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1. In this Note we indicate a new approach to some generalisations
of the classical mean value theorems of Lagrange and Cauchy in the Differ-
ential Calculus. We obtain new forms for these generalised formula and
also derive some further generalisations suggested by these forms.

2. The usual form of Taylor’s theorem is

fE+B—f@ =B (D= ... 5 for) =R,
Writing @ — x for & we have

f@—f@)—@—xf'x)—.... - FPUx) =R

This is more convenient in what follows as the right-hand side is identically
replaced by the closed expression

(@ =2 e [ LD = /@]

n! x—a

(@ — x)”
n!

where D = d/dx.
We now state the following generalisation of the Cauchy mean value theorem:

D” () — f(a)]

L x—a _ (€ — a\*? fouD (g
D"[S{’(x)_gb(a)-l_(;—:%) é@:ﬁ‘%?;,x<f<a,.. .. (A)
‘ x—a

In the next paragraph we reduce this, by a change of variable, to an equi-
valent form which is shown to follow very simply from Cauchy’s mean value
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theorem. We here add a few remarks to show the connection of (A) with
various known results. Thus writing (A) in the form

(a—x™ 1, [f(x) - /(@)
n! X—4a ] __(a_g)n_p P' f‘n+1)(§)
(@= %"y [¢ = ¢@] N nl §FFI(E)
a

p! X —
we get
 I@-I@ == 9 — ...~ E= D ey
¢(a)——¢(x>—(a—x)¢'(x)—~....-§—--,f?- 4 ()
(41

which is a known generalisation of Cauchy’s formula (cf. Mahajani, Ele-
mentary Analysis, 4th edition, p. 119).

If in (Ay) we write ¢ (f) =(# — x)?*), where ¢ is any number (not neces-
sarily an integer) such that ¢+ 1 > p, we then have

$(@) =(@—x)", ¢(x) =¢'(x) =.... =¢?(x) =0
PV =@+ Dg@g—1......(¢—p+ D@ —x*~.
Hence the numerator of the left-hand side of (A,) is
Rpyy P (@ — x)™*! (a — "2 f 41 (§)
@+ D g =D g—pF D E—
If we nowput a—x =h, £ =x+ 6h, 0 < 6 < 1, this gives
_ g_‘ (1— 0~ A" £ 040 (x + Oh)

ST T @ DG qop ¥ A

which is a known form for R, (see Edwards, Differential Calculus, p. 511).
As a particular case, if in (A;) we put ¢ =p — %, we get

_p! 20+1 gk (1- ™2 B FHY) (x 4 0h) (A)
1 nl 1:3:5....2p + 1) o oV

Any number of such particular cases may be derived by taking g= p—8,
where B is a prescribed proper fraction.

Again, if in (A) we write ¢ (f) = #** the denominator of the L.H.S. is

xﬂ+1___ a”"‘l
o [5=E] -
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and we obtain for the numerator

R _(l “G)n'-p
n+l'—n! (p + 1)

which is Schlémilch’s form for R,.. Thus (A) includes the Schlsmilch
form of the remainder in Taylor’s theorem and hence also the Lagrange and

Cauchy forms which are obtained from it by taking p =n and p =o res-
pectively.

W'+l f*+) (x 4+ 6h).

3. We now return to the result (A). It may be written in the symme-
trical form
(x — a)” D" [f(fc):];(a)] (= gy e () (B)
(x — @)’ D? [‘f’ (x)—¢ (a)] T (E = @)L g@FEI(E) ..

X —a

Now write x — a = ¢, F (?) __:f(x; :J;(a),(b ) = ¢ (x; — t(a).

Then A =d/dt =(x —a)Dand (x —a)*"D* =A(A—1)..(A—n +1)

= Aﬂ (A)’ say.

With these substitutions the L.H.S. of (B) becomes
A (B)F (1),
A (D)2 ()

and on the R.H.S. we get

=D () —f@]  _[Aa®) EF@ON
(oD@ e~ [N @ @B @ s (— =<1<D

[e’ Mr1i(A+1DF (t)]
Ay (BE DD Jr=r,

Thus (B) takes the form

M (D) F () _ s (A + DF(2)
e MTO~ BT DFD i, ©

Now the form (C) can be shown to result immediately from Cauchy’s
mean value theorem. We first write the latter in the form

f(x)-—-f(a)]/[?S (x)— ¢ (a)] _f() _ [(x —a)D {/ (%) -—f(a)}]
X —a X —a ' (¢) (x—a)D{¢ (x) — ¢ (@)} )x=:
Introducing the variable ¢z and the operator A as above this becomes

E() _ [A {e’F (t)}] - [(A +DF ()
D (1) A{eD (D)} lt=s, L+Do (t)]t=r1
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Replacing F (¢) by A, (A) ¢ (£) and D (¥) by A, (&) X (), we get

M) P () _ [(A + 1) 4, (B) ¢«(z)]
M) x (@ LA+ 1)A () x(@)Jr=r

RSN
Aprs B+ Doy () Je=ty

which is precisely (C). If we go back now by writing
_f(x)—f(9)
() = “x—a

x @ ____96(33:93(0)

A, (8) =(x — a)” D, etc.,
we recover (B).

4. We proceed to consider some further generalisations of (A).

LetQ, () = b g, t" be an arbitrary polynomial. Consider the expression
r=0 .
2 gD [f gl €9 et Al (a)].

X—a

r=0

By carrying out the differentiations and noting that

. ’ m!
Q”(”) (0) =r! qr, Qn( )(l) = mi‘" m 9

we obtain the identity

o g [

=2 (=) (=" Q" (D)™ X)) - QO f™@)] .. (D)

m=0

Since it is easily verified that

Z’n . D’ [f(n..r) (x) __f(”-") (a)] _ ‘rf(rq.l) [a+ t(x___ a)] Qn (t) dt (E)

=0 X—a

the result (D) is equivalent to a formula of Darboux (Whittaker and Watson,
Modern Analysis, 4th edition, p. 125).

Now write

F(i) = 2 (= 1" (x — a" A (0 ™ [a + t (x — a)]

m=0

P(t) = b (D" (x — a)" By#" (1) ™ [a + t (x — a)]
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where
An) = Z a7, B,(9 = -Z. b, 1"

Then it is easily verified that
F@)=(—1Kx—a*A,@0Ofa+t(x—a)]
& (1) = (— 1)? (x — @)+ B, (2) ¢@V [a + t (x — a)]

If we now apply Cauchy’s formula
F(1)— F(0) _F (1)

-2 ~FGEr "<hT!
we get
._)? (— D" (x — a)” [A,7™ (1)f<”"(x)—- ATN0) f "”-’(a)]

F (- 1)"’ (x — a)” [B,2 (1) ¢ (x) — B;"*’”)(o) o (@)]

mr _ (= I (x— @)™ A, (1) 9D
(T TP (x — 9P B, (1) $2HI(8)

On using the 1dent1ty (D) on the L.H.S. this gives
3 oD [f = (x) ~ f*N (a)] A, (E ) f(~+1) G

ST @ ()
, x ") (a
3; b, D | e ] (—f---)¢"’+1’(§)
This is the desired generahsatlon of (A). It reduces to the latter if we take
=08, =.... =0, =0; by =b; =.... =by; = 0.

The above result can be still further generalised. We set

FO) =2 (— D" (x—a)" A O™ [a+ t (x — )]

PO =2 (= D" — a7 B ()7 a1 ]
T =3 0P " () a4 1 )
where -
A, (D) = 2 a,t,B,() = 2 b, C,(1) = % ¢, ¢
If we put

F (@, F(0), F()
H@ = 2@, 20, ()
@, ¥0), ¥YQA)
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then H(1) =H (©O) =0, so that H' (¢r,) =0, 0 < ¢, < 1,
F' (x1), F(@©, F(@)
i.e., ‘ D’ (), D 0, D (1) =0.
¥ (), ¥FO), ¥@)
Using (D) and simplifying, this can be finally reduced to the form:

A, (i [+ (8), rfo a, D” (x )fm».—ﬁ (a),'é a, D” [fm_ﬂ (-’2 :ﬁ-m_r, (a)]
B, (E=2)s @ £ 6D (L) err @ £p D [FTR_FT @),
Cg f — a‘) ¢(q+1> (f) '—z;' ¢, D” (x — a) ¢(q-r) (@), ré c, D" [qu—” (xzc:li(g”ﬂ (a)

.- . (€))

If we take in particular A, (2) =17, B,(?) = ¢? and C, (#)= ¢, this
reduces to Rajagopal’s result (see Mahajani, Analysis, p- 119).




