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R. Jesik,26 K. Johns,27 M. Johnson,34 A. Jonckheere,34 H. Jöstlein,34 A. Juste,34 W. Kahl,42 S. Kahn,53
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We present a search for large extra dimensions (ED) in pp̄ collisions at a center-of-mass energy
of 1.8 TeV using data collected by the DØ detector at the Fermilab Tevatron in 1994-1996. Data
corresponding to 78.8 ± 3.9 pb−1 are examined for events with large missing transverse energy, one
high-pT jet, and no isolated muons. With no excess beyond the background prediction from the
standard model, we place limits on the fundamental Planck scale of 1 TeV (0.6 TeV) for 2 (7) ED.

The standard model (SM) of particle physics is a spec-
tacular scientific achievement, with nearly every predic-
tion confirmed to a high degree of precision. Never-
theless, the SM still has unresolved unappealing char-
acteristics, including the problem of a large hierarchy in
the gauge forces, with gravity being a factor of 1033 –
1038 weaker than the other three. A new framework for
solving the hierarchy problem was proposed recently by
Arkani-Hamed, Dimopoulos, and Dvali [1], through the
introduction of large compactified extra spatial dimen-
sions in which only gravitons propagate. In the presence
of n of these extra dimensions, the fundamental Planck
scale in 4 + n dimensions is lowered to the TeV range,
i.e., to a value comparable to the scale that characterizes
the other three forces, thereby eliminating the puzzling
hierarchy.

The radius (R) of the compactified extra dimensions
can be expressed as a function of a fundamental Planck
scale, MD ≈ 1 TeV, the number of extra dimensions n,
and the usual Planck scale MPl = 1/

√
GN . Assuming

compactification on a torus, the relationship is [2]:

R =
1

n

√
8πMD

(MPl/MD)2/n.

The value n = 1 is ruled out by the 1/r2 dependence
of the gravitational force at large distances. The current
limits from tests of gravity [3], as well as stringent astro-
physical and cosmological bounds [4], have significantly
constrained the case of two extra dimensions. For n > 2,
the constraints from direct gravitational measurements
and cosmological observations are relatively weak, how-
ever, high-energy colliders can provide effective ways to
test such models of large ED.

In the framework of large ED, the strength of gravity
in four dimensions is enhanced through a large number
of graviton excitations, or Kaluza-Klein modes (GKK) [5]
at high energies. This leads to new phenomena predicted
for high energy collisions [2, 6]: virtual graviton exchange
and direct graviton emission. Virtual graviton exchange
leads to anomalous difermion and diboson production,
and searches for these effects have been pursued at the
Tevatron [7], LEP [8], and HERA [9]. For real gravi-
ton emission, since the graviton escapes detection, the
signature involves large missing transverse energy E/T ac-
companying a single jet or a vector boson at large trans-
verse momentum. LEP experiments [8] and the CDF
collaboration [10] have recently set limits on MD based
on γ + GKK production.

In this Letter, we report the results of the first search
for large ED in the jet + E/T channel. The advantage
of this channel is its relatively large cross section, with
the tradeoff of large background. Besides Z(νν̄) + jets,
which is the irreducible background, there are various in-
strumental backgrounds from mismeasurement of, e.g.,
jet ET , vertex position, undetected leptons, cosmic rays,
etc. The data used for this search were collected in 1994 –
1996 by the DØ collaboration [11] at the Fermilab Teva-
tron, using proton-antiproton collisions at a center-of-
mass energy of 1.8 TeV. This sample, representing an in-
tegrated luminosity of 78.8 ± 3.9 pb−1, was obtained us-
ing E/T triggers with thresholds between 35 and 50 GeV.

The DØ detector [11] consists of three major compo-
nents: an inner detector for tracking charged particles,
a uranium/liquid-argon calorimeter for measuring elec-
tromagnetic and hadronic showers, and a muon spec-
trometer consisting of magnetized iron toroids and three
layers of drift tubes. Jets are measured with an en-
ergy resolution of approximately σ(E)/E = 0.8/

√
E (E

in GeV). E/T is measured with a resolution of σ(E/T ) =
a+b×ST +c×S2

T , where ST is the scalar sum of all trans-
verse energies in the calorimenter, a = 1.89 ± 0.05 GeV, b
= (6.7 ± 0.7) × 10−3, and c = (9.9 ± 2.1) × 10−6 GeV−1

[12].

We select events containing one central (detector pseu-
dorapidity |ηd| ≤ 1.0 [13]) high-ET jet (j1) and large E/T ,
both values > 150 GeV. Since there can be initial or
final-state radiation (ISR or FSR), secondary jets can
also be present. To increase signal efficiency, we allow
for additional jets in the event, but require the second
jet (j2) to have ET (j2) < 50 GeV, which reduces the
dijet background, while retaining the signal containing
ISR or FSR. In addition, we reject events with isolated
muons, ∆R(j1, µ) > 0.5, to suppress W or Z production
with a muon in the final state as well as to reduce the
background from cosmic rays. (The separation between
objects is defined as ∆R =

√

(∆η)2 + (∆φ)2, where η is
the pseudorapidity and φ is the azimuthal angle.) Back-
grounds with isolated electrons are expected to be small,
and we therefore do not need special criteria to sup-
press electrons. We also require ∆φ(j2, E/T ) > 15◦, to
reduce the background from mismeasured jets in mul-
tijet (“QCD”) events. A calorimeter-based cosmic-ray
criterion is used to reject events containing cosmic rays
either with the photons emitted at the junction between
the electromagnetic and hadronic calorimeters, or events
with minimum-ionizing energy deposited by the cosmic
muons. Jet “pointing”, based on tracking information in
the jet, is used to confirm the longitudinal position of the
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primary vertex by requiring that ∆z(j1-vertex, primary-
vertex) ≤ 10 cm. This suppresses background from cos-
mic rays as well as from misvertexed events. The require-
ments on ηd of the leading jet and on the event vertex
confirmation are chosen to maximize the significance of
signal relative to background. A total of 38 events remain
in the data sample after all selections.

The PYTHIA Monte Carlo (MC) generator [14], with
implementation of the ED signal via Ref. [15], is used to
generate signal events, including the parton-level subpro-
cesses qg → qGKK, qq̄ → gGKK, and gg → gGKK. This is
followed by the DØ fast detector simulation QSIM [16].
The signal is simulated for 2 to 7 extra dimensions, with
MD ranging from 600 GeV to 1400 GeV in 200 GeV steps.
Signal acceptance varies from about 5% to 8%, depend-
ing on the values of n and MD. The 13% uncertainty on
acceptance is limited by the size of the MC samples, and
is of the same order as the uncertainty from the jet en-
ergy scale [17], which is about 5% to 12%. The CTEQ3M
set of parton distribution functions (PDFs) [18] is used
for signal, and there is an uncertainty of about 3% to 5%
from the choice of PDF.

The SM background from W and Z-boson production
is also modeled by PYTHIA, followed by the QSIM de-
tector simulation. We normalize the W and Z production
cross sections to the published DØ measurements in the
electron channel [19]. The sources of background are de-
tailed in Table I. With our event selection, the contribu-
tion from other than Z(νν̄) + jets is small, and the back-
ground from all W and Z sources is estimated as 30.2±6.4
events. The dominant uncertainty on the Z(νν̄) + jets
background estimate is from the jet energy scale. The
residual background from mismeasured multijet events
and cosmic muons is estimated from data, using the un-
correlated ∆z and ∆φ variables described above: we de-
fine four data samples, depending on whether the events
pass or fail the above criteria; we then normalize the
events that fail the event vertex confirmation to the can-
didate sample, using the ratio of the number of events
in the two data samples within ∆φ(j2, E/T ) ≤ 15◦; the
background from QCD and cosmic rays in the candidate
sample is thereby estimated as:

NQCD + cosmics = N∆z>10
∆φ>15◦ × N∆z≤10

∆φ≤15◦/N
∆z>10
∆φ≤15◦ ,

which corresponds to 7.8 ± 7.1 events. The uncertainty
is due primarily to low statistics of the data samples.
The total background estimate is 38 ± 10 events, and is
dominated by the irreducible background from Z(νν̄)+
jets. As shown in Fig. 1, the E/T distribution in the data
is consistent with that expected for background. Closer
examination of the event with E/T near 450 GeV reveals
that the energy deposited by the jet is concentrated in
only three calorimeter layers, typical of Bremsstrahlung
from a cosmic muon, rather than from a true jet. Nev-
ertheless, the event is kept in the candidate sample, as it
passes all a priori selection criteria. From extrapolation,

TABLE I: The expected and observed number of events in
the final jet + E/

T
sample.

Background N
Z(νν)+ jets 21.0 ± 5.1
Z(ee)+ jets < 0.01
Z(µµ)+ jets 0.01 ± 0.01

Z(ττ ) (+ jets) < 0.09
W (eν)+ jets 3.1 ± 0.7
W (µν)+ jets 0.8 ± 0.3

W (τν) (+ jets) 5.2 ± 2.3
QCD and cosmics 7.8 ± 7.1
Total background 38.0 ± 9.6

Data 38

we expect about 0.2 ± 0.2 background events for E/T >
300 GeV.

As a cross check of our background estimate, we define
a data sample with the less stringent requirements while
maintaining roughly the same ET (j1)/ET (j2): E/T and
ET (j1) > 115 GeV and ET (j2) < 40 GeV, and estimate
the background in this sample using the same techniques
as described above. This yields an expectation of 105 ±
16 W/Z + jets events and 16 ± 9 QCD and cosmic ray
events, consistent with the 127 events observed in the
data sample. The E/T distributions for this sample and
for the expected background are shown in Fig. 2.
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FIG. 1: Comparison of data (points with error bars), back-
ground prediction (dashed histogram), and combined signal
(n = 2, MD = 800 GeV) and background predictions (dot-
ted histogram) for E/

T
, with E/

T
and ET (j1) > 150 GeV and

ET (j2) < 50 GeV.

In the absence of evidence for large ED, we calculate
upper limits on the cross section for contributions from
the processes beyond the SM. Using a Bayesian approach
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FIG. 2: Comparison of data (points with error bars) with the
background prediction (solid histogram) for E/

T
, with E/

T
and

ET (j1) > 115 GeV and ET (j2) < 40 GeV.

[20], we set limits using the leading-order (LO) cross sec-
tions, as well as possible effects of next-to-leading-order
(NLO) corrections, approximated via a constant K-factor
of 1.34 [21], typical of similar processes, e.g., direct pho-
ton production. There are no NLO calculations for direct
graviton emission which exist to date. The limits with
the K-factor must be regarded as very rough approxima-
tions that only provide a measure of sensitivity to the un-
known effects of NLO. The limits on the cross section can
be interpreted as lower limits on the fundamental Planck
scale MD for different integer values of n, as listed in Ta-
ble II. The exclusion contours at 95% confidence level,
and a comparison with limits from LEP and CDF for the
single-photon channel [8, 10], are shown in Fig. 3. While
the DØ limits are slightly below those from LEP at low
values of n, the sensitivity of the monojet search exceeds
LEP sensitivity at large n, due to the higher center-of-
mass energy at the Tevatron. The limits correspond to
compactification radii ranging from R < 0.6 mm (n = 2)
to R < 9 fm (n = 7) without correcting for the K-factor,
and R < 0.5 mm (n = 2) to R < 9 fm (n = 7) with NLO
effects taken into account. For all n, the sensitivity in
the single-photon channel at the Tevatron is not as high
as in the monojet channel, as the comparison with the
CDF limits in 3 demonstrates.

TABLE II: 95% C.L. exclusion limits on MD.

n 2 3 4 5 6 7
MD limit without K-factor 0.89 0.73 0.68 0.64 0.63 0.62

scaling (TeV)
MD limit with K-factor 0.99 0.80 0.73 0.66 0.65 0.63

scaling (TeV)

400
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700

800

900

1000

1100

1200

1300

1400

2 3 4 5 6 7

FIG. 3: The 95% C.L. exclusion contour on the fundamental
Planck scale (MD) and number of extra dimensions (n) for
monojet production at DØ (solid line). Dashed curves corre-
spond to limits from LEP, and the dotted curve is the limit
from CDF, both for γ + GKK production.

In summary, we have performed the first search for
large extra dimensions in the monojet channel. With no
evidence for large extra dimensions, we set 95% confi-
dence level lower limits on the fundamental Planck scale
between 0.6 and 1.0 TeV, depending on the number of ex-
tra dimensions. Our limits are complementary to those
obtained at LEP in the single photon channel, and are
most restrictive on large extra dimensions to date for
n > 5.
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