
Research Papers in Physics and Astronomy

Gregory Snow Publications

University of Nebraska - Lincoln Year 

Search for Pair Production of Light

Scalar Top Quarks in pp? Collisions at

?s = 1.8 TeV

V. M. Abazov∗ Gregory Snow†

D0 Collaboration‡

∗Joint Institute for Nuclear Research, Dubna, Russia
†gsnow@unlhep.unl.edu
‡

This paper is posted at DigitalCommons@University of Nebraska - Lincoln.

http://digitalcommons.unl.edu/physicssnow/22



Search for Pair Production of Light Scalar Top Quarks in p �pp Collisions at
���
s

p
� 1:8 TeV

V. M. Abazov,21 B. Abbott,54 A. Abdesselam,11 M. Abolins,47 V. Abramov,24 B. S. Acharya,17 D. L. Adams,52

M. Adams,34 S. N. Ahmed,20 G. D. Alexeev,21 A. Alton,46 G. A. Alves,2 Y. Arnoud,9 C. Avila,5 V.V. Babintsev,24

L. Babukhadia,51 T. C. Bacon,26 A. Baden,43 S. Baffioni,10 B. Baldin,33 P.W. Balm,19 S. Banerjee,17 E. Barberis,45

P. Baringer,40 J. Barreto,2 J. F. Bartlett,33 U. Bassler,12 D. Bauer,37 A. Bean,40 F. Beaudette,11 M. Begel,50 A. Belyaev,32

S. B. Beri,15 G. Bernardi,12 I. Bertram,25 A. Besson,9 R. Beuselinck,26 V. A. Bezzubov,24 P. C. Bhat,33 V. Bhatnagar,15

M. Bhattacharjee,51 G. Blazey,35 F. Blekman,19 S. Blessing,32 A. Boehnlein,33 N. I. Bojko,24 T. A. Bolton,41

F. Borcherding,33 K. Bos,19 T. Bose,49 A. Brandt,56 G. Briskin,55 R. Brock,47 G. Brooijmans,49 A. Bross,33

D. Buchholz,36 M. Buehler,34 V. Buescher,14 V. S. Burtovoi,24 J. M. Butler,44 F. Canelli,50 W. Carvalho,3 D. Casey,47

H. Castilla-Valdez,18 D. Chakraborty,35 K. M. Chan,50 S.V. Chekulaev,24 D. K. Cho,50 S. Choi,31 S. Chopra,52 D. Claes,48

A. R. Clark,28 B. Connolly,32 W. E. Cooper,33 D. Coppage,40 S. Crépé-Renaudin,9 M. A. C. Cummings,35 D. Cutts,55
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Using 85:2� 3:6 pb�1 of p 	pp collisions collected at
���
s

p
� 1:8 TeV with the D0 detector at Fermilab’s

Tevatron Collider, we present the results of a search for direct pair production of scalar top quarks (~tt),
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the supersymmetric partners of the top quark. We examined events containing two or more jets and
missing transverse energy, the signature of light scalar top quark decays to charm quarks and
neutralinos. After selections, we observe 27 events while expecting 31:1� 6:4 events from known
standard model processes. Comparing these results to next-to-leading-order production cross sections,
we exclude a significant region of ~tt and neutralino phase space. In particular, we exclude the ~tt mass
m~tt < 122 GeV=c

2 for a neutralino mass of 45 GeV=c2.

DOI: 10.1103/PhysRevLett.93.011801 PACS numbers: 14.80.Ly, 12.60.Jv

Supersymmetry (SUSY) [1–3], one of the major ex-
tensions of the standard model (SM), introduces addi-
tional particle states. For every bosonic SM particle, it
assigns a fermionic ‘‘superpartner’’ and for every SM
fermion, a boson. The hypothesized SUSY particles
include gauginos and scalar quarks or ‘‘squarks.’’ The
gauginos, superpartners of the gauge particles, include
neutralinos (prime candidates for dark matter). Squarks
include the left-handed and right-handed scalar top
quarks or top squarks. These weak eigenstates mix to
provide the mass eigenstates ~tt1 and ~tt2.

Generic SUSY searches often make the simplifying
assumption of mass degeneracy of first and second gen-
eration squarks. The scalar top quark masses, however,
are expected to be substantially smaller than those of
all other squarks [4–6]. If sufficiently light, scalar top
quarks should be produced strongly at the Fermilab
Tevatron through qq annihilation and gluon-gluon fusion
with a cross section on the order of that of the top quark
[7,8]. According to the next-to-leading order program
PROSPINO [9], a 100 GeV=c2 scalar top quark has a pro-
duction cross section of about 12 pb and a 120 GeV=c2

scalar top quark of approximately 4.2 pb.
This analysis is sufficiently general that it applies to a

broad class of SUSY models. We make no assumptions
about gaugino unification, but assume that the lightest
neutralino ~

01 is the lightest supersymmetric particle,
with conservation of R parity guaranteeing its stability.
We consider the special case where the scalar top quark is
light enough that m~tt1 <mb �mW �m~

01

and m~tt1 <mb �

m~

�
1

, precluding the decays ~tt1 ! bW ~

01, ~tt1 ! b~

��
1 , and

~tt1 ! b~

��
1 (~

��

1 ! l�~�� or ~

��
1 ! ~ll��). The dominant

decay is then ~tt1 ! c~

01, yielding an event signature of
two jets with missing transverse energy ( 6ET). We make no
attempt to tag the b or c hadrons in jets.

Characteristics of the scalar top quark signal were
studied by generating Monte Carlo (MC) events for vari-
ous combinations of m~tt1 and m~

01

, using ISAJET [10] with
its implementation of ISASUSY [11]. These events were
processed through a GEANT [12] simulation of the D0
detector, a simulation of the trigger, and the standard D0
reconstruction program.

The major SM backgrounds expected for this signal are
multijet events with artificial 6ET and vector boson (VB)
production with associated jets. The VB backgrounds in-
clude those producing neutrinos and jets (Z� 2 jets !
��� 2 jets and W � jets, where the W boson decays to a

hadronically decaying � lepton), leptons from VB decays
that escape detection, or electrons misidentified as jets.
PYTHIA [13] was used to predict the acceptance for
W=Z� jet production, while the VECBOS [14,15]
Monte Carlo generator was used for W=Z� 2 jets events.
In each case, the calculated cross sections were scaled to
match internal D0 reconstruction and acceptance studies
for W=Z� n jets. We also used the cross section for tt
production measured at D0 [16] and the HERWIG generator
to calculate the acceptance for the tt background arising
from top quark decays to an undetected charged lepton, a
neutrino, and a jet.

The data correspond to an integrated luminosity of
85:2� 3:6 pb�1 collected during the 1994–1995 Teva-
tron run. The D0 detector consisted of a central tracking
system and a uranium/liquid-argon calorimeter sur-
rounded by a toroidal muon spectrometer. A detailed
description of the D0 detector and data collection system
can be found in Ref. [17]. Events were collected using a
trigger requiring two jets, one with ET > 25 GeV and the
second with ET > 10 GeV, and 6ET > 25 GeV, but reject-
ing events in which the direction of the leading jet and the
6ET are aligned within a polar angle of 14	. Jets are
reconstructed off-line using an iterative cone algorithm
[18] of radius 0.5 in ��� space. A requirement of at
least two jets with ET > 50 GeV, 6ET > 40 GeV, and all
jets satisfying a difference in azimuth ��
jet; 6ET� > 30	

guaranteed full trigger efficiency. To suppress VB back-
grounds we removed events with electrons or muons with
ET > 10 GeV.

Multijet backgrounds dominate this sample and arise
when mismeasured jets or a misidentified interaction
vertex induce an apparent 6ET . Requiring ��
jet; 6ET�<
165	 eliminates events with jets back to back to the 6ET .
We reduce the number of events with poorly measured jet
energies by requiring that the �� between the 6ET and the
jet with the second highest ET exceed 60	. We also
removed those events in which jets deposited most of
their energy within the narrow intercryostat region
(0:8< j�j< 1:2), where the central and end cap calorim-
eters meet. We refer to the 354 events surviving these
criteria as our base sample (see Table I).

To reduce the background from mismeasured vertices,
the central drift chamber (CDC) was used to associate
charged tracks with jets within the fiducial volume of the
CDC, j�dj< 1 [19]. Event by event these tracks establish
the origin of each jet, which was required to be no farther
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than 8 cm from the reconstructed event vertex. This
vertex confirmation was 80% efficient for W ! e� data
samples in which electron tracks matched to electromag-
netic calorimeter showers provided well-defined interac-
tion vertices, while keeping the mismatched rate below
2%. Table I lists the observed number of events from the
jets plus 6ET sample that survive each selection cut down
to this clean sample.

To predict the multijet background remaining in the
clean sample, we used events from the base sample where
the jet vertex position deviated by 15–50 cm from the
event vertex. We normalized this background sample to
the clean sample using events with ��
jet 2; 6ET�< 60	

(where jet 2 refers to the jet with the second largest ET).
We chose the 50 cm value because it provides the best
agreement between the background prediction and the
data for the 6ET region between 30 and 40 GeV, which is
dominated by multijet events. Changing this value to
100 cm (the full width of the instrumented interaction
region) increases the multijet prediction by 22%, which
we take as an estimate of the systematic uncertainty of
the method. Reversing the order of the vertex confirma-
tion and ��
jet 2; 6ET� selection with no change in the
relative pass rate of events from our base sample showed
they provide a legitimate criteria for separating subsets
for this study.VB background, which includes, in decreas-
ing order of importance W ! �� �� 2 jets, Z ! ��
�� 2 jets, and W ! �� 2 jets, is comparable to the
predicted background from multijet production (see
Table II).

A random grid search (RGS) [20] based on the energy
of the two leading jets and the 6ET was used to optimize
the final selection criteria to apply to the clean sample.
RGS uses Monte Carlo–generated scalar top quark events
to investigate the region of phase space most heavily
populated by signal. The RGS was run for the mass
points, m~tt � 115 GeV=c2 and m~

0 � 20 GeV=c

2, and
m~tt � 130 GeV=c2 and m~

0 � 30 GeV=c

2 optimizing re-
jection of background relative to signal by maximizing
the quantity Nsignal=

����������������������������������������
Nsignal � Nbackground

p
. This was sub-

ject to the requirements of > 2% efficiency for signal,
while restricting multijet backgrounds to account for no
more than 50% of the total background. The selection
criteria as determined by RGS for each mass point was
within 1–2 GeVof our final cuts, chosen to be leading jet
ET > 60 GeV, second jet ET > 50 GeV, and 6ET >
60 GeV. Our final sample and estimated background are
reported in Table II. Figure 1 compares data and back-
ground for several physics distributions. The additional
contribution for a 130 GeV=c2 scalar top quark,
30 GeV=c2 neutralino signal is indicated by the cross-
hatched regions on the figure.

TABLE II. A comparison of standard model and QCD multi-
jet backgrounds to the number of candidates in the clean and
final RGS optimized samples. For W=Z=tt the first uncertainty
is statistical, the second systematic. For QCD and the total
observed, the statistical and systematic uncertainties have been
added in quadrature.

Source Events in
clean sample

Events in
optimized sample

W=Z 63:0� 6:9�18:1�12:4 24:2� 3:6�9:0�6:3

tt 3:9� 0:02�0:2�0:5 3:4� 0:02�0:2�0:04
QCD multijet 22:5� 7:5 3:6� 1:4

Total background 89:5� 14:7 31:1� 6:4
Data 88 27

FIG. 1. Data (points) and predicted background (histograms)
after final selections. The additional contributions expected
from a M~tt � 130 GeV=c

2, M~

0 � 30 GeV=c
2 scalar top quark

are shown by shaded histograms. The plots correspond to the
ET of the leading jet, second jet, 6ET (the three parameters
optimized using the RGS), and HT , where HT � 6ET �
#iET
jeti�, to demonstrate agreement with variables not di-
rectly optimized via RGS.

TABLE I. Number of events surviving in the jets� 6ET
sample after the application of selection criteria. These 88
events form the clean sample.

Selection Events

2 jets and 6ET trigger 536 678
No detector malfunction or accelerator noise 487 715
Leading jet ET > 50 GeV 205 461
Second jet ET > 50 GeV 106 505
6ET > 40 GeV 13 752
30< ��
jet; 6ET�< 165

	 4 650
60< ��
jet 2; 6ET) 2 327
Lepton rejection 2 009
All jets reside outside D0 intercryostat region 354
Vertex confirmation 88
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We find the number of observed events is consistent
with expected background. Errors on signal efficiencies
and the fraction of background events passing final selec-
tion include the statistical uncertainties from finite MC
samples and systematics from the jet energy scale (about
7%), luminosity (4.3%), and W=Z cross sections (about
6%). The systematic uncertainty in simulating the trigger
is dominated by a hardware trigger response (introducing
a 5% uncertainty in acceptance). The systematic uncer-
tainty in identifying leptons in data ranged from 2%–
12% (with dependence on the detector ��� position of
the lepton and jet multiplicity), and the vertex confirma-
tion procedure includes a systematic 1% in its efficiency.
The signal acceptance of the final selection for a scalar
top quark mass of M~tt � 115 GeV=c

2, M~

0 � 40 GeV=c
2

was 2:7%� 0:1%. This null result can be represented
by a region of exclusion in the (m~tt1 ; m~

01

) plane, which
is shown in Fig. 2 (along with results from previous
experiments). A Bayesian method, using a flat prior for
the signal cross section and Gaussian priors for back-
ground and acceptance, sets the 95% confidence level
(C.L.) upper limits. The highest excluded scalar top quark
mass value excluded is 122 GeV=c2 for a neutralino mass
of 45 GeV=c2. The highest excluded neutralino mass
excluded is 52 GeV=c2 for a 117 GeV=c2 scalar top
quark mass.
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Commissariat à L’Energie Atomique and CNRS/Institut
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