots of

f@=x"—(

and (ay, ay, ...
=5 ()

()G

2m1-- 1)(5) 1L (2m -2

() -0

.Gs,,) are the roots of

)2x"“2——....

" 2)(§)22%m-:2“3 —

If we multiply these equations by (4/£)” and put

they become

F )= (g)m f (i”) " (2m —1 ) -
0

u=4x/¢

219

(26)

(27)

(23)

(29)

(30)
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Case I1—Even number of variables, n = 2m.
0<%y X<< o< .. S Xom < 09,1 KXo < gy (= 6.
The polynomial and derivative identities corresponding to (Py,.,) and
(D,,, 1) are now, respectively,
$A=1(t —ag)?(t —a))... (I — a5y 0)* (f — &)
EU*@WPWJ~~(*%MVF%%Ju-ﬁwl} (Py,)

= ¥ — k171 kgt — + ko, ot® —ky,, 11
and o g
¢'() = 2mt¥"-* — Qm— 1Y k2224 (2m—2) N
+ 2ksy0f — kg } (Dy,)
=2t —a)(t —a).... (¢ — topg) (T — gpy)
Proceeding as in Case I we now.obtain the following results:
s e & \
m m— 2
% - m‘_’f 2° (2m —3) (5)2

--------------

Thus we find that (ay, ay, .... =a,,_,) are the roots of

po9=sm= () (7§ o -

(Y i () o 00

and (o, a3,.... a,, ;) are the roots of

== ()@ @

A )(E) T w+ -y () =0

(33)

Ny
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If as in (30) we write u = 4x/¢, these equations become

= () T(§)memn (e ()
— (=1 "(”H' 1)u+ (— 1y, " )=0
= () (00T OIS
+“”“%ﬂhﬁ+“”wa=0% (37
It is to be obsetved that in Case I, for example,

f(x)= 2x"* e ()}

so that the roots of f(x) =0 separate those of ¢ (x) =0, as indeed they
should. A similar remark applies to Case II also, where

b =2 (.

The problem is thus reduced to showing that the equations have real roots
and to obtaining these roots explicitly if possible. We shall show that both
these objects can be attained by reducing the polynomials on the Lh.s. of
these equations to Tschebyscheff polynomials.

Ill

4. COMPLETION OF THE SOLUTION BY REDUCTION TO
TSCHEBYSCHEFF POLYNOMIALS

Consider &(u). We have
. 2M—1\ p_y
Fa)=Z(—1Yy =
_w>m(>( Yo
(= E _1, m=ry .
(=0 E=1y (1)

[reversing the order of terms]
o Jnm — 1V m-r 7
= (=1 Sy (7))

,—_-(—-1)”"‘F(m+ 1, —m; %; %)

in the notation of hypergeometric functions.

Restoring x in place of u, we get

0= ()= el ma )
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Similarly we find that

i (x) = (4) ~')—~ (=D~ (g)mF(m—{— 1, —m; ;j; -z) (39)
g (x) =(4) e, (f?)=(—1)'"-1 (ﬁ)m'lp (m +1, —m+ 1553 g) (40)
=) A= () ZF(m —m ks z) @)

We now make use of the following known results?:—

1 —{—p, 1—— - cos (p arc sin x) )
F ( » 2 ) T —xH @
1+p 1—p, 3. ,\_ sin(parcsinXx) : 42p
F ('-——-‘ ““—“ ’ 23 X )'— “x ( )
F (’f, - ‘%; 1; xz) = cos (u arc sin x) (42¢)
3 sin (p arc sin x) 42
1 — L) ¢
F(1+’ﬂ"‘>1 %’-‘"a 2,X) [.LX(I ___xZ)} ( (])

Using these and recalling the definitions of the Tschebyscheff polynomials®:
T,, (x) = cos (n arc cos x)

U,* (x) = (1 —x®¥sin {(n + 1) arc cos x}

we find that

109 = (§ 0w v = ({) o O e

o= () @@= ()= R
oo = (§) gl - ()7 g

fi(x) = ( 4) T2m Vx[E = ~(§) {cos 2m arc cos 4/x[€}

The above identifications assume that 0 << x << ¢ which, of course, is satis-

fied since the a’s lie in (0, £). Butit may be mentioned that the reduction
of £(x), ¢ (x), /1 (x), 1 (x) to Tschebyscheff polynomials may be carried out
without any restricting condition on x, by starting from the definitions

T,(x)=F (n —n;3; 1_-2_—3
U,,*(x)=(n+1)F(n+z 3. 1—x

n 3 ') 3 2
and using some formule of transformation of hypergeometric functions,
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It is wellknown that the roots of the polynomials T, (x), U,* (x)are
all real and lie in (—1, + 1). Therefore the above expressions show that
the equations for the o’s have all their roots real and located in (0, £).
Further, these expressions yield the following explicit solutions for the o
in the general case:

(@) n=2m+1:

ay;_y = € cos® Zmﬂ;F"f
. (2]——])# (j=1,2....m) (44)
i = € 008" 5 Yy
Qapppr = f
(b) n=2m:
ay=Ecostas, j=1,2,....(m —1)
2 — 1) @)
Qo = fCOSz ”‘W’ I"= 1:2a N

Qo = f
It is clear that for all even n (= 2m), one of the a’s has the value £ In fact,
if m=2gq

o agy = 3¢
while if m=2q —1,
C"Zy--l = %f
ie., for all m:
Ay = %f

It is also easy to see that, in this case, the remaining o’s are symmetrically
situated w.r.t. a,. Further it is easily verified that for odd n (= 2m 4 1),

0y F Gy = Op T Gy = Og T Gypp™ wvve = €.

Added in Proof
It will be observed that, if we take the origin at e, instead of at O,

then for any n (odd or even) we have

f::ao—l— a, = a; + Oy = *°° ete.,

=2a,,, if nis even

Thus there is symmetry from the two ends in all cases.

These properties are illusteated by the particular solutions enumerated in §2.
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