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1. INTRODUCTION

IN a former paper (Proc. Ind. Acad. Sci., 1952, 35 A, referred to hereafter
as p) we considered the following problem : Given that the set of variables
(X1 X3 - ...5 Xn) satisfies the conditions:

(@) 0K %< X< LK Xy
() Zx, =Ty

Z .XIX2 = kz

--------------------

where ky, ko, ....ky_, are fixed but unspecified constants.

(¢) Maximum and minimum values of the successive X’s
occur alternately, i.e., if x; has its maximum value, x, has its minimum
value, x, its maximum value and so on.

To find, under these conditions, n numbers (a,, as.. .., ay) such that

0*< x1< a1< x2< a2< ‘e \<.,_ an_1< x”< Un.

It was shown in p that the o’s are the roots of certain Tschebyscheff poly-
nomials and that they possess certain symmetry properties.

The object of the present note is to offer some supplementary remarks
indicating an alternative formulation of the problem as a problem of condi-
tional maxima and minima. This formulation shows that the original problem
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is but one of a class of similar problems, all of which are governed by the
same extremising condition and that the “ two extreme solutions” con-
sidered in the previous paper (p, p. 212) are indeed such. We give solutions
for some of these other problems and also present some additional considera-
tions regarding the original problem.

2. NeEw FORMULATION OF THE PROBLEM
Given that

A< < < < .. K agy < < ag (1)

2XXy = ks

....................

(2)

. To make ¢ = x;X,....x,= k, an extremum.

We assume that no two of the o’s in (1) can be equal, for if two of the
o’s are equal, say a, = a,_;, then x, would be reduced to a constant and
the problem would be reduced to one in » — 1 variables.

By the Lagrange method of undetermined multipliers it is readily seen
that the stationary values of ¢ occur when

I(xp —x5) =0 (3)

i.e., extreme values of ¢ occur when any two of the x’s are equal and, on
account of (1), this can happen only when

-\’7'_1 == xr, ¥ = 2, PR 4 (4)

Thus ¢ has n — 1 stationary values. It is now evident that our problem

in p is that particular case corresponding to the maximum number of equal
pairs of roots, viz.,

@ X, =X, = a;, X3 = X; = a, etc.
or () X3 = ag, Xp= X3 = ay, X; = X5 = a,, etc.

so that ¢ has only two stationary values. From (3) we see that ¢ is stationary
when the polynomial

SX) = x" — kx4 kyx®2 — Jpx™3 4 .t kpyyx T ky
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has a pair of equal roots, the condition for which is the vanishing of the elimi-

nant of
f (X) = x" — klxn“]‘ + RN :F kn._lx :{: krn =0

() =nxt—m—Dkx" 2+ ... Fkyy=0
By Sylvéster’s theorem, the eliminant will be a relation of the form
F(ky, koy ... Kpy, ky) =0 (5)

‘in which ky, ks, ....kn_, each occur to the degree n but k, (or ¢) occurs
to the degree n — 1, corresponding to the n — 1 stationary values. These
(n — 1) stationary values will in general be different, but by a proper choice
of ky, ks, ....kny, the eliminant (5) can be reduced to the form

(=N (—n)P=0, r+s=n—1 (6)

Conversely, if (5) reduces to the form (6), the k’s are determined. The two
stationary values given by (6) correspond to the ‘two extreme solutions’
referred to above. This offers a natural approach to our original problem
but it seems difficult to carry out this programme in general.

3. OTHER RELATED PROBLEMS

The conditions for an extremum in the problem considered above can
also be written as follows:—

d (Xx,) =

d (2x;%,) = Z

.................... 7
d(Zxxy. ... Xpq) =0

d(Xy....Xnp) = S

the last of which holds because of the required stationary character of the
function, while the remaining equations are consequences of the constancy
of the concerned functions. It will be observed that exactly the same equa-
tions are obtained if, instead of making ¢ = ky, stationary, any one of the other
k’s is made an extremum, all the remaining X’s being fixed. Thus the condi-
tion (3) for an extremum holds for all the » different problems:—

(i) any one k, = extremum, r =1, 2,...0rn

(i) all other kg, (n — 1) in number, (s r) fixed.
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As in the original problem, we consider for each of the new problems only
the case corresponding to the maximum number of double roots. By way
of illustration we give the solutions for » =3 and n = 4.

The Case n =3
Problem ag aq ay g
ky =Stationary m—+ 1 m m(m—+ 1)
. k2, ka ﬁxed { 2m 2
ko, = Stationary 2 1 " 2m?
ky, k, fixed m+1 » m+1
k; = Stationary 3—m 1 m 3m—1
ky, k, fixed 2 2
The Case n =4
k, = Stationary | ome (m—1) 1 !m‘z——l m? (m*—1) m2(m + 1)
ko, kg and k, fixed | (m+1) (m—2)2 4—m? (m—1) (m+2)*
k., = Stationary (m*—m+1)— 1 2 m? — m+1)+
ks, k, and k; fixed| (m-+1)4/m2+1 m (m—+1) v/m2+1
k, = Stationary . i m m ’(jzl—l) c
ky, k; and k, fixed where g, ¢ are the roots of (n-+-1)%2 — 2 2m+1) (m?—1) ¢
4+ @Bm—1)2=0 :
| 1
k, = Stationary \ B
ki, ko, and k, fixed m— (7}1——1)\/5‘3 1 m 2m — 1 m+(m—1)4/2
!

In our original problem (kn-stationary) we took ae=0. It is readily
verified that the Polynomial Identity formulated for the case aq# 0

transforms itself into the very identity for the case a; = 0 (p, p. 217, 220)
by the mere substitution:

YU =1— 04

ar — oy = a,
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f - Qg = ')’E '
oy #0

Taking y = 1, we see that, when oy 0, the differences (aq — ay), (a3 — ay). .,
(e, — @) are the roots of the Tschebyscheff polynomial found in p. We
might here draw attention to one important distinction between the problem
of k,, stationary and the others corresponding to k, (r n) stationary. In
the former case, the ratios (a; — ag): (ag — ag): . ... :(ay — ap) are inde-
pendent of any arbitrary parameter; this is not the case for the other problems.

4. REMARKS ON THE SYMMETRY PROPERTY

For the solution of the original problem we established in p the following
symmetry relations for any n:

ag+an= 0y + apy = 0y T Upp= ... (8)

It should be possible to prove these relations from the basic governing rela-
tions, without obtaining the explicit form of the solution.

Consider the case n = 2m + 1. 'We have then the polynomial identity
(p, p. 217), generalised to the present case a7~ 0,

$(1)=(t—ap) (t—a))?(t — ap)®....(t — agm)®
= (t — a1)2 (t— a3)2. (= 0‘2m—1)2 (l‘ - f) +
(€ —ag) (0 — ag)? (a3 — ag)®. . . (aam— — @)™

Since this is an identity, ag, da, 4. - - - 0gm as zeros of ¢ (1) are uniquely deter-
mined as functions of ay, ay, - ...Gym—y, €. By writing £ — f + a, for ¢, the
identity becomes, after a slight rearrangement

(t—ag) Tt — (€ + ap— a)l® [t — (€ + o0 — ap)?
[t — (¢ + a0 — am )P
— = (o — o)l [t — (€ +ay— o)
[t — (¢4 o — em)B (1 — &)
(£ — o) (01— 0)* (3 — a0)*. - (Gams—00)°

Comparing this with the previous form we can see that the identity is satisfied
if we write
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f + Qg — 04 = Qgm
5 -+ Og — O3 = Oom-2
£+ opg— dopg = o
Of course, & = aymyy = 0.

On account of the above-mentioned uniqueness, it follows that the
sought relations between (ag, ag, 0. . . .aym) and (ay, az. . ..demly, £) are just
these, which are of course the desired symmetry relations. However a similar
proof does not work for the case n = 2m.
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