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VECTOR BUNDLES TRIVIALIZED BY PROPER MORPHISMS AND
THE FUNDAMENTAL GROUP SCHEME

INDRANIL BISWAS AND JOAO PEDRO P. DOS SANTOS

ABSTRACT. Let X be a smooth projective variety defined over an algebraically closed
field k. Nori constructed a category of vector bundles on X, called essentially finite
vector bundles, which is reminiscent of the category of representations of the fundamental
group (in characteristic zero). In fact, this category is equivalent to the category of
representations of a pro—finite group scheme which controls all finite torsors. We show
that essentially finite vector bundles coincide with those which become trivial after being

pulled back by some proper and surjective morphism to X.

1. INTRODUCTION

Let k be an algebraically closed field, and let X/k be a smooth projective variety. By a
vector bundle we mean a locally free coherent sheaf. We are interested in studying vector
bundles on X enjoying the following property:

(T) There exists a proper k—scheme Y together with a surjective (proper) morphism
f Y — X such that the pull-back f*FE is trivial.

Note that we can, and usually will, assume that Y is a proper variety: just replace Y
by the reduced subscheme underlying an irreducible component of ¥ dominating X.

In [9], Nori introduced the category of essentially finite vector bundles on X; this cat-
egory “is” the category of representations of a pro—finite group scheme which generalizes
(respectively equals) the étale fundamental group of SGA1 in positive characteristic (re-
spectively characteristic zero). A vector bundle £ — X is essentially finite if and only
if there exists a finite group scheme G, a G-torsor f : P — X, and a representation V'
of G, such that E = P x% V. (This is not Nori’s original definition, but one of the main
consequences of [9].) Since the G—torsor f*P is canonically trivialized, the pull-back f*E
is trivializable, so that essentially finite vector bundles enjoy property (T). We establish
a converse, which should also be regarded as a generalization of a result due to Lange

and Stuhler [5, Proposition 1.2] stating that a vector bundle trivialized by a finite étale
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covering comes from a representation of the étale fundamental group. The reader can also
regard what follows in connection with Proposition 1.2 of [SGA 1, X]; of course, the point
here is not to impose conditions on the trivializing morphism other than properness and
surjectivity.

Theorem 1. Let X be a smooth and projective variety over the algebraically closed field
k. A wvector bundle E over X is essentially finite if and only if it satisfies property (T).

Property (T) of vector bundles is in fact stronger than it appears to be. Here is what
we mean by this. Let f : Y — X be a proper and surjective morphism and ¥ — X a
vector bundle such that f*E is trivial. Consider the Stein factorization of f

I g

Y

Z = Spec(f.0y)

X .

Using the fact that f./Oy = Oy, it follows that if V' — Z is a vector bundle such that
(f)*V is trivial, then V itself is trivial. Hence, g*F is trivial. This shows that a vector
bundle E over X satisfies property (T) if and only if it satisfies the following condition:

(TF) There exists a finite and surjective morphism g : Z — X such that ¢*F is trivial.

This allows us to state an equivalent version of Theorem [I}

Theorem 2. Let X be a smooth and projective variety over the algebraically closed field
k. A wvector bundle E over X is essentially finite if and only if it satisfies property (TF).

Remarks: (a) Let f : Y — X be a surjective morphism of finite type such that
f*E =2 0F". For each z : Spec(k) — X, we pick y : Spec(k) — Y satisfying f oy = z.
We have z*F = y* f*E, hence x — dimyx*E = r is a constant function on the closed
points of X. As X is of finite type, it must be a constant function [4, p. 125, Ex. 5.8(a)].
We then apply [4, p. 125, Ex. 5.8(c)] to conclude that E is a vector bundle.

(b) Below, see the remarks on page[d, we observe that Theorem [I]is true in characteristic
zero even if we only require X to be normal.

(c) If k is the algebraic closure of a finite field, then Theorem [l is a direct consequence
of Proposition dl and Maruyama’s conjecture proved by Langer [6].

1.1. Some notations and conventions. As before, k stands for an algebraically closed
field. A variety is an integral and separated scheme of finite type over k. Here X will
always stand for a projective smooth variety over k. The dimension of X is denoted by
d. For any scheme Y, the category of vector bundles over Y will be denoted by VB(Y).
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By L we will denote a very ample line bundle on X. Degrees of vector bundles are always
taken with respect to the polarization L. The rational number
a(L) ™ Ne(E)  degree(E)

rank(E) ~ rank(E)

n(E) =
is called the slope of E.

Tannakian categories. We will follow the conventions of [3]. All Tannakian categories
will be over the field k£, and if w : T — k—mod is a fiber functor, we will denote by
7(T,w) the corresponding group scheme [3, Theorem 2.11], [9].

2. TANNAKIAN PROPERTIES

We use the formalism of Tannakian categories to study property (T).

2.1. The category of objects with property (T).

Definition 3. (i) Let T(X) denote the full subcategory of VB(X) whose objects are
vector bundles satisfying property (T), or equivalently, property (TF).

(ii) Let f: Y — X be a surjective and proper morphism. We will denote by Ty (X)
the full subcategory of T(X) whose objects become trivial when pulled back to Y.

A vector bundle F — X is called Nori-semistable if, for every pair (C',«), where
C'/k is a smooth projective curve and o : €' — X is a morphism, the pull-back o*F is
semistable of degree zero.

Proposition 4. Let E € T(X). Then E is Nori-semistable.

Proof. Let a : C'— X be a morphism from a curve. Let f : Y — X be a surjective
proper morphism such that f*F is trivial. We can find a smooth and projective curve
C’/k and morphisms § : ¢/ — Y and v : ¢/ — C such that fo§ = aov and v is
surjective. Hence v*a*F is trivial. This implies that a* E is semistable of degree zero. [J

Corollary 5. (i) Let f : Y — X be a proper surjective morphism from a variety Y .
Then Ty (X) is abelian.

(i1) The category T(X) is abelian.

(11i) Let Y be as before, E,Q be vector bundles of degree zero, and o : E — Q be an
epimorphism. Then, if f*FE is trivial, so is f*Q. In particular, the subcategory Ty (X) is
stable under quotients in T(X).
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Proof. (i) Let a : E — F be an arrow of Ty (X). From the assumptions, we conclude
that Ker(f*(a)), Im(¢*(a)) and Coker(f*(«)) are all trivial. Since E and F' are Nori—
semistable, it follows that Ker(a),Im(«) and Coker(a) are all vector bundles [9, Lemma
3.6]. It is then straightforward to see that f* commutes with Ker(«) and Coker(a) so
that the kernel and cokernel of v are in Ty (X).

Part (ii) can be easily deduced from (i), since every pair E,E’ € T(X) belong to
Ty (X) for some Y which is integral.

To prove part (iii), let ¢ and n be the ranks of ) and E respectively. Let Gr(q,n)
be the Grassmannian parametrizing linear subspaces of codimension ¢ in A”. We let U
be the universal quotient of Og:‘( 4y SO that the line bundle det(U) — Gr(g, n) is very
ample [§]. The hypothesis on E allows us to define a morphism

7Y — Gr(g,n)

such that v*U = f*@Q. Unless the dimension of the image of 7 is zero, the ampleness
of det(U) contradicts the assumption deg(@)) = 0. Hence v is a trivial morphism, and
thereby f*@ is trivial. O

It is clear that if E, I are objects of T(X) (respectively, Ty (X)), then £ ®¢, F is also
an object of T(X) (respectively, Ty (X)). This endows T(X) (respectively, Ty (X)) with
a k-linear monoidal structure.

Corollary 6. The category T(X) is Tannakian over k. If xy is a k—rational point, then
taking the fiber at xy defines an exact and faithful tensor functor zf : T(X) — k-mod.

2.2. Reformulation of Theorem [I]in terms of the category T(X). In order to state
the next result, we need to introduce some terminology and recall some well known results
from the theory of Tannakian categories.

Definition 7. Let (T,®) be a Tannakian category over k and V an object of T. The
monodromy category of V', or the Tannakian subcategory generated by V', is the full sub-
category

(V:Te
of T admitting as objects the sub-quotients of all generalized tensor powers

[V®“l 2 (VV)®b1] DB [V@W ® (VV)®b"] 5

where VVisthedualto V. If w : T — k—mod is a fiber functor, we define the monodromy
group of V' at w to be the Tannakian group scheme associated to the monodromy category
via w. (See [3, Theorem 2.11]).
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Remark: It is not hard to show that if T = Rep(G), where G is an affine group
scheme over k, then the monodromy category of V' € Rep(G) is equivalent to the category
of representations of Im (G — GL(V)).

Definition 8. Let T be a Tannakian category over k. We say that T is finite if there
exists an object ® such that every object M € T is a subquotient of some direct sum ®%2.
(The terminology is justified by [3, Proposition 2.20].)

The following theorem, which will be proved in Section [, implies Theorem [II

Theorem 9. For each E € T(X), the Tannakian category (E;T(X))g is finite (see
Definition [§).

Proof that Theorem [Q implies Theorem[1: Take any E € T(X), and let G be the finite
group scheme associated, via the fiber functor ), to the category (E;T(X))s. Hence, by
the results in [9, § 2], there exists a G-torsor P — X such that the functor

P x% (o) : Rep(G) — (E;T(X))s,

that send any G-module V to the associated vector bundle P x% V, is an equivalence
of Tannakian categories. But if V' is a finite dimensional representation of G, then [9]
Proposition 3.8] shows that P x% V is essentially finite. O

3. THE S-FUNDAMENTAL GROUP SCHEME AND REDUCTION TO THE CASE OF CURVES

We will show how to reduce the proof of Theorem [Q to the case where X is of dimension
one. This is possible due to a “Lefschetz Theorem” proved in [7].

3.1. The S—fundamental group scheme [2], [7].

Definition 10. The category Vecty(X) is the full sub-category of VB(X') whose objects
are strongly semistable vector bundles V' with

[er(L) Nea(V)] = [ea(L)T Nehao(V)] = 0,

where L is a fixed polarization on X and d = dim X.

The category Vectg(X) in Definition [[0lis Tannakian [7, Proposition 5.4] and the fiber
functor constructed using a k—point x( defines a fundamental group scheme:

m(Vecty(X), xo) -

Let Fry : X — X be the absolute Frobenius morphism if char(k) > 0 and the
identity map otherwise.
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If £ € T(X), then clearly Fri E is also in T(X). Hence, if E is a vector bundle of
T(X), then (Fr'y)*E is Nori-semistable for every m € N; this entails that E is strongly
semistable with respect to the polarization L on X. Using the projection formula for
Chern classes, it is also clear that ¢;(E) is numerically trivial for any F € T(X) and any
¢ > 0. Thus we have a natural fully faithful exact functor of Tannakian categories

(1) T(X) — Vecty(X).
By Corollary [ (iii) and [3, Proposition 2.21], we have:

Lemma 11. The homomorphism of group schemes corresponding to ()
(2) m(Vecty(X), m9) — w(T(X), z0)
is faithfully flat.

Proposition 12. Assume that Theorem [ holds for curves. Then it holds for higher
dimensional X .

Proof. We will proceed by induction. We assume that dim(X) > 2 and that the theorem
has been proved for all smooth projective varieties C' with dim C' < dim X. We will now
establish the existence of a smooth irreducible effective divisor C' <— X such that the
natural homomorphism of group schemes

(3) m(Vecty(C), xg) — m(Vecty(X), zo)

is faithfully flat. Due to [7, Theorem 10.2], it is enough to find a smooth, connected,
ample effective divisor C' of high degree. We now apply Bertini’s Theorem (see [4, p. 179,
Theorem 8.18] and [4, 7.9.1, p. 245]) to X embedded in PV using the line bundle L®".

Let f:Y — X be a finite morphism from a variety Y to X and consider FE € Ty (X).
Clearly the restriction E|c is an object of T(C'). From Lemma [l we know that the
natural functors

(E;T(X))e — (E; Vectj(X))e

and

(Ele; T(C))e — (Elos Vecti(C))g
are equivalences: they are fully faithful, their essential image is stable by subquotients
and, by definition (see Definition [7]), any object of the target category is a subquotient
of an object from the source category. As the homomorphism in eq. (3]) is faithfully flat,
the functor

(B3 Vet (X))o —> (Blcs Veets(C)) o
is also an equivalence (follows by repeating the previous argument). In conclusion, the

Tannakian categories
(E;T(X)e and  (Elc;T(C))s
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are equivalent, and hence (E;T(X))g is finite by the induction hypothesis. O

4. THE CASE OF CURVE (CONCLUSION OF PROOF)

From now on we assume that X is a smooth projective (connected) curve over k. This
has the consequence that torsion free sheaves and vector bundles coincide.

4.1. The maximal slope of certain coherent Ox—algebras. Let
f:Yy —X

be a finite dominant morphism from a projective curve Y and take any F € Ty (X), i.e.,
the vector bundle f*F is trivial. We assume that the extension of function fields provided
by f is separable (in other words, f is generically étale). Let A denote the coherent
Ox—algebra f.(Ox).

The following very simple observation is the key for all further considerations: Using

the projection formula we have an isomorphism

(4) F®o, A=A,

This isomorphism induces a monomorphism of O x—modules
(5) a: B — A%,

Proposition 13. Let A, denote the maximal destabilizing subbundle of A. Then the
image of « is contained in (Amax)®".

Proof. Evidently, the proposition will be proved once we establish that
Mmax(*AEBr) = ,Umax(A) = 0.
Note that it is enough to show that fimay(A) < 0.

Assume that piya., > 0, so that Ay is semistable of positive slope. By adjointness,
we have that

HOHIy(f*(.AmaX),Oy) = HOmx(.AmaX,.A) 7’é 0.

But, by the separability hypothesis made on f, we know that f*(Anax) is (f*L)—semistable
of positive degree, so there are no non-zero homomorphisms from f*(Ana.x) to Oy. Hence
Pmax(A) < 0. O

Proposition [I3] has the following corollary:
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Corollary 14. Let f : Y — X be as above. Then there exists a semistable locally free
coherent O x—module M := Anax of degree zero such that for each E € Ty (X), there
exists a monomorphism of Ox-modules

ag : B — M®E

4.2. The case of separable (generically étale) morphisms. We continue with the
above notation:

f:Yy —X

is a finite surjective morphism from a projective curve Y which induces a separable ex-
tenston of function fields; E is a vector bundle on X such that f*F is trivial.

Recall that in Corollary [I4], we showed that each V' € (E;T(X))g is a sub—quotient of
a direct sum of copies of a fixed torsion free semistable coherent sheaf of slope zero.

Theorem 15. Let f : Y — X and E be as above. Then the category (E;T(X))g is
finite. In particular, Theorem[d (and hence Theorem![d)) is true if k has characteristic zero
(see also the remark below).

Proof. As the subcategory Ty (X) of T(X) is stable under sub—quotients (Proposition @),
we have (E; Ty (X))g = (F;T(X))g. Let M be the Ox-—module appearing in Corollary
04 so M = Apax- We want to find a vector bundle o(M) € (E;Ty(X))g which is a
submodule of M and which induces, for every V' € (E;Ty (X)), a factorization

V(L M@l

|

O-(M)@l

of the monomorphism «y displayed in Corollary [[4l By definition, this will prove that
(E;Ty(X))g is finite.

Now let N be an arbitrary semistable torsionfree sheaf on X of slope zero. Let o(N) C
N be the largest sub—object of N belonging to (E;Ty(X))g; the existence of o(N) is
guaranteed by the following two facts

(1) each ascending chain of sub—sheaves N; C Ny C --- C N must terminate;
(2) if N7 and N, are sub—objects of N belonging to (E; Ty (X))g, then

Nl—l—NQ = Im(Nl@Ng —>N)

must also be in (F; Ty (X))g, due to Proposition @l
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Let V € (E;Ty(X))g, and let oy : V — M® be a monomorphism. It follows that ay
factors through the inclusion o(M®) C M®. But again, using Proposition l, we see
that o(M®) = o(M)®!. O

Remarks: (1) In the proof of Theorem [IH, we considered the largest sub—object lying
in Ty (X) of a torsionfree semistable sheaf of slope zero. This can be put in a more abstract
setting: finding a right adjoint for the inclusion of Ty (X) into the category of torsionfree
semistables of slope zero. The important point is, of course, stability under quotients
(Proposition []). The reasoning is reminiscent of the construction of a right adjoint for
the inclusion of categories Rep(H) — Rep(G), where G — H is surjective.

(2) In characteristic zero, there is also an easy proof of Theorem [I] which only assumes
that the existence of a trace morphism

TrA/OX A — OX.

(So normality of X is already sufficient.) Such an O y—linear morphism allows us to find
a section of the inclusion of Oy modules Ox — A, so that, for £ € Ty (X), each E®" is a
direct summand of A®". Hence, the indecomposable coherent O x-modules appearing in
E®™ are isomorphic to certain indecomposable components of A (this uses the uniqueness
of the Remak decomposition, see [I, p. 313, Theorem 1] and [I, p. 315, Theorem 2]); we
then apply [9, Lemma 3.1] to conclude that E is finite.

4.3. Proof of Theorem [@in the case of curves. Let E € Ty (X), where f : Y — X is
a finite surjective morphism. We can assume without loss of generality that Y is smooth
and irreducible. Using the fact that the only purely inseparable morphisms between
smooth curves are the Frobenia, we can find a factorization of f as

f=Trxoyg,
where g : Y — X induces a separable extension of function fields. Then
(FrR) E; T(X))e
is finite due to Theorem Let G be the monodromy group of £ in T(X) (see Definition
[0), and let
p: G — GL(z3FE) = GL,
be the faithful monodromy representation. Denote by

p:k—k

the arithmetic Frobenius a — a?” and by p™ the twist of p by ¢: in concrete terms: if
p has matrix coefficients given by (p;;) € GL,(9(G)), then the matrix coefficients of p(™

n

are (pf]T ). Let G be the k—group scheme G ®, k; this is the scheme G endowed with
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a different morphism to Spec (k). We have a commutative diagram of homomorphisms of
k-group schemes

where 7 is defined by the matrix coefficients (p;;), now regarded as elements in O(G™).
It follows that Ker(y) = {1}, while Ker(Frg) is a finite local group scheme (its ring of
functions is a local Artin algebra). Since the representation

p(m)

©(T(X),z9) — G — GL,

corresponds to (Fr'y)*E, the image of p™ in GL, is finite (recall that the first arrow
above is faithfully flat). Hence, G is an extension of finite group schemes, which shows
that G is a finite group scheme. We have proved Theorem [ for curves and hence (see
Proposition [I2)) for any smooth projective variety.
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